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Preface 

This book is the eighth edition of an elementary text on solid state/ 
condensed matter physics fur seniors and beginning grad~rate students of the 
physical sciences, chemistry, and engineering. In the years since the first edi- 
tion was pnhlished the field has devcloped \,igoronsly, and there are notable 
applications. The challenge to the author has been to treat significant new 
areas while maintaining the introductory level of the text. It would be a pity to 
present such a physical, tactile field as an exercise in formalism. 

At the first editic~n in 1953 superconductivity was not lmderstood; Fermi 
snrfaces in metals were beginning to he explored and cyclotron resonance in 
semiconductors had just been observed; ferrites and permanent magnets were 
beginning to be understood; only a few physicists then believed in the reality of 
spin waves. Nanophysics was forty years off. In other fields, the structure of 
DNA was determined and the drift of continents on the Earth was demon- 
strated. It was a great time to be in Science, as it is now. I have tried with the 
successivt: editions of lSSY to introduce new generations to the same excitement. 

There are several changes from the seventh edition, as well as rnucll 
clarification: 

An important chapter has been added on nanophysics, contributed by an 
active worker in the field, Professor Paul L. McEuen of Cornell University 
Nanophysics is the science of materials with one, two, or three small dimen- 
sions, where "small" means (nanometer 10-%m). This field is the most excit- 
ing and vigorous addition to solid state science in the last ten years. 
The text makes use of the simplificati(~ns made possible hy the nniversal 
availability of computers. Bibliographies and references have been nearly 
eliminated because simple computer searches using keywords on a search 
engine slreh as Google will quickly generate many useful and rnore recent 
references. As an cxamplc of what can ho dons on the Web, explore the 
entry http://\mw.physicsweb.org'hestof/cond-mat. No lack of honor is in- 
tended by the omissions of early or traditiorral references to the workers 
who first worked on the problems of the solid state. 
The order nf the chapters has been changed: superconducti\ity and 
magnetism appear earlier, thereby making it easier to arrange an interesting 
one-semester course. 

The crystallographic notation conforms with current usage in physics. Im- 
portant equations in the body of the text are repeated in SI and CGS-Gaussian 
units, where these differ, except where a single indicated substitution will 
translate frnm CGS to SI. The dual usage in this book has been found helpful 
and acceptable. Tables arc in conventional units. The symbol e denotes the 



charge on the proton and is positive. The notation (18) refers to Equation 18 
of the current chapter, but (3.18) refers to Equation 18 of Chapter 3. A caret (^) 
over a vector denotes a nnit vector. 

Few of the problems are exactly easy: Most were devised to carry forward 
the subject of the chapter. With few exceptions, the problems are those of the 
original sixth and seventh editions. The notation QTS refers to my Quantum 
Theory of Solirls, with solutions by C. Y. Fong; TP refers to Thermal Physics, 
with H .  Kroemer. 

This edition owes much to detailed reviews of the entire text by Professor 
Paul L. McEuen of Cornell University and Professor Roger Lewis of Wollongong 
University in Australia. They helped make the book much easier to read and un- 
derstand. However, I must assume responsibility for the close relation of the text 
to the earlier editions, Many credits for suggestions, reviews, and photographs 
are given in the prefaces to earlier editions. I have a great debt to Stuart Johnson, 
my publisher at Wiley; Suzanne Ingrao, my editor; and Barbara Bell, my per- 
sonal assistant. 

Corrections and suggestions will be gratefully received and may be ad- 
dressed to the author by rmail to kittelQberke1ey.edu. 

The Instructor's Manual is available for download at: \m.wiley.coml 
collegelkittel. 

Charles Kittel 
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( c )  

Figure 1 Relation of the external form of crystals to the form of tlre elementary building hlackr. 
The building blocks are identical in (a) and (b), but  Merent c ~ s t a l  faces ;Ire developed. 
( c )  Cleaving a crystal of rocksalt. 



CHAPTER 1: CRYSTAL STRUCTURE 

PERIODIC ARRAYS O F  ATOMS 

The serious study of solid state physics began with the discovery of x-ray 
diffraction by crystals and the publication of a series of simple calculations of 
the properties of crystals and of electrons in crystals. Why crystalline solids 
rather than nonclystalline solids? The important electronic properties of solids 
are best expressed in crystals. Thus the properties of the most important semi- 
conductors depend on the crystalline structure of the host, essentially because 
electrons have short wavelength components that respond dramatically to the 
regular periodic atomic order of the specimen. Noncrystalline materials, no- 
tably glasses, are important for optical propagation because light waves have a 
longer wavelength than electrons and see an average over the order, and not 
the less regular local order itself. 

We start the book with crystals. A crystal is formed by adding atoms in a 
constant environment, usually in a solution. Possibly the first crystal you ever 
saw was a natural quartz crystal grown in a slow geological process from a sili- 
cate solution in hot water under pressure. The crystal form develops as identical 
building blocks are added continuously. Figure 1 shows an idealized picture of 
the growth process, as imagined two centuries ago. The building blocks here 
are atoms or groups of atoms. The crystal thus formed is a three-dimensional 
periodic array of identical building blocks, apart from any imperfections and 
impurities that may accidentally be included or built into the structure. 

The original experimental evidence for the periodicity of the structure 
rests on the discovery by mineralogists that the index numbers that define the 
orientations of the faces of a crystal are exact integers. This evidence was sup- 
ported by the discovery in 1912 of x-ray diffraction by crystals, when Laue de- 
veloped the theory of x-ray diffraction by a periodic array, and his coworkers 
reported the first experimental observation of x-ray diffraction by crystals. 
The importance of x-rays for this task is that they are waves and have a wave- 
length comparable with the length of a building block of the structnre. Such 
analysis can also be done with neutron diffraction and with electron diffraction, 
hut x-rays are usually the tool of choice. 

The diffraction work proved decisively that crystals are built of a periodic 
array of atoms or groups of atoms. With an established atomic model of a crys- 
tal, physicists could think much further, and the development of quantum the- 
ory was of great importance to the birth of solid state physics. Related studies 
have been extended to noncrystalline solids and to quantum fluids. The wider 
field is h o w n  as condensed matter physics and is one of the largest and most 
vigorous areas of physics. 



Lattice Translation Vectors 

An ideal crystal is constn~cted by the infinite repetition of idenbcal groups 
of atoms (Fig 2) A group is called the basis. The set of mathematical points to 
which the basls is attached is called the lattice The lattice in three dimensions 
may be defined by three translabon vectors a,, a,, a,, such that the arrange- 
ment of atoms in the crystal looks the same when viewed from the point r as 
when viewed from every polnt r' translated by an mtegral multiple of the a's: 

Here u,, u,, u,  are arhitraryintegers. The set of points r' defined by (1) for all 
u,, u,, u, defines the lattice. 

The lattice is said to be primitive if any two points from which the atomic 
arrangement looks the same always satisfy (1) with a suitable choice of the in- 
tegers ui. This statement defines the primitive translation vectors a,. There 
is no cell of smaller volume than a, . a, x a, that can serve as a building block 
for the crystal structure. We often use the primitive translation vectors to de- 
fine the crystal axes, which form three adjacent edges of the primitive paral- 
lelepiped. Nonprimitive axes are often used as crystal axes when they have a 
simple relation to the symmetry of the structure. 

Figure 2 The crystal srmchre is formed by 
the addition af the basis (b) to evely lattice 
point of the space laisice (a). By looking at 
( c ) ,  one oan recognize the basis and then one 
can abstract the space lattice. It does not 
matter where the basis is put in relation to a 
lattice point. 
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Basis and the Crystal Structure 

The basis of the crystal structure can be idendled once the crystal mes 
have been chosen Figure 2 shows how a crystal is made by adding a basis to 
every lamce pomnt-of course the lattice points are just mathematical con- 
structions. Every bas~s in a given crystal is dentical to every other ~n composi- 
tmn, arrangement, and orientation 

The number of atoms in the basis may be one, or it may be more than one. 
The position of the center of an atom3 of the basis relahve to the associated 
lattice point is 

We may arrange the origin, wl~ich we have called the associated lattice point, 
so that 0 5 x,, yj ,  zj 5 1. 

(b) (c) 

Fieure 3a Latttce nomts of a soam lnmce m two &mensrons AU ~ a r s  of vector? a,, a, are trans- 

twice the area of a primitive cell. 

Figare 3b Primitive ccll "fa space lattice in three dimensions 

Figure 3c Suppose these points are identical atoms: Sketchin on the figure a set of lattice points, 
s choice ofprimitive axes, aprimitivc cell, and the basis of atoms associatedwith alattice point. 



F i p e  4 A primitive cell may also be chosen fol- 
lowing this procedure: (1) draw lines to connect a 
given lattice point to all nearby lattice points: (2) at 
the midpoint and normal to these lines, draw new 
lines or planes. The smallest volume enclosed in this 
way is the Wigner-Seitz primitive cell. All space may 
be filled by these cells, just as by the ceh  of Fig. 3. 

Primitive Lattice Cell 

The parallelepiped defined by primitive axes al, a,, a, is called a primitive 
cell (Fig. 3b). A primitive cell is a t).pe of cell or unit cell. (The adjective unit is 
superfluous and not needed ) A cell will fill all space by the repetition of suit- 
able crystal b-anslatlon operationq. A primitive cell is a m~nimum-volume cell. 
There are many ways of choosing the prnnitive axes and primitive cell for a 
given lattice. The number of atoms m a primitive cell or primtive basis is 
alwap the same for a given crystal smllcture 

There is always one lattice point per primitive cell. If the primitwe cell is a 
parallelepiped with lattice po~uts at each of the eight corners, each lattice 
point is shared among e~ght  cells, so that the total number of lattice points in 
the cell is one: 8 X = 1. The volume of a parallelepiped wrth axes a,, %, a3 is 

V, = (a, - as X a, 1 , (3) 

by elementary vector analysis. The basis associated wrth a primitive cellis cdued 
a prim~tive bans. No basis contans fewer atoms than a pnmibve basis contains. 
Another way of choosing a primitive cell is shown in Fig. 4. This is h o w n  to 
physicists as a Wigner-Seitz cell. 

FUNDAMENTAL TYPES OF LATTICES 

Crystal lattices can be carried or mapped into themselves by the lattice 
translations T and by vanous other symmetzy operattons. A typical symmetry 
operation is that of rotation about an axis that passes through a lattice point. 
Lattices can be found such that one., two-, three., four., and sixfold rotation 
axes cany the lattice into itself, corresponhng to rotatrons by ZT, 2 ~ 1 2 ,  2 d 3 ,  
2 ~ 1 4 ,  and 2 ~ 1 6  radians and by integral multiples of these rotations. The rota- 
tion axes are denoted by the symbols 1,2, 3, 4, and 6. 

We cannot find a lattice that goes into itself under other rotations, such as 
by 2.d7 rachans or 2 ~ / 5  rachans. A single molecule properly designed can have 
any degree of rotational symmetry, but an Infinite periodic lattice cannot. We 
can make a crystal from molecules that individually have a fivefold rotation ms, 

but we should not expect the latbce to have a fivefold rotation ms .  In Fig. 5 we 
show what happens if we try to construct a penodic latbce havlng fivefold 



Figure 5 A fivefold t u i s  of symmetry can- 
not exist in a periodic lattice because it is 
not ~ossible to fa thc area of a plane with 
a mmected m a y  of pentagons. We can, 
however, fill all the area oTa plane with just 
two distina designs of "tiles" or elemeutary 
potysms. 

(c)  (e) 

Figure 6 (a) A plane of symmetry to the faces of a cube. (b) A diagonal plane of s)rmmehy 
in a cube. (c) The three tetrad xes of a cube. (d) Thc four trid axes of a cube. (e) The six diad axes 
of a cube. 

symmetry: the pentagons do not fit together to fdl all space, shoulng that we can- 
not combmne fwefold point symmetrywith the r e q u e d  translational penodicity. 

By lattice point group we mean the collection of symmetry operations 
which, apphed about a lathce pomt, carry the lattice into itself The possible ro- 
tations have been listed. We can have mirror reflecbons m about a plane through 



a lattice point. The inversion operation 1s composed of a rotation of v followed 
by reflection in aplane normal to the rotation axis; the total effect is to replace r 
by -r The symmetry axes and symmetry planes of a cube are shown in Fig 6. 

Two-Dimensional Lattice Types 

The lattice in Fig. 3a was d ram for arbitrary al and as. A general lattice 
such as this is known as an oblique lattice and is invariant only under rotation 
of .rr and 27r ahout any lattice point. But special lattices of the oblique type can 
he invariant under rotation of 2 ~ 1 3 ,  2 ~ 1 4 ,  or 2 d 6 ,  or under mirror reflection. 
We m i s t  impose restrictive conditions on a, and a% if we want to construct a lat- 
tice that will he invariant under one or more of these new operations. There are 
four distinct types of restriction, and each leads to what we may call a special 
lattice type. Thus there are five distinct lattice types in two dimensions, the 
oblique lattice and the four special lattices shown in Fig. 7. Bravais lattice is 
the common phrase for a distinct lattice.%e; we say that there are five Bravdrs 
lattices in two dimensions. 

Figure 7 Four special lattices in twodirnmsions, 
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Three-Dimensional Lattice Types 

The point symmetry groups in three dimensions require the 14 different 
lattice types listed in Table 1. The general lattice is triclinic, and there are 
13 special lattices. These are grouped for convenience into systems classified 
according to seven types of cells, which are triclinic, monoclinic, orthorbom- 
bic, tetragonal, cubic, higonal, and hexagonal. The division into systems is 
expressed in the table in terms of the adal relations that describe the cells. 
The cells in Fig. 8 are conventional cells: of these only the sc is a primitive cell. 
Often a nonprimitive cell has a more obvious relation with the point symmetry 
operations than has a primitive cell. 

There are three lattices in the cubic system: the simple cubic (sc) lattice, 
the body-centered cubic (hcc) lattice, and the face-centered cubic (fcc) lattice. 

Table 1 The 14 latlioe types in three dimensions 

Numhrr of Restr~chons on cunvenhonal 
System lathces cell axes and angles 

Triclimc 

Monoclinic 

Orthorhomb~c 

Cubic 

Trigonal 

Hexagonal 

Figure 8 The cubic space lattices. The cells s h m  are the conventional cells. 



Table 2 Characteristics of oubic lattices" 

a 
Lattice points p e r  cell 1 2 4 
Volume. primitive cell a3 ZQ 1 3  xa 1 3  

Lattice points per  unit volume l/a3 2/aR 4/a3 
Numher of nearest neighbors 6 8 12 
Nearest-neighbor distance a 3u2a/2 = 0.866a a/2'" 0.707a 
Number of second neighbors 12 6 6 
Second neighbor distance 2'% a a 
Packing fractionn ZW &V5 i d 5  

=0.524 =O.B80 =0.740 

"The packing fraction is the manirnum proportion of the available volume that can be filled 
with hard spheres. 

Figure 10 Pnmibve translation vectors of the body- 
~ i ~ , , , . ~  9 ~ ~ d ~ . ~ ~ ~ ~ ~ ~ ~ d  c,lbic lattice, shouing a centered cubic lattice; these vectors connect the lattice 
prilnitive ~h~ rimifive she%,,,, is a rhonl+,o point at the origin to lattice points at the body centers. 

hedron ,,f edge ; 2 3 a, and the angle behen adja. The primitive ceU is obtained on completing the rhody- 
cent edges is 109"ZR'. huhedron. In terms of the cube edge a, the primitive 

translation vectors are 

al= ia ( i+ i -2 )  ; a s = $ ~ ( - i + j + L i ) .  

a3=;a(%-f+i)  

Ifere i ,  j ,  i are the Cartesian untt vectors 

The charactenstics of the three cubic lattxes are summanzed in Table 2. A 
prirmhve cell of the bcc lattice is shown in Fig. 9, and the primtive tran~lation 
vectors are shown in Fig. 10 The primitive translabon vectors of the fcc lathce 
are shown In Fig. 11. Primitive cells by definition contain only one lattice 
point, but the conventional bcc cell contains two lattice points, and the fcc cell 
contains four lattice points. 
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Figore 11 The rhombohedra1 primitive cell of the hce-centered Figore 12 Relation of the plimitive cell 
cubic clystal. The primitive translation vectors a,, a,, connen in the hexagonal system (heavy lines) to 
the lattice point at the origin with lattice points at the face centers, a prism of hexagonal symmew. Here 
As drawn, the primitive vectors are: rr,=o,#a,. 

The angles between& axes are 60' 

The pos~hon of a point in a cell is spec~fied by (2) in terms of the atomic 
coordinates x ,  y, z. Here each coordinate is a fraction of the axla1 length a,, a,, 
a, in the direction of the coordinate axis, with the origin taken at one corner of 
the cell Thus the coorhnate? of the body center of a cell are ;$$, and the face 

1 1  1 1  centers include i i O ,  0,s; 5%. In the hexagonal system the primitive cell is a 
right prism based on a rhomhu3 with an included angle of 120". F~gure 12 
shows the relabonship of the rhombic cell to a hexagonal prism. 

INDEX SYSTEM FOR CRYSTAL PLANES 

The orientahon of a crystal plane is determined by three points in the 
plane, provided they are not collinear. If each point lay on a different crystal 
axis, the plane could be specdied by giving the coordinates of the points in 
terms of the latbce constants a,, a,, a3. However, it turns out to be  more useful 
for structure analysis to specify the orientation of a plane by the indices deter- 
mined by the followlug rules (Fig. 13). 

Find the intercepts on the axes in terms of the lattice constants a,, a,, a,. 
The axes may be those of a primitive or nonprimibve cell. 



Figure I3 This plane intercepts 
the a,, +, a, axes at 3a,, Za,, Za, 
The recrprocals of these numbers 

, I &  are 5,  ., . The smallest three mte- 
gers havlng the same rabo are 2, 3, 
3, and thus the m&ces of the plane 
are (233) I 

Figure 14 Inlces oElmportant   lanes in a cubx ctystal The plane (200) is ~ a r d e l  to (100) and 
to (100) 

Take the reciprocals of these numbers and then reduce to three integers 
having the same ratio, usually the smallest three integers. The result, en- 
closed in parentheses (hkl) ,  is called the index of the plane. 

For the plane whose intercepts are 4,1 ,2 ,  the reciprocals are $, 1, and $: the 
smallest three integers having the same ratio are (142). For an intercept at infin- 
ity, the corresponding index is zero. The indices of some important plades in a 
cubic crystal are illustrated by Fig. 14. The indices (hkl) may denote a single 
plane or a set of parallel planes. If a plane cuts an axis on the negative side of the 
origin, the corresponding index is negative, indicated hy placing a minus sign 
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above the index: (hkl). The cube faces of a cubic crystal are (100). (OlO) ,  (OOl), 
(TOO), (o~o) ,  and (001). Planes equivalent by symmeq  may he denoted by curly 
brackets (braces) around indices; the set of cube faces is {100}. When we speak 
of the (200) plane we mean a plane parallel to (100) but cutting the a, axis at i n .  

The indices [uvw] of a direction in a clystal are the set of the smallest inte- 
gers that have the ratio of the components of a vector in the desired direction, 
referred to the axes. The a, axis is the [loo] direction; the -a, axis is the [ o ~ o ]  
direction. In cubic crystals the direction [hkl] is perpendicular to a plane (hkl) 
having the same indices, but this is not generally true in other crystal systems. 

SIMPLE CRYSTAL STRUCTURES 

We di~cuss simple crystal structures of general interest the sohum chlo- 
nde, cesium chloride, hexagonal close-packed, hamond and cuh~c zinc sulfide 
structures. 

Sodium Chloride Structure 

The sohum chloride, NaCI, structure 1s shown in Figs. 1.5 and 16. The 
lattice is face-centered cublc: tile basis conslsts of one Na+ Ion and one C 1  ion 

Figure 15 We may construct the soditzrn chloride 
cvstal shuchlre by arranging Naf and C 1  ions alter- 
nately at the lattice points of  a simple cubic lattice. I n  
the ctysral each ion is surrounded by six nearest neigh- 
bors of the opposite charge. The space lattice is fcc, 
and the basis has one C I  ion at 000 w d  one Na' 
L ? L  . , ,. The 'figre shows one conventional cubi 
The ionic diameters here are reduced in relation 
cell in order to darify the spatial arrangement. 

... 
c cell. Fii 
tothe ?m 

P. : 

pre 16 M 
d e r  than th 
Singer) 

ulll cirlnride 
ns. (Courtes 

The sodium iuns are 
y of A. N. Holden and 



Pigure 17 Na1ui.d c~?stals of lead snlfide. PbS. whir11 lias the 
NaCl crystal stmcturc. (Phutag~apl~  by R. Burl?aon.) 

Figure 18 The cesium chloride cqstal 
struehne. The space lattice is silnple 
cubic, and &the basis has one Cst ion at 
000 and one C 1  ion at i. 

separated by one-half the body diagonal of a umt cube There are four units of 
NaCl ~n each unit cube, with atoms in tlie pos~tions 

Each atom has as nearest neighbors six atoms of the opposire kind. Represen- 
tative crystals having the ~ k l  arrangement include those in the following 
table. The cube edge a is given in angstroms; 1 if -- cm lo-'' m 0.1 
nm. Figure 17 is a photograph of crystals of lead sulfide (PbS) from Joplin, 
Missouri. The Joplin specimens form in beautiful cuhes. 

Cesium Chloride Stnccture 

The cesium chloride structure is shown in Fig. 18. There is one molecule 
per primitive cell, with atoms at the comers 000 and body-centered positions 
l i l  --- , , . of the simple cubic space lattice. Each atom may he viewed as at the center 



Figure 19 A close-packed layer of spheres is shown, with centers at points marked A. A second 
and identical layer of spheres can he placed on top of this, above and patallel to the plane of the 
drawing, with centen over the points marked B. There are two choices for a third layer. It can go 
in over A or over C. Ifit  goes in over A, the sequence is AEABAB . . . and the structure is hexagonal 
close-packed. If the third layer goes in over C, the sequence is ABCABCABC . . . and the Struchlre 
is face-centered cubic. 

A 

B Figure 20 The hexagonal close-packed structure. 
c The atom positions in t h i s  smcture do not constitute 

a soace lattice. The mace lattice is s im~le  hexa~onal 

I wik a basis of hvo ;dentical atoms asiociatedwith 
A each latttce nomt. The lamce parameters o and c are 

inhcated, where o is in the basal plane and c is the 
rnagmtude of the an? a, of R g  12 

of a cube of atoms of the opposite kind, $0 that the number of nearest neigh- 
bors or coordination number is eight. 

Hexagonal Close-Packed Structure (hcp) 

There are an infinite number of ways of arranging identical spheres in a 
regular array that maximuzes the packing fraction (Fig. 19) One 1s the face- 
centered  cub^ structure; another is the hexagonal close-packed structure 
(Fig. 20). The fraction of the total volume occupled by the spheres is 0.74 for 
both structures. No structure, regilar or not, has denserpaclung. 



Figure 21 The primitive cell has a, = h, with an 
included angle of 120". The c axis (or a,) is normal 
to the plane of a, and a,. The ideal hcp stmohre has 
c = 1.633 a, The two atoms of one basis are shown 
as solid circles. One atom of the bais is at the ori- 
gin; the other atom is at $Qb, which means at the 
position r = $a, + +a, + $a,. 

Spheres are arranged in a single closest-packed layer A by placmg each 
sphere in contact with SIX others in a plane. This layer may serve as either the 
basal plane of an hcp structure or the (111) plane of the fcc shcture .  A sec- 
ond s~milar layer B may be added by placlng each sphere of B in contact with 
three spheres of the bottom layer, as in Figs. 19-21. A third layer C may be 
added In two ways. We obtam the fcc structure if the spheres of the third layer 
are added over the holes in the first layer that are not occupied by B We 
obtain the hcp structure when the spheres in the third layer are placed directly 
over the centers of the spheres in the first layer. 

The number of nearest-nelghbor atoms is 12 for both hcp and fcc stnlc- 
tures. If the b~nding energy (or free energy) depended only on the number of 
nearest-neighbor bonds per atom, there would be no difference in energy 
between the fcc and hcp structures. 

Diamond Structure 

The diamond structure is the structwe of the semiconductors silicon and 
germanium and is related to the structure of several important semicondnctor 
binary compouncLs. The space lattice of damond 1s face-centered cubic. The 
primitive basis of the diamond structure has two identical atoms at coordinates 
000 and 2;; assoc~ated mth each point of the fcc latt~ce, as shown in Fig. 22. 
Because the convenbonal unit cube of the fcc lattice contains 4 latbce points, 
i t  follows that the conven~onal unit cube of the dlamond structure contams 
2 X 4 = 8 atoms. There is no way to choose a primitive cell such that the basis 
of diamond contains only one atom. 



Figure 22 Atomic positions in the cubic cell uf the diamond Figure 23 Crystal structure of diamond, 
s t ~ u c h ~ r r  projected on a cub? face; fiacticms denote height showingthetetrahedralbondarrangement. 
above the hasp in units of a cubc edge. The paints at 0 and $ 
are on the fcc lattice those at and are on a similar lattice 
displvcerl along the body diagonal by one-fourth of its lengh. 
With a fcc space lattice, the basis consists of mia identical 
atoms at 000 0 d i i ; .  

The tetrahedral bonding characteristic of the diamond structure is shown 
in Fig. 23. Each atom has 4 nearest neighbors and 12 next nearest neighbors. 
The diamond structure is relatively empty: the maximum proportion of the 
available volume which may he filled by hard spheres is only 0.34, which is 46 
percent of the f11ling factor for a closest-packed stmcture such as fcc or hcp. 
The diamond structure is an example of the directional covalent bonding 
found in column IV of the periodic table of elements. Carbon, silicon, germa- 
nium, and tin can crystallize in the diamond structure, with lattice constants 
n = 3.567, 5.430, 5.658, and 6.49 A, respectively. Here a is the edge of the 
conventional cubic cell. 

Cubic Zinc Sulfide Structure 

The diamond structure may be viewed as twn fcc structures displaced 
from each other by one-quarter of a body diagonal. The cubic zinc sulfide 
(zinc blende) structure results when Zn atoms are placed on one fcc lattice and 
S atoms on the other fcc lattice, as in Fig. 24. The conventional cell is a cube. 
The coordinates of the Zn atoms are 000; 0;;; $0;; $ $0; the coordinates of the 

1 1 1  1 3 3  3 1 3  3 5 1  S atoms are 444; , 44; 2 j j; 4 4 4. The lattice is fcc. There are four molecules '5- ZnS per conventional cell. About each atom there are four equally distafft 
atoms of the opposite kind arranged at the comers of a regular te t rahed~w ..- 



Figure 24 
sulfide 

Crystal structure of cubic zinc 

The diamond structure allows a center-of-inversion symmetry operation 
at the midpoint of every hne between nearest-neighbor atoms. The inversion 
operation carries an atom at r into an atom at -r. The cubic ZnS struc- 
ture does not have inversion symmetry. Examples of the cubic zinc sulfide 
structure are 

The close equality of the lattice constants of several pairs, notably (Al, Ga)P 
and (Al, Ga)As, makes possible the construction of sem~conductor hetemjunc- 
tions (Chapter 19). 

DIRECT IMAGING OF ATOMIC STRUCTURE 

Direct images of crystal structure have been produced by transmission 
electron microscopy. Perhaps the most beaubful Images are produced by scan- 
ning tunneling microscopy; in STM (Chapter 19) one exploits the large vana- 
tions in quantum tunneling as a function of the height of a fine metal tip above 
the surface of a crystal. The image of Fig 25 was produced m t h ~ ~  way. An 
STM method has been developed that will assemble single atoms Into an orga- 
nized layer nanometer structure on a crystal substrate. 

NONIDEAL CRYSTAL STRUCTURES 

l",v - ., . , .  
;.:t ..,.* ;> The ideal crystal of classical crystallographers is formed by the periodic 

7 ' ~ 

repetition of identical units in space. But no general proof bas been given that 
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Figure 25 A scanning tunneling microscope 
image of atorns on a (111) surface of fcc plat- 
inum at 4 K. The nearest-neighbor spacing is 
2.78 A. (Photo courtesy of D. M. Eigler, IHM 
Rrerarch  Divi~irn.) 

the ideal crystal is the state of minimum energy of identical atoms at the tem- 
perature of absolute zero. At finite temperatures this is likely not to be true. We 
give a further example here. 

Random Stacking and Polytypism 

:d planes I 
- .  The fcc and hcp structures are made up of close-pack< 3f atoms. 

The structures differ in the stacking sequence of the planes, fcc having the se- 
quence ABCABC . . . and hcp having the sequence ABABAB . . . . Structures 
are h o w n  in which the stacking sequence of close-packed planes is random. 
This is known as random stacking and may be thought of as crystalline in two 
dimensions and noncrystalline or glasslike in the third. 

Polytypism is characterized by a stacking sequence with a long repeat 
unit along the s t a c h g  axis. The hest known example is zinc sulfide, ZnS, in 
which more than 150 polytypes have been identified, with the lnngest period- 
icity being 360 layers. Another example is silicon carbide, Sic, which occurs 
with more than 45 stacking sequences of the close-packed layers. The polytype 
of SiC known as 393R has a primitive cell with a = 3.079 A and c = 989.6 A. 
The longest primitive cell observed for Sic has a repeat distance of 594 layers. 
A given sequence is repeated many times within a single crystal. The mecha- 
nism that induces such long-range crystallographic order is not a la 
force, but arises from spiral steps due to dislocations in the growtl 
(Chapter 20). 

~ng-range 
I nucleus 

CRYSTAL STRUCTURE DATA 

In Table 3 we hst the more common crystal stmctureq and lattlce structures 
of the elements Values of the atomic concentration and the density are glven in 

Table 4. Many dements occur m several crystal structures and transform from 



Table 3 Crystal structures of the elements 

.rhe data given are at morn temperature for the most common form, Y. 

the stated temperature in deg K. (Inorganic Cr)-stal Stlucture Database 



Table 4 Density and atomic concentration 

The data are given at atmospheric pressure and mom temperature, or at the 

m z g ~ m r ~ ~ ~ m ~ e a m ~ s ~ m ~ ~ e x s m ~ r s ~ v v  



one to the other as the temperature or pressure is varied. Sometimes two struc- 
tures coexist at the same temperatwe and pressure, although one may be slightly 
more stable. 

SUMMARY 

A lattice is an array of points related by the lattice translation operator 
T = ula, f uza2 f u,a3, where u,, us, u3 are integers and a,, a,, a, are the 
crystal axes. . To form a crystal we attach to every lattice point an identical basis composed 
of s atoms at the positions r, = xja, + y,a, + zja3, withj = 1,2,  . . . , s. Here 
x, y, z may be selected to have values between 0 and 1. . The axes a,, a*, a3 are primitive for the minimum cell volume la,. as X a,( 
for which the crystal can be constructed from a lattice translation operator T 
and a basis at every lattice point. 

Problems 

1. Tetrahedral angles. The angles behveen the tetrahedral bonds of diamond are the 
same as the angles between the body diagonals of a cube, as in Fig. 10. Use elemen- 
tary vector analysis to find the value of the angle. 

2. Indices of planes. Consider the planes with indices (100) and (001); the lattice is 
fcc, and the indices refer to the conventional cubic cell. What are the indices of 
these planes when referred to the primitive axes of Fig. II? 

3. Hcp structum. Show that the c/a ratio for an ideal hexagonal close-packed struc- 
ture is (:)IR = 1.633. If c/a is significantly larger than this value, the crystal structure 
may be thought of as composed of planes of closely packed atoms, the planes being 
loosely stacked. 
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Figure 1 Wavelength versus parti- 
cle energy, for photons, neutrons, 
and electrons 

Photon energy, keV 
Neuhon energy, 0 01 eV 
Elech-an energy, 100 PV 

Figure 2 Derivation of thr Bragg equation 2rl sin 8 = nA; here d is tile spacing of pardel atomic 
planes and Z m  is the difference in phase between retlections from successive planer. The 
reflecting planes have nothing to do with the surface planes botlnding the particular specimen. 



CHAPTER 2: WAVE DIFFRACTION AND 
THE RECIPROCAL LATTICE 

DIFFRACTION OF WAVES BY CRYSTALS 

The Bragg law 

We study crystal structure through the diffraction of photons, neutrons, 
and electrons (Fig. 1). The diffraction depends on the crystal structure and on 
the wavelength. At optical wavelengths such as 5000 A, the superposition of 
the waves scattered elastically by the individual atoms of a crystal results in or- 
dinary optical refraction. When the wavelength of the radiation is comparable 
with or smaller than the lattice constant, we may find diffracted beams in 
directions quite different from the incident direction. 

W. L. Bragg presented a simple explanation of the diffracted beams from a 
crystal. The Bragg derivation is simple but is convincing only because it repro- 
duces the correct result. Suppose that the incident waves are reflected specu- 
larly from parallel planes of atoms in the crystal, with each plane reflecting 
only a very small fraction of the radiation, like a lightly silvered mirror. In 
specular (mirrorlike) reflection the angle of incidence is equal to the angle of 
reflection. The diffracted beams are found when the reflections from parallel 
planes of atoms interfere constructively, as in Fig. 2. We treat elastic scatter- 
ing, in which the energy of the x-ray is not changed on reflection. 

Consider parallel lattice planes spaced d apart. The radiation is incident in 
the plane of the paper. The path difference for rays reflected from adjacent 
planes is 2d sin 0, where 0 is measured from the plane. Constructive interfer- 
ence of the radiation from successive planes occurs when the path difference 
is an integral number n of wavelengths A ,  so that 

This is the Bragg law, which can he satisfied only for wavelength A 5 2d. 
Although the reflection from each plane is specular, for only certain values 

of 0 will the reflections from all periodic parallel planes add up in phase to give 
a strong reflected beam. If each plane were perfectly reflecting, only the first 
plane of a parallel set would see the radiation, and any wavelength would be re- 
flected. But each plane reflects to of the incident radiation, so that 
lo3 to lo5 planes may contribute to the formation of the Bragg-reflected beam in 
a perfect crystal. Reflection by a single plane of atoms is treated in Chapter 17 
on surface physics. 

The Bragg law is a consequence of the periodicity of the lattice. Notice 
that the law does not referto the composition of the basis of atoms associated 
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h m  x-ray tube 
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Bragg angle 0 
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Figure 3 Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of 
x-ray or neubon wavelengths tiom a broad spectrum incident heam. The upperpart of the f i p o  
shows the analysis (obtained by reflection from a secnnd crystal) of the purity of a 1.16 A beam of 
neutrons frum a calcil~m fluoride crystal monochromator (After G. Bacon.) 

Figure 4 X-ray diffractometer recording of powdered silicon, silowing a countor recording of the 
hffracted beams. (Courtesy of W. Parrisll.) 

with every lattice point We shall see, however, that the composition of the 
bas~s determmes the relative intens~ty of the various orders of diffraction 
(denoted by n above) from a given set of parallel planes Bragg reflection from 
a single crystal is $horn in Fig 3 and from a powder m Fig 4. 

SCATTERED WAVE AMPLITUDE 

The Bragg derivation of the hffraction condrtion (1) gives a neat state- 
ment of the condihon for the ~onstructive interference of waves scattered 
from the lamce points. We need a deeper analysis to determine the scattering 
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intensity from the basis of atoms, whch means from the spahal distribution of 
electrons within each cell. 

Fozrrier Analysis 

We have seen that a crystal 1s ~nvariant under any translation of the form 
T = ulal + uza, + u3a3, where ul, u,, u, are integers and a,, as, a3 are the cr~stal 
axes. Any local physical property of the crystal, such a? the charge concentra- 
tion, electron number density, or magnetic moment density IS invanant under T. 
What is most lmportanf to us here 1s that the electron number den+ n ( r )  is a 
periodic function of r, w ~ t h  periods al, a,, a, in the direchons of the three crys- 
tal axes, respechvely. Thus 

Such penohcity creates an ideal situation for Fourier analys~s The most inter- 
estmg propemes of crystals are directly related to the Fourier components of 
the electron dens~ty 

We cons~der first a funchon n(x) in one bmension with period a in the 
brection x. We expand n(x)  in a Fourier series of sines and cosines: 

where the p are positive integers and Cp, Sp are real constants, caned the 
Fourier coefficients of the expansion. The factor 27rIa in the arguments en- 
sures that n(z)  has the period a: 

We say that 2rrpIa is a point in the reciprocal lattice or Fourier space of the 
crystal. In one dimension these points lie on a line. The reciprocal lattice 
points tell us the allowed terms in the Fourier series (4) or (5). A term is al- 
lowed if it is consistent with the periodicity of the crystal, as in Fig. 5; other 

Figure 5 
perlad a, 

411 2~ 211 411 may appt 
o o (I JT n(x) = 21 



points in the reciprocal space are not allowed in the Fourier expansion of a pe- 
riodic function. 

It is convenient to write the series (4) in the compact form 

where the sum is over all integers p: positive, negative, and zero. The coeffi- 
cients np now are complex numbers. To ensure that n(x) is a real function, we 
require 

nlp=nP , (6) 

for then the sum of the terms in p and - p  is real. The asterisk on nl, denotes 
the complex conjugate of n-,. 

With q = 2~px/a ,  the sum of the terms in p and -p in (5) is real if (6) is 
satisfied. The sum is 

n,(cos q + i sin q) + n_,(cos q - i sin q) 

= (np + n_,)cos 9 f i(nP - n+in 9 , (7)  

which in turn is equal to the real function 

2Re(np} cos q - 21m{nP} sin q (8) 

if (6) is satisfied. Here Re(nP) and Im(np] are real and denote the real 
and imaginary parts of n,,. Thus the number density n(x) is a real function, as 
desired. 

The extension of the Fourier analysis to periodic functions n( r )  in three 
dimensions is straightfonvard. We must find a set of vectors G such that 

n(r)=): nc exp(iG. r) 
G 

(9) 

is invariant under all crystal translations T that leave the crystal invariant. It 
will be shown below that the set of Fourier coefficients n, determines the 
x-ray scattering amplitude. 

Inversion of Fourier Series. We now show that the Fourier coefficient n,, 
in the series (5) is given by 

n, =a-' dr n(x) exp(-i2npxla) . I (10) 

Substitute (5) in (10) to obtain . 
, % ,  . 

. . 

n, = a-' z nss loa dx expb27r(pr - p)x/a] . (11) 
P 
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If p' # p the valuie of the integral is 

because p' - p is an integer and exp[i2.ir(integer)] = 1. For the term p' = p the 
integrand is exp(i0) = 1, and the value of the integral is a, so that np = a-'npa = 

n,, which is an identity, so that (10) is an identity. 
As in (lo), the inversion of (9) gives 

~ Here V, is the volume of a cell of the c~ystal. 

Reciprocal Lattice Vectors 

To proceed further with the Fourier analysis of the electron concentration we 
must find the vectors G of the Fourier sum Znr exp(iG . r) as In (9). There is a 
powerful, somewhat abstract procedure for doing this. The procedure forms the 
theoretical basis for much of solid state physics, where Fourier analysis is the 
order of the day. 

I We construct the axis vector? b,, b,, b3 of the reciprocal lattice: 

The factors 2.rr are not used by crystallographer? but are convenient in solid state 
physics. 

If al, a,, a, are primrtive vectors of the crystal lattice, then hl, h,, b3 are 
primitive vectors of the reciprocal lattice. Each vector defined by (13) is 
orthogonal to two axis vectors of the crystal lattice Thus h,, b,, bS have the 

property 

where6, = l i f i  =jandS!, = O i f z  i j .  
Points in the reciprocal lattice are mapped by the set of vectors 

where vl, v2, u2 are integers. A vector G of &is fonn is a reciprocal lattice vector. 
The vector? G i n  the Fourier senes (9) are just the rec~procal lattice vectors (15), 

for then the Fourier senes reprcsentahon of the electron density has the desired io- 
varmce under any crystal translabon T = ulal + ups, + u,a,. From (9). 



But exp(iG. T) = 1, because 

The argument of the exponential has the form 2ni times an integer, because 
v,u, + u,u, + u3u, is an integer, being the sum of products of integers. Thus by 
(9) we have the desired invariance, n(r + T) = n(r) = 2 nc e q ( i G  . r). 

Every crystal strl~cture has two lattices associated with it, the crystal lattice 
and the reciprocal lattice. A diffraction pattern of a crystal is, as we shdl show, 
a map of the reciprocal lattice of the crystal. A microscope image, if it could be  
resolved on a fine enough scale, is a map of the crystal structure in real space. 
The two lattices are related by the definitions (13). Thus when we rotate a crys- 
taI in a holder, we rotate both the direct lattice and the reciprocal lattice. 

Vectors in the direct lattice have the dimensions of [length]; vectors in the 
reciprocal lattice have the dimensions of [I/length]. The reciprocal lattice is a 
lattice in the Fourier space associated with the crystal. The term is motivated 
below. Wavevectors are always drawn in Fourier space, so that every position 
in Fourier space may have a meaning as a description of a wave, but there is a 
special significance to the points defined by the set of G's associated with a 
crystal structure. 

Diffraction Conditions 

Theorem. The set of reciprocal lattice vectors G detemnnes the possible 
x-ray reflections 

We see in Flg 6 that the difference ~n phase factors is exp[i(k - k') . r] 
between beams scattered from volume elements r apart The wavevectors of 
the incoming and outgomg beams are k and k' We suppose that the amplitude 

Figure 6 The difFerence inpath length oftheincident wave k a t  thepoints 0, r is rsin v, and the 
difference in phase angle is (2msin q ) / A ,  which is equal to k . r. For the diffracted wave the dif- 
ference in phase angle is k '  . r. The total difference in phase angle is (k  - k') . r, and the wave 
scattered from rN at r has the pbase factor exp[i(k - k') . rl relative to the wave scattered from a 
vohlme element at the origin 0. 





T h ~ s  is the central result of the theory of elaskc scattering of waves in a 
periodic lattice. If G 1s a reciprocal lattice vector, so is -G,  and with this sub- 
stitution we can write (22) as 

This particular expression is often used as the condition for diffraction. 
Equation (23) is another statement of the Bragg condition (1) .  The result 

of Problem 1 is fbat the spacing djhkl) between parallel lattice planes that are 
normal to the direction G = hb, + kb, + lb, is djhkl) = ~T/IGI.  Thus the 
result 2k . G = G2 may be written as 

2(2m/A) sin 0 = Z?rld(hkl) , 

or 2d(hkl) sm 0 = A .  Here B is the angle between the incident beam and the 
crystal plane. 

The integers hkl that define G are not necessarily   den tical with the in- 
dices of an actual crystal plane, because the hkl may contain a common factor 
n, whereas in the defiuition of the indices m Chapter 1 the common factor has 
been ehminated. We thus obtain the Bragg result. 

where d is the spacing between adjacent parallel planes with indices htn, 
kln, l/n. 

h u e  Equations 

The original result (21) of diffraction theory, namely that Ak = G, may be 
expressed in another way to give what are called the Laue equations These 
are valuable because of their geometrical representation. Take the scalar prod- 
uct of both Ak and G successively withal, a,, a,. From (14) and (15) we get 

These equations have a simple geometrical interpretation. The first equation 
a, . Ak = 2 m l  tells us that Ak lies on a certam cone about the direction of a,. 

The second equation tells us that Ak lies on a cone about a, as well, and the 
third equation requlres that Ak lies on a cone about a3. Thus, at a reflection 
Ak must satisfy all three equations: it must lie at the common line of mtersec- 
tion of three cones, which is a severe condition that can be satisfied only by 
systematic sweeplng or searching in wavelength or crystal orientation-or by 
sheer accident. 

A beauhful construction, the Ewald construction, 1s exhibited in Fig. 8. 
This helps us visualize the nature of the accident that must occur in order to 
satisfy the diffraction condition in three dimensions. 



Figure 8 The points on ills tight-hand side are reciprocal-latticr points of the crystal. The vector 
k is drawn in the dircctioi> of the incident x-ray hcam, and the migin i n  chosen such that k term- 
nates at any reciprocal lattice point. We h a w  a sphere of radius k = 2wlA about the oligin of k. 
A diffracted beam will he formed if this sphere intersects any other point in the reciprocal lattice. 
The sphere as d r a m  intercepts a pint connected with the end of k by a reciprocal lattice vedor 
G.  The diffracted x-ray beam is in the direction k' = k + G. The angle B is the Bragg angle of 
Fig. 2. This constructionis due  to P. P Ewald. 

BRZLLOUIN ZONES 

Brillouin gave the statement of the diffraction condition that is most 
widely used in solid state physics, which means in the description of electron 
energy band theory and of the elementary excitations of other kinds. A 
Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lat- 
tice. (Tlie construction in the direct lattice was shown in Fig. 1.4.) The 
Brillouin zone gives a vivid geometrical interpretation of the diffraction condi- 
tion 2k . G = GZof Eq. (23).  We divide both sides by 4 to obtain 

We now work in reciprocal space, the space of the k's and G's. Select a 
vector G from the origin to a reciprocal lattice point. Construct a plane normal 
to this vector G at its midpoint. This plane forms a part of a zone boundary 
(Fig. 9a). An x-ray beam in the crystal will he diffracted if its wavevector k has 
the magnitude and direction required by (26). The diffracted beam will then 
be in the direction k - G, as we see from (19) with Ak = -G. Thus the 
Brillouin construction exhibits all the wavevectors k which can be Bragg- 
reflected by the crystal. 
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Figure 10 Conshuction of the fitst Brilloain 

* zone for an oblique lattioe in two dimensions. We 
first draw a number of vectors from 0 to nearby . 
points in the reciprocal lattice. Next we construct 
lines perpendicular to these vectors at  their mid- 
paints. Tbe smallest endosed area is the first Btil- 
lauin zone. 

k =  -' k =  ' 
Figure 11 Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat- 
tice k b, of length equal to ZrIa. The shortest reciprocal latticevectors from the origin are b and 
-b  The perpendicular bisectors of these vectors form the boundaries of the first BriUouin zone. 
The boundaries are at k = 2wIa. 

Here 9, ii are orthogonal vectors of unit length. The volume of the cell is 
al . a, X a3 = a3. The primitive translationvectoi's of the reciprocal lattice are 
found from the standard prescription (13): 

- 2 )  ; b, = (27r/a)9 ; b, = (2?r/a)Z . (27b) 

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice 
constant 2da. 



Figme 12 Pnm~hve bmls vectors of the body centered 
mbrc lattice 

Figure 13 Ftrst Brilloum zone of the body- 
centered cublc lathce The f ipre  a a regular 
rbomb~c dodecahedron 

The boundaries of the first Brillduin zones are the planes normal to the six 
reciprocal lattice vectors ?b,, ?bz, Cb,  at their rmdpoints: 

-ti bl = ?(?ria)% ; 2 b = a ; 2; b, = ? ( d a ) i  . (28) 

The six planes bound a cube of edge 2w/a and of volume ( 2 ~ 1 ~ ) ~ ;  this cube is 
the first Brillouin zone of the sc crystal lattice. 

Reciprocal Lattice to bcc Lattice 

The primitive translation vectors of the bcc lattice (Fig. 12) are 

ax=$.(-%+f+2) ; % = ; a ( ; - f + i )  ; a 3 = $ a ( % + f - 2 )  , (29) 

where a 1s the side of the conventional cube and 4 f ,  2 are orthogonal unit 
vectors parallel to the cube edges The volume of the primtive cell is 

V =  la,.s,xa31=;a3 . (30) 

The prim~tive translations of the reciprocal lattice are defined by (13). We 
have, using (28), 

b = ( 2 a (  + 2) ; b = ( 2 a  + 2) ; b, = (2da)(%+ 9)  . (31) 

Note by cornpanson with Fig. 14 (p. 37) that these are just the primitive 
vectors of an fcc lattice, so that an fcc lattice is the reciprocal lattice of the bcc 
lattice. 

The general rec~procal lattice vector is, for integral u,, o,, o,, 

G = vlbl + nabz + v,b3 = (2.rr/a)[(uz + u,)% + (0, + 03)f  + (vl + v2)21 . (32) 
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3 

Figure 14 Pnm~tlve basrs vectors of the 
face-centered cttblc lathce 

The shortest G's are the following 12 vectors, where all choices of sign are 
independent. 

One primitive cell of the reciprocal Iattice is the parallelepiped described 
by the b,, bb b3 defined by (31). The volume of this cell in reciprocal space 
is b, . b2 X b, = 2 ( 2 ~ / a ) ~ .  The cell contains one reciprocal lattice point, 
because each of the eight corner points is shared among eight parallelepipeds. 
Each parallelepiped contains one-eighth of each of eight comer points (see 
Fig. 12). 

Another primitive cell is the central (Wigner-Seitz) cell of the reciprocal 
lattice which is the first Brillouin zone. Each such cell contains one lattice 
point at the central point of the cell. This zone (for the hcc lattice) is bounded 
by the planes normal to the 12 vectors of Eq. (33) at their midpoints. The zone 
is a regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13. 

Reciprocal Lattice to fec Lattice 

The primitive translation vectors of the fcc lattice of Fig. 14 are 

The volume of the primitive cell is 



'I' 4wla 

Figore 15 Brlllouin zones of 
the face-centered cubic lattice. 
The cells are in reciprocal space, 
and the reciprocal lattice is body 
centered. 

The primrtlve translabon vectors of the lattice reciprocal to the fcc 
lattice are 

These are pnmltlve translation vectors of a bcc lattice, so that the bcc lattice is 
reciprocal to the fcc lattice The volume of the primibve cell of the reciprocal 
la&= is 4 ( 2 ? r l ~ ) ~  
The shorte~t G's are the eight vectors: 

The boundaries of the ceneal cell in the reciprocal latt~ce are determined 
for the most part by the e~gh t  planes normal to these vectors at them 
midpoints. But the corners of the octahedron thus formed are cut by the 
planes that are the perpendicular b~qectors of six other rec~procal lattice 
vectors 

Note that ( Z d a ) ( G )  1s a reciprocal lattice vector because it is equal to b, + b, 
The first Brillonin zone is the smallest bounded volume about the or~gin, the 
truncated octahedron shown m Fig 15. The six planes bound a cube of edge 
&la and (before truncation) of voh~me ( 4 ~ r I a ) ~ .  
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FOURIER ANALYSIS OF THE BASIS 

When the diffraction condition Ak = G of Eq. (21) is satisfied, the scatter- 
ing amplitude (18) for a crystal of N cells may be written as 

The quantity S, is called the structure factor and is defined as an integral 
over a slngle cell, with r = 0 at one corner. 

Often it is useful to write the electron concentration n(r) as the super- 
position of electron concentration functions nl associated with each atom J 
of the cell. If r, 1s the vector to the center of atom j, then the function 
nl(r - rl) defines the contribution of that atom to the electron concentration 

at r. The total electron concentration at r due to all atoms m the smgle cell is 
the sum 

over the s atoms of the basis. The decornposifion of njr) is not unique, for we 
cannot always say how much charge density IS assoc~ated mth each atom. This 
is not an important difficulty. 

The structure factor defined by (39) may now be written as integrals over 
the s atoms of a cell. 

where p = r - q. We now define the atomic form factor as 

integrated over all space. If nl(p) is an atomic property,fi is an atomic property. 
We combine (4l)and (42) to obtain the structure factor of the  basis in 

the form 

S, = z f , e q ( - z ~ . r , )  . (43) 
J 

The usual form of this result follows on writing for atomj: 

5 = xlal + ylaz + zla3 , 



as in (1.2). Then, for the reflection labelled by ol, us. ug, we have 

so that (43) becomes 

The structure factor S need not be real because the scattered intensity will 
involve S'S, where S' is the complex conjugate of S so that S'S is real. 

Structure Factor of the bcc Lattice 

The bcc basis referred to the cnbic cell has identical atoms at x, = yl = 

z, = 0 and at x2 = ys = z2 = 2 .  Thus (46) becomes 

where f 1s the form factor of an atom. The value of S is zero whenever 
the exponential has the value -1, which IS whenever the argument 
is +rr X (odd mteger) Thus we have 

S = 0 when u, + v2 + u, = odd integer ; 

S = 2f when u, + u2 + u3 = even integer 

Metallic sod~um has a bcc structure. The diffraction pattern does not con- 
tainlines such as (loo), (300), (Ill), or (221), butlines such as (ZOO), (110). and 
(222) wdl be present: here the indices (olueu3) are referred to a cubic cell. What 
is the physical interpretahon of the result that the (100) reflection vanishes? 
The (100) reflection normally occurs when reflections from the planes that 
hound the cubic cell differ in phase by 27r. In the bcc lattice there is an inter- 
veningplane (Fig. 16) of atoms, labeled the second plane in the figure, which is 
equal ~n scattering power to the other planes. Situated midway between them, 
it gives a reflection retarded m phase by 7r with respect to the first plane, 
thereby canceling the contribution from that plane The cancellahon of the 
(100) reflection occurs m the bcc lattice because the planes are identical in 
composition. A similar cancellation can easily be found in the hcp structure. 

Structure Factor of the fcc Lattice 

The basis of the fcc structure referred to the cubic cell has identical atoms 
at 000; G; +@; SO. Thus (46) becomes 
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Figurc 16 Explanation uf t l ~ r  absence of a (100) reflection from a body-centered cnbic lattice. 
The plrasr difference between s~lccessivo planes is w, so that the reflected amplitude from two 
adjacent planes is 1 + a-'" = 1 - 1 = 0. 

If all mndices are even mtegers, S = 4f; similarly if all indices are odd mntegers. 
But if only one of the Integers is even, two of the exponents will be odd multi- 
ples of -zw and Swill vamrh. If only one of the integers is odd, the same argu- 
ment applies and S will also van~sh. Thus in the fcc lathce no reflections can 
occur for wlnch the Indices are partly even and partly odd. 

The point is heautifnlly illustrated by Fig 17 both KC1 and KBr have an 
fcc lattice, but n(r )  for KC1 simulates an sc lathce because the K+ and C 1  ions 
have equal numbers of electrons. 

Atomic Form Factor 

In the expression (46) for the structure factor, there occurs the quanbtyf;, 
which is a measure of the scattenng power of theyth atom in the unit cell. The 
value off involve? the number and distribut~on of atomic electrons, and the 
wavelength and angle of scattering of the radiation. We now give a classical 
calculation of the scatter~ng factor. 

The scattered rad~abon from a single atom takes account of interference 
effects withln the atom We defined the form factor in (42): 

with the integral extended over the electron concentration associated with a 
single atom. Let r make an angle ru with G; then G . r = Gr cos a. If the elec- 
tron dntribution is spherically symmetnc about the origin, then 

fi = 211 J dr P d(cos a) n,(r) exp-iGr cos a) 



Figure 17 Comparison of x-ray reflections horn KC1 
and KBr powders. In KC1 the numbers of electrons 
of K t  and CT ions are equal. The scatteliog ampli- 
tudes ill(+) and f(C1-) me almost exactly equal, so 
that the crystal looks to a-rays as i f  it were a 
monatomic simple cc~bic laKim of lattice constant 
a12. Only even integers occnr in the reflection indices 
when ttiese are based an n cuhic lam= of lattice can- 
stant a. In KBr the form factor of R r  is qc"tc differ- 
ent to that of K*. and all reflections of the fcc 
lattice are presxnt. (Courtesy of R. van Norristrand.1 
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after integration over d(cos a) between -1 and 1. Thus the form factor is 
given by 

If the same total electron density were concentrated at r = 0, only Gr = 0 
would contribute to theintegrand. In thls limit (sin Gr)lGr = 1, and 

f j  = 471 J dr nl(r)P = Z , (51) 

the number of atomic electrons Therefore f is the ratio of the radiation ampli- 
tude ~cattered by the actual electron distnbubon in an atom to that scattered 
by one electron localized at a point. In the fonvard direction G = 0, and f 
reduces again to the value Z 

The overall electron distribution m a solid as seen m x-ray diffraction is 
fairly close to that of the appropriate free atoms T h ~ s  statement does not 
mean that the outermost or valence electrons are not red~stnbuted somewhat 
m forming the solid: it  means only that the x-ray reflection intensities are 
represented well by the free atom values of the form factors and are not vely 
sensitive to small rehstributions of the electrons. 



SUMMARY 

. Various statements of the Bragg condition: 

2dsinO=nA ; A k = G  ; 2 k . G = G 2  . 
Lane conditions: 

a l . A k = 2 m ,  ; s , . A k = 2 m z  ; a , .Ak=2m3 

. The primitive translation vectors of the reciprocal lattice are 

Here al, az, a, are the primitive translation vectors of the crystal lattice. . A reciprocal lattice vector has the form 

G = o,b, + 02bz + o,b, , 

where ol, o,, u, are integers or zero. 

The scattered amplitude in the direction k' = k + Ak = k + G is propor. 
tional to the geometrical structure factor: 

where j runs over the s atoms of the basis, and& is the atomic form factor 
(49) of the jth atom of the basis. The expression on the right-hand side is 
written for a reflection ( u , u ~ , ) ,  for which G = o,b, + 02b2 + 03b3. . Any function invariant under a lattice translation T may be expanded in a 
Fourier series of the form 

The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal 
lattice. Only waves whose wavevector k drawn from the origin terminates on 
a surface of the Brillouin zone can be diffracted by the crystal. . Crystal lattice First Brillouin zone 
Simple cubic Cube 
Body-centered cubic Rhombic dodecahedron (Fig. 13) 
Face-centered cubic Truncated octahedron (Fig. 15) 

Problems 

1. Interplanor separation. Consider a plane hkl in a crystal lattice. (a) Prove that the 
reciprocal lattice vector G = hb, + kb2 + lb3 is perpendicular to this plane. (h) 
Prove that the distance between two adjacent parallel planes of the lattice is 
d(hkl) = 27r//GI. (c) Show for a simple cubic lattice that d2 = aP/(h2 + k2  + 1'). 



2. Hexagonal space lattice. The primitive translation vectors of the hexagonal space 
lattice may be taken as 

a, = (3"a/Z)i + (a/2)9 ; q = -(31na/2)i + (a/2)9 ; a, = & . 

(a) Show that the volume of the primitive cell is (3"V2)a2c. 
(b) Show that the primitive translations of the reciprocal lattice are 

b, = ( 2 5 ~ / 3 ~ a ) i  + (2nlag ; b, = - ( 2 ~ r / 3 ~ a ) i  + (2nIa)j. ; b, = (2vIc)i , 

so that the lattice is its own reciprocal, hut with a rotation of axes. 
(c) Describe and sketch the first Brillouin zone of the hexagonal space lattice 

3. Volume of Brillowin zone. Show that the volume of the first Brillouin zone is 
( 2 ~ ) ~ i V ~ .  where V, is the volume of a clystal primitive cell. Hint: The volume of a 
Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier 
space. Recall the vector identity ( c  X a)  X (a X b)  = (c  . a X b)a . j 

4. Width of diffraction maximum. We suppose that in a linear crystal there are 
identical point scattering centers at every lattice point p_ = ma, where m is an inte- 
ger. By analogy with (20), the total scattered radiation amplitude will be proportional 
to F = 2 exp[-ima . Ak]. The sum over M lattice points is 

i 
1 - exp[-iM(a. Ak] 

F = 
1 - exp-i(a. Ak)] 

by the use of the series 

(a) The scattered intensity is proportional to IFP. Show that I 
I F P - P F =  sin2$ M(a . Ak) 

sin2 (a  . Ak) 

(b) We know that a diffraction maximum appears when a .  Ak = 2nh, where h is an 
integer. We change Ak slightly and define E in a . Ak = 2nh + E such that gives 
the position of the first zero in s i n i ~ ( a .  Ak). Show that E = 2n/M, so that the width 
of the diffraction maximum is proportional to 1/M and can be extremely narrow for 
macroscopic values of M. The same result holds true for a three-dimensional crystal. 

5. Structure factor of diamond. The crystal structure of diamond is described in 
Chapter 1. The basis consists of eight atoms if the cell is taken as the conventional 
cube. (a) Find the structure factor S of this basis. (b) Find the zeros of S and show 
that the allowed reflections of the diamond structure satisfy v ,  + o, + o, = 4n, 
where all indices are even and n is any integer, or else all indices are odd (Fig. 18). 
(Notice that h, k, I may be written for o,, u,, u, and this is often done.) 

6. Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the 
number density is n(r) = (ma;)-' exp(-2r/%), where a,, is the Bohr radius. Show that 
the form factor is f, = 16/(4 + G24)'. 



2 Reciprocal lattice 45 

Counter position 28 

Figure 18 Neutron diffraction pattern for powdered diamond. (After G.  Bacon.) 

i 
7. Diatomic line. Consider a Line of atoms ABAB . . AB, with an A-B bond length 

of ;a. The form factors are fA, fa for atoms A, B, respectively. The incident beam of 
x-rays is perpendicular to the Line of atoms. (a) Show that the interference condition 
is nA = a cos 0, where 0 is the angle between the diffracted beam and the line of 
atoms. (b) Show that the intensity of the diffracted beam is proportional to If, - f a r  
for n odd, and to 1 f, + fB 1% for n even. (c) Explain what happens i f f A  = f a .  
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Figure 1 Thc principal types of crystalline binding. In (a) neutral atoms with closed electron 
shells arc bound together weakly by the van der Wads forces associated with fluctuations in the 
charge distributions. In (b) electrons are transferred from the alkali atoms to the halogen atoms, 
and the restdting ions are held together by attractive cloctrostatic forces between the positive and 
negative ions. In ( c )  the valence electrons are taken away from each alkali atom to form a commu- 
nal electron sea in which the positive ions are dispersed. In (d) the neutral atoms are bo~md to- 
gether by the overlapping parts of their electron disttib~~tions. 



CHAPTER 3: CRYSTAL BINDING AND ELASTIC CONSTANTS 

In this chapter we are concerned with the question: What holds a crystal 
together? The attractive electrostatic interaction between the negative charges 
of the electrons and the positive charges of the nuclei is entirely responsible 
for the cohesion of solids. Magnetic forces have only a weak effect on cohe- 
sion, and gravitational forces are negligible. Specialized terms categorize dis- 
tinctive situations: exchange energy, van der Wads forces, and covalent bonds. 
The observed differences between the forms of condensed matter are caused 
in the final analysis by differences in the distribution of the outermost elec- 

: trons and the ion cores (Fig. 1). 
The cohesive energy of a crystal is defined as the energy that must be 

added to the crystal to separate its components into neutral free atoms at rest, 
: at infinite separation, with the same electronic configuration. The term lattice 
I energy is used in the discussion of ionic crystals and is defined as the energy 

j that must be added to the crystal to separate its component ions into free ions 
at rest at infinite separation. 

Values of the cohesive energy of the crystalline elements are given in 
Table 1. Notice the wide variation in cohesive energy between different 
columns of the periodic table. The inert gas crystals are weakly bound, with 
cohesive energies less than a few percent of the cohesive energies of the ele- 

1 ments in the C, Si, Ge . . . column. The alkali metal crystals have intermediate ' values of the cohesive energy, The transition element metals (in the middle f columns) are quite strongly bound. The melting temperatures (Table 2) and 

1 bulk modulii (Table 3) vary roughly as the cohesive energies. 

CRYSTALS OF INERT GASES 

The inert gases form the simplest crystals. The electron distribution is 
very close to that of the free atoms. Their properties at absolute zero are sum- 
marized in Table 4. The crystals are transparent insulators, weakly hound, with 
low melting temperatures. The atoms have very high ionization energies (see 
Table 5). The outermost electron shells of the atoms are completely filled, and 
the distribution of electron charge in the free atom is spherically symmetric. 
In the crystal the inert gas atoms pack together as closely as possible1: the 

'Zer~-~oint motion of the atoms (Idnetic energy at absolute zero) is a quantum effect that plays 
a dominant role in He3 and He4. They do not solidify at zero pressure even at absolute zero temp- 
erature. The average fluctuation at 0 K of a He atom fmm its equilibrium position is of the order of ' 30 to 40 percent of the nearest-neighbor distance. The heavier the atom, the less important the zero- 
point effects. If we omit zero-point motion, we calculate a molar volume of 9 cm3 mol-' for solid 

. helium, as compared with the obsemd values of 27.5 and 36.8 cm3 mol-' for liquid He4 and liquid 
He3, respectively. 





Table 2 Melting points, in K. 

(After R H Larnoreaux) 
m~sssss~~~m~E~Es*v*w#~*m*~swsvwe~~s~~~v~~w#w~Ems~ss 

Li 
453.7 

Na 
371.0 

2365 
Be 
1562 

Mg 
922 

B C N O F N e  
63.15 

K 
336.3 

Rb 
312.6 

Cs 
301 6 

Fr 

24.56 54.36 

Ca 
1113 

Sr 
1042 

Ba 
1002 

Ra 
973 

53.48 

Ar 
83.81 

Th 
2031 

Al 
933.5 

Ni 
1728 

Sc 
1814 

S 
388.4 

Cr 
2133 

Y 
1801 

La 
1194 

Ac 
13-94 

CI 
172 2 

SI 
1687 

Cu 
1358 

Ti 
1946 

Pa 
la8 

P 
w 317 
r 863 

V 
2202 

I I I I I I I I I I I I I 1 

Zn 
6927 

Co 
1770 

Mn 
1520 

Zr 
2126 

U 
1408 

Am 
1449 

Fe 
1811 

Es 

Ga 
302.9 

Np 
910 

Cm 
1613 

Nb 
2750 

Pu 
913 

Fm 

Ge 
1211 

Mo 
2895 

Hf Ta 
2504 3293 

Bk 
1562 

Rh Pd Ag Cd In Sn Sb Te I Xe 
2236 1827 1235 594 3 4298 505 1 903 9 722.7 386 7 161.4 

Tc 
2477 

W 
3695 

Cf Md 

As 
1089 

Ru 
2527 

Ir 
2720 

Re 
3459 

I I I I I I I I I I I I I I 
\ 

0 s  
3306 

Ce 
1072 

No Lw 

Kr 
1158 

Se 
494 

Br 
265.9 

Pr 
1205 

Nd 
1290 

Eu 
1091 

Ho 
1745 

Pm Gd 
1587 

Sm 
1346 

Er 
1797 

Tb 
1632 

Dy 
1684 

Tm 
1820 

Yb 
1098 

Lu 
1938 



Table 3 Isothermal bulk madulii and cnrnpressibilities at mom 
temperature 

UI 
N After K. Cschneidner, Jr., Solid State Physics 16, 275-426 (1964), several 

data are from F. Birch, in Handbook of physical constants, Geological Soci- 
ety of America Memoir 97, 107-173 (1966). Original references should be 
consulted when values are needed for research purposes. Values in paren- 

.theses are estimates. Letters in parentheses refer to the crystal form. Let- 
ters in brackets refer to the temperature: 

[a] = 77 K; [b] = 273 K; [c] = 1 K; [dl = 4 K; [el = 81 K. 

~llCib3JIIs25#5~~13ir#ifil:fII~?:?:EIi:~IZIZ3i?#i?llI~?1?t~ll#~#IJ~W~ii~f~ - I ?E81 ::TI . . . .  
B,ik rnooL,Ls in un,ts l o "  dyn/cm2 or 10" NIW 

ComDie~s:Wm, n w h y  10 'zcmbaye or 10. ' nlLlP 
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Table 4 Properties of inert gas crystals 

(Extrapolated to 0 K and zero pressure) 

Parameters in 
Experimental Lennard-Jones 

Nearest- Ionization cohesive potential, Eq. 10 
neighbor potential energy 
distance, Melting of free 6,  0, 

in k kT/mol eVIatom point, K atom, eV in 10-''erg i n k  

He (liquid at zero pressure) 24.58 14 2.56 
Ne 3.13 1.88 0.02 24.56 21.56 50 2.74 
Ar 3.76 7.74 0.080 83.81 15.76 167 3.40 
Kr 4.01 11.2 0.116 115.8 14.00 225 3.65 
Xe 4.35 16.0 0.17 161.4 12.13 320 3.98 

crystal structures (Fig. 2) are all cubic close-packed (fcc), except He3 
and He4. 

What holds an inert gas crystal together? The electron distribution in the 
crystal is not significantly distorted from the electron distribution around the 
free atoms because not much energy is available to distort the free atom 
charge distributions. The cohesive energy of an atom in the crystal is only 
1 percent or less of the ionization energy of an atomic electron. Part of this 
distortion gives the van der Wads interaction. 

Van der Waals-London Interaction 

Consider two identical inert gas atoms at a separation R large in compari- 
son with the radii of the atoms. What interactions exist between the two neu- 
tral atoms? If the charge distributions on the atoms were rigid, the interaction 
between atoms would be zero, because the electrostatic potential of a spheri- 
cal distribution of electronic charge is canceled outside a neutral atom by the 
electrostatic potential of the charge on the nucleus. Then the inert gas atoms 
could show no cohesion and could not condense. But the atoms induce dipole 
moments in each other, and the induced moments cause an attractive interac- 
tion between the atoms. 

As a model, we consider two identical linear harmonic oscillators 1 and 2 
separated by R. Each oscillator bears charges 5 e  with separations 1-1 and x2, as in 
Fig. 3. The particles oscillate along the x axis. Let p, andp, denote the momenta. 
The force constant is C. Then the hamiltonian of the unperturbed system is 

Each uncoupled oscillator is assumed to have the frequency o, of the 
strongest optical absorption line of the atom. Thus C = mog. 



Table 5 Ionization energies 
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Figure 2 Cubic cl~sc-~x~cked (fcc) crystal structure uf the i m r t  ~ R S C F  Ne, AL Kc and Xe. The lat. 
tice parameters of thc cubic cells arc 4.46, 5.31, 5.64, and 6 1 3  A, r~spectivcly, at 4 4. 

Figme 3 Coordinates of the two oscillators 

Let XI be the coulomb interaction energy of the two oscillators. The 
geometlyis shown in the f ipre .  The internuclear coordinate is R. Then 

in the approximation lx, 1, ix, / R we expand ( 2 )  to obtain in lowest order: 

The total hamiltonian with the approximate form (3) for XI can he diago- 
nalized by the normal mode transformation 



or, on solving for xl and xz, 

The subscripts s and a denote symmetric and antisymmetric modes of motion. 
Further, we have the momenta p,, p,  associated with the two modes: 

The total hamiltonian 'Xo + 'X, after the transformations (5) and (6) is 

The two frequencies of the coupled oscillators are found by inspection of (7) to be 

with w, given by (C/m)l'Z. In (8) we have expanded the square root. 
The zero point energy of the system is $fi(w, + w,); because of the interac- 

tion the sum is lowered from the uncoupled value 2 . $firno by 

This attractive interaction varies as the minus sixth power of the separation of 
the two oscillators. 

This is called the van der Wads interaction, known also as the London in- 
teraction or the induced dipole-dipole interaction. It is the principal attractive 
interaction in crystals of inert gases and also in crystals of many organic mole- 
cules. The interaction is a quantum effect, in the sense that A U  + 0 as fi - 0. 
Thus the zero point energy of the system is lowered by the dipole-dipole cou- 
pling of Eq. (3). The van der Waals interaction does not depend for its exis- 
tence on any overlap of the charge densities of the two atoms. 

An approximate value of the constant A in (9) for identical atoms is given 
by fiw,a2, where fiw, is the energy of the strongest optical absorption line and 
a is the electronic p~larizabil i t~ (Chapter 15). 

Repulsive Interaction 

As the two atoms are brought together, their charge distributions gradually 
overlap (Fig. 4), thereby changing the electrostatic energy of the system. At 
sufficiently close separations the overlap energy is repulsive, in large part he- 
cause of the Pauli exclusion principle. The elementary statement of the 
principle is that two electrons cannot have all their quantum numbers equal. 
When the charge distributions of two atoms overlap, there is a tendency for 
electrons from atom B to occupy in part states of atom A already occupied by 
electrons of atom A, and vice versa. 



-- 
- - 
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Figure 4 Electronic charge distribu- 
tions overlap as atoms approach. The 
solid circles denote the nuclei. 

0 Total (a) energy: el-n 7 8  98 eV 

l s t l s l  
Total spin zero 

Total elearon 
energy -59 38 eV 

1st IS? ISTZST 
Total spin one 

Figure 5 The effect of Pauli principle on the repulsive energy: in an extreme example, two hydro- 
gen atoms are pushed together until the protons are almost in contact. The energy of the electron 
system alone can be taken from observations on atomic He, which has two electrons. In (a) the elec- 
trons have antipardel spins and the Pauli principle has no effect: the electrons are bound by 
7 8 . 9 8  eV In  (b) the spins are parallel: the Pauli principle forces the promotion of an electron from 
a 1s l. orbital of H to a 2s f orbital of He. The electrons now are bound by -59.38 eV, less than (a) 
by 19.60 eV This is the amount by which the Pauli principle has increased the repulsion. We have 
omitted the repulsive coulomb energy of the two protons, which is the same in both (a) and (b). 

The Pauli principle prevents multiple occupancy, and electron distribu- 
tions of atoms with closed shells can overlap only if accompanied by the partial 
promotion of electrons to unoccupied high energy states of the atoms. Thus 
the electron overlap increases the total energyof the system and gives a repul- 
sive contribution to the interaction. An extreme example in which the overlap 
is complete is shown in Fig. 5. 

We make no attempt here to evaluate the repulsive interaction2 from first 
principles. Experimental data on the inert gases can be fitted well by an empirical 
repulsive potential of the form B/R12, where B is a positive constant, when used 

'The overlap energy naturally depends on the radial distribution of charge about each atom. 
The mathematical calculation is always complicated even if the charge distribution is known. 



Nu+ 

Figure 6 Form of the Lemard-Jones potential (10) which describes the interaction of hm, inert gas 
atoms. The minimum orcurs at Nu = 2" e 1.12. Notice how steep the curve is inside the minimum, 
and how Bat it is outside the minimum. The value of U at the minimum is -E; and U = 0 at R = u. 

together with a long-range attractive potential of the form of (9). The constants A 
and B are empirical parameters determined from independent measurements 
made in the gas phase; the data used include the virial coefficients and the viscos- 
ity. It is usual to write the total potential energy of two atoms at separation R as 

where E and u are the new parameters, with 4eu6 = A and ~ E U "  = B. The 
potential (10) is h o w n  as the Lennard-Jones potential, Fig. 6. The force 
between the two atoms is given by -dU/dR. Values of E and u given in Table 4 
can be obtained from gas-phase data, so that calculations on properties of the 
solid do not involve disposable parameters. 

Other empirical forms for the repulsive interaction are widely used, in par- 
ticular the exponential form A exp(-Wp), where p is a measure of the range of 
the interaction. This is generally as easy to handle analytically as the inverse 
power law form. 

Equilibrium Lattice Constants 

If we neglect the kinetic energy of the inert gas atoms, the cohesive en- 
ergy of an inert gas crystal is given by summing the Lennard-Jones potential 
(10) over all pairs of atoms in the crystal. If there are N atoms in the crystal, 
the total potential energy is 
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where pYR is the distance between reference atom i and any other atom j, ex- 
pressed in terms of the nearest-neighbor distance R. The factor ; occurs with 
the N to compensate for counting twice each pair of atoms. 

The summations in (11) have been evaluated, and for the fcc structure 

There are 12 nearest-neighbor sites in the fcc structure; we see that the series 
are rapidly converging and have values not far from 12. The nearest neighbors 
contribute most of the interaction energy of inert gas crystals. The corre- 
sponding sums for the hcp structure are 12.13229 and 14.45489. 

If we take Ut,, in (11) as the total energy of the crystal, the equilibrium 
value R, is given by requiring that U,,, be a minimum with respect to variations 
in the nearest-neighbor distance R: 

whence 

the same for all elements with an fcc structure. The observed values of Rdu, 
using the independently determined values of u given in Table 4, are: 

The agreement with (14) is remarkable. The slight departure of Rolu for the 
lighter atoms from the universal value 1.09 ~redicted for inert gases can he ex- 
plained by zero-point quantum effects. From measurements on the gas phase 
we have predicted the lattice constant of the clystal. 

Cohesive Energy 

The cohesive energy of inert gas crystals at absolute zero and at zero pres- 
sure is obtained by substituting (12) and (14) in (11): 

and, at R = R,, 

U,,,(&) = -(2.15)(m€) , (16) 

the same for all inert gases. This is the calculated cohesive energy when the 
atoms are at rest. Quantum-mechanical corrections act to reduce the binding 
by 28, 10, 6, and 4 percent of Eq. (16) for Ne, Ar, Kr, and Xe, respectively. 



The heavier the atom, the smaller the quantum correction. We can under- 
stand the origin of the quantum correction by consideration of a simple model 
in which an atom is confined by fixed boundaries. If the particle has the quan- 
tum wavelength A, where A is determined by the boundaries, then the particle 
has kinetic energy p2/2M = ( h l ~ ) ~ l Z M  with the de Broglie relation p = hlA for 
the connection between the momentum and the wavelength of a particle. On 
this model the quantum zero-point correction to the energy is inversely pro- 
portional to the mass. The final calculated cohesive energies agree with the ex- 
perimental values of Table 4 within 1 to 7percent. 

One consequence of the quantum kinetic energy is that a crystal of the iso- 
tope Ne2" is observed to have a larger lattice constant than a crystal of NeZ2. The 
higher quantum kinetic energy of the lighter isotope expands the lattice because 
the kinetic energy is reduced by expansion. The observed lattice constants 
(extrapolated to absolute zero from 2.5 K) are NeZ0, 4.4644 A; NeZ2, 4.4559 A. 

IONIC CRYSTALS 

Ionic crystals are made up of positive and negative ions. The ionic bond 
results from the electrostatic interaction of oppositely charged ions. Two com- 
mon crystal structures found for ionic crystals, the sodium chloride and the ce- 
sium chloride structures, were shown in Chapter 1. 

The electronic configurations of all ions of a simple ionic crystal corre- 
spond to closed electronic shells, as in the inert gas atoms. In lithium fluoride 
the configuration of the neutral atoms are, according to the periodic table in 
the front endpapers of this book, Li: ls22s, F: ls22s22p5. The singly charged 
ions have the configurations Li+:ls2, F-: ls22s22p6, as for helium and neon, re- 
spectively. Inert gas atoms have closed shells, and the charge distributions are 
spherically symmetric. We expect that the charge distributions on each ion in 
an ionic crystal will have approximately spherical symmetry, with some distor- 
tion near the region of contact with neighboring atoms. This picture is con- 
firmed by x-ray studies of electron distributions (Fig. 7). 

A quick estimate suggests that we are not misguided in looking to electro- 
static interactions for a large part of the binding energy of an ionic crystal. The 
distance between a positive ion and the nearest negative ion in crystallirle 
sodium chloride is 2.81 X lo-' cm, and the attractive coulomb part of the 
potential energy of the two ions by themselves is 5.1 eV. This value may be 
compared (Fig. 8) with the experimental value of 7.9 eV per molecular unit for 
the lattice energy of crystalline NaCl with respect to separated Naf and CI- 
ions. We now calculate the energy more closely 

Electrostatic o r  Madelung Energy 

The long-range interaction between ions with charge ?q is the electrostatic 
interaction +q2/r, attractive between ions of opposite charge and repulsive 
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Figure 7 Electron density distribution in the 
base plane of NaCI, after x-ray sbdies by G. 
Schoknecht. The numbers an the contours @ve 
the relative electron concentration. 

Elechon 

I 
G a  &ty Figure 8 The energyper molecule unit of a crys- 

tal of sodium chloride is (7.9 - 5.1 + 3.6) = 6.4 eV 
lower than the energy of separated neutral atoms. 
The lattice energy with respect to separated ions 

4 7 oar is 7.9 eV oer molecule unit. All values on the fie- 

I eneW tton affmity are given in Table 6. 

between ions of the same charge. The ions arrange themselves in whatever c~ys-  
tal structnre gives the strongest attractive interaction compatible with the repul- 
sive interaction at short distances between ion cores. The repulsive interactions 
between ions with inert gas configurations are similar to those between inert gas 
atoms. The van der Weals part of the attractive interaction in ionic crystals 
makes a relatively small contribution to the cohesive energy in ionic crystals, of 
the order of 1 or 2 percent. The main contribution to the binding energy of ionic 
crystals is electrostatic and is called the Madelung energy. 



Table 6 Electron Bnities of negative ions 
The electron affinitv is oositive far a stable neeative ion. 

Atom Electron affinity enerw eV Atom Electron affinity energy eV 

Source: H. Hotop and W C. Lineberger, J. Phys. Chem. Ref. Data 4,539 (1975). 

If U, is the interaction energy between ions i and j ,  we define a sum U, 
which includes all interactions involving the ion i: 

u , = Z ' u ,  , 
/ 

(17) 

where the summation includes all ions exceptj = i. We suppose that U,, may be 
written as the sum of a central field repulsive potential of the form A expi-rlp), 
where A and p are empirical parameters, and a coulomb potential kq2/r. Thus 

where the + sign is taken for the like charges and the - sign for unlike charges. 
In SI units the coulomb interaction is ?q2/4mor; we write this section in CGS 
units in which the coulomb interaction is ?q2/r. 

The repulsive term describes the fact that each ion resists overlap with the 
electron distributions of neighboring ions. We treat the strength A and range p 
as constants to be determined from observed values of the lattice constant and 
compressibility; we have used the exponential form of the empirical repulsive 
potential rather than the R-l2 form used for the inert gases. The change is 
made because it may give a better representation of the repulsive interaction. 
For the ions, we do not have gas-phase data available to permit the indepen- 
dent determination of A and p. We note that p is a measure of the range of the 
repulsive interaction; when r = p, the repulsive interaction is reduced to e-' 
of the value at r = 0. 

In the NaCl strnctnre the value of U, does not depend on whether the 
reference ion i is a positive or a negative ion. The sum in (17) can he arranged 
to converge rapidly, so that its value will not depend on the site of the reference 
ion in the crystal, as long as it is not near the surface. We neglect surface effects 



3 Crystal Binding 63 

and write the total lattice energy U,,, of a crystal composed of N molecules or 
2N ions as U,, = NU,. Here N, rather than 2N, occurs because we must count 
each pair of interactions only once or each bond only once. The total lattice en- 
ergy is defined as the energy required to separate the crystal into individual -. 
ions at an infinite distance apart. 

It is convenient again to introduce quantities p, such that r, = p,R, where 
R is the nearest-neighbor separation in the crystal. If we include the repulsive 
interaction only among nearest neighbors, we have 

(CGS) 
q2 A exp-Wp) - - (nearest neighbors) 
R 

u,, = (19) 
+- - (otherwise). 
P,- R 

Thus 

where z is the number of nearest neighbors of any ion and 

(21) 

The sum should include the nearest-neighbor contribution, which is just z. 
The (2) sign is discussed just before (25). The value of the Madelung constant 
is of central importance in the theory of an ionic crystal. Methods for its calcu- 
lation are discussed next. 

At the equilibrium separation dU,,ldR = 0, so that 

This determines the equilibrium separation R, if the parameters p, A of the re- 
pulsive interaction are known. For SI, replace q2 by q2/4'7r€,. 

The total lattice energy of the crystal of 2N ions at their equilibrium sepa- 
ration R, may he written, using (20) and (23), as 

The term -Naq2/R, is the Madelung energy. We shall find that p is of the 
order of O.lRo, so that the repulsive interaction has a very short range. 



Figure 9 Line of ions of alternating signs, with &stance H between ions. 

Evaluation of the Madelung Constant 

The first calculation of the coulomb energy constant a was made by 
Madelung. A powerful general method for lattice sum calculations was devel- 
oped by Ewald and is developed in Appendix B. Computers are now used for 
the calculations. 

The definition of the Madelung constant a is, by (21), 

For (20) to give a stable crystal it is necessary that a be positive. If we take the 
reference ion as a negative charge, the plus sign will apply to positive ions and 
the minus sign to negative ions. 

An equivalent definition is 

where 5 is the distance of thejth ion from the reference ion and R is the near- 
est-neighbor distance. The value given for a will depend on whether it is 
defined in terms of the nearest-neighbor distance R or in terms of the lattice 
parameter a or in terms of some other relevant length. 

As an example, we compute the Madelung constant for the infinite line of 
ions of alternating sign in Fig. 9. Pick a negative ion as reference ion, and let R 
denote the &stance between adjacent ions. Then 

the factor 2 occurs because there are two ions, one to the right and one to the 
left, at equal distances r,. We sum this series by the expansion 

Thus the Madelung constant for the one-dimensional chainis a = 2 In 2. 
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Figure 10 Energy per molecule of KC1 clystal, showing Madelung (coulomb) and repulsive 
contribut~ons. 
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In three dimensions the series presents greater difficulty. It is not 
possible to write down the successive terms by a casual inspection. More 
important, the series will not converge unless the successive terms in the se- 
ries are arranged so that the contributions from the positive and negative 
terms nearly cancel. 

Typical values of the Madelung constant are listed below, based on unit 
charges and referred to the nearest-neighbor distance: 

- 
- 

- 
(2.4 x lo4) exp(-RI0.30) eV 

- 

- 

- 

1 2 3 4 s 6 R, in 1 ~ c m  

Equiliblium 
- position 

- 

- (2521R) eV 

- 

- 

- 

The Madelung and repulsive contributions to the binding of a KC1 crystal 
are shown in Fig. 10. Properties of alkali halide crystals having the sodium 
chloride structure are given in Table 7. The calculated values of the lattice en- 
ergy are in exceedingly good agreement with the observed values. 



Table 7 Properties of alkali halide crystals with the NaCl structure 

All values (except those in square brackets) at room temperature and atmospheric pressure, with no correction for changes in R, and U from 
absolute zero. Values in square brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer. 

Nearest- Repulsive Repulsive 
neighbor Bulk modulus B,  energy range Lattice energy compared 

separatip in 10" dyn/cmP parameter parameter to free ions, in kcal/mol 

R, in A or loLo ~ / m %  %A, in 10F erg p, in A Experimental Calculated 

LiF 2.014 6.71 0.296 0.291 242.3[246.81 242.2 
LiCl 2.570 2.98 0.490 0.330 198.9[201.8] 192.9 
LiBr 2.751 2.38 0.591 0.340 189.8 181.0 
LiI 3.000 (1.71) 0.599 0.366 177.7 166.1 

NaF 2.317 4.65 0.641 0.290 214.4[217.91 215.2 
NaCl 2.820 2.40 1.05 0.321 182.6[185.3] 178.6 
NaBr 2.989 1.99 1.33 0.328 173.6[174.31 169.2 
NaI 3.237 1.51 1.58 0.345 163.2[162.3] 156.6 

KF 2.674 3.05 1.31 0.298 189.8[194.5] 189.1 
KC1 3.147 1.74 2.05 0.326 165.8[169.51 161.6 
KBr 3.298 1.48 2.30 0.336 158.5[159.3] 154.5 
KI 3.533 1.17 2.85 0.348 149.9[151.1] 144.5 

RbF 2.815 2.62 1.78 0.301 181.4 180.4 
RbCl 3.291 1.56 3.19 0.323 159.3 155.4 
RbBr 3.445 1.30 3.03 0.338 152.6 148.3 
RbI 3.671 1.06 3.99 0.348 144.9 139.6 

Data from various tables by M. P. Tosi, Solid State Physics 16, 1 (1964). 
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Figure 11 Calculatrd valence electron concentration in germanium. The numbers on the con- 
tours give the electron concentration per primitive cell, with four valence electrons per atom 
(eight electrons per primitive cell). Note the high concentration midway along the Ce-Ge bond, 
as we expect for covalent honding. (After J. R. Chelikowsband M. L. Cohen.) 

COVALENT CRYSTALS 

The covalent bond is the classical electron pair or homopolar bond of 
chemistry, particularly of organic chemistry. It is a strong bond: the bond be- 
tween two carbon atoms in diamond with respect to separated neutral atoms is 
comparable with the bond strength in ionic crystals. 

The covalent bond is usually formed from two electrons, one from each 
atom participating in the bond. The electrons forming the bond tend to be 
partly localized in the region between the two atoms joined by the bond. The 
spins of the two electrons in the bond are antiparallel. 

The covalent bond has strong directional properties (Fig. 11). Thus car- 
bon, silicon, and germanium have the diamond structure, with atoms joined to 
four nearest neighbors at tetrahedral angles, even though this arrangement 
gives a low filling of space, 0.34 of the available space, compared with 0.74 for 
a close-packed structure. The tetrahedral bond allows only four nearest neigb- 
bors, whereas a close-packed structure has 12. We should not overemphasize 
the similarity of the bonding of carbon and silicon. Carbon gives biology, but 
silicon gives geology and semiconductor technology. 

The binding of molecular hydrogen is a simple example of a covalent bond. 
The strongest binding (Fig. 12) occurs when the spins of the two electrons are 
antiparallel. The binding depends on the relative spin orientation not because 
there are strong magnetic dipole forces between the spins, but because the Pauli 
principle modifies the distribution of charge according to the spin orientation. 
This spin-dependent coulomb energy is called the exchange interaction. 
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Table 8 Fractional ionic character of bonds in binary crystals 

- ~ 

Fractional Fractional 
Clvstal ionic character Clystal ionic character 

Si 
Sic 
Ge 

Zno 
ZnS 
ZnSe 
ZnTe 

CdO 
CdS 
CdSe 
CdTe 

InP 
InAs 
InSb 

LiF 
NaCI 
RbF 

~ -- - - ~ ~ 

After J. C. Phillips, Bonds and bands in semiconductors. 

There is a continuous range of crystals between the ionic and the covalent 
limits. It is often important to estimate the extent a given bond is ionic or cova- 
lent. A semiempirical theory of the fractional ionic or covalent character of a 
bond in a dielectric crystal has been developed with considerable success by 
J. C. Phillips, Table 8. 

METALS 

Metals are characterized by high electrical conductivity, and a large num- 
ber of electrons in a metal are free to move about, usually one or two per atom. 
The electrons available to move about are called conduction electrons. The 
valence electrons of the atom become the conduction electrons of the metal. 

In some metals the interaction of the ion cores with the conduction elec- 
trons always makes a large contribution to the binding energy, but the charac- 
teristic feature of metallic binding is the lowering of the energy of the valence 
electrons in the metal as compared with the free atom. 

The binding energy of an alkali metal crystal is considerably less than that 
of an alkali halide c~ystal: the bond formed by a conduction electron is not very 
strong. The interatomic distances are relatively large in the alkali metals because 
the kinetic energy of the conduction electrons is lower at large interatomic 
distances. This leads to weak binding. Metals tend to crystallize in relatively 



Figure 13 The hydrogen difluoride ion HF4 
is stabilized by a hydrogen bond. The sketch 
is of an extreme model of the bond, extreme 
in the sense that the proton is shown bare of 
electrons 

close packed structures: hcp, fcc, bcc, and some other closely related structures, 
and not in loosely-packed structures such as diamond. 

In the transition metals there is additional binding from inner electron shells. 
Transition metals and the metals immediately following them in the periodic 
table have large d-elec~on shells and are characterized by high binding energy 

HYDROGEN BONDS 

Because neutral hydrogen has only one electron, it should form a covalent 
bond with only one other atom. I t  is known, however, that under certain condi- 
tions an atom of hydrogen is attracted by rather strong forces to two atoms, 
thus forming a hydrogen bond between them, with a bond energy of the 
order of 0.1 eV It  is believed that the hydrogen bond is largely ionic in charac- 
ter, being formed only between the most electronegative atoms, particularly F, 
0, and N. In  the extreme ionic form of the hydrogen bond, the hydrogen atom 
loses its electron to another atom in the molecule; the bare proton forms the 
hydrogen bond. The atoms adjacent to the proton are so close that more than 
two of them would get in each other's way; thus the hydrogen bond connects 
only twc atoms (Fig. 13). 

The hydrogen bond is an important part of the interaction between HzO 
molecules and is responsible together with the electrostatic attraction of the 
electric dipole moments for the strihng physical properties of water and ice. It 
is important in certain ferroelectric crystals and in DNA. 

ATOMIC RADII 

Distances between atoms in crystals can be measured very accurately by 
x-ray diffraction, often to 1 part in lo5. Can we say that the observed distance 
between atoms may be assigned partly to atom A and partly to atom B? Can a 
definite meaning be assigned to the radius of an atom or an ion, irrespective of 
the nature and composition of the crystal? 

Strictly, the answer is no. The charge distribution around an atom is not 
limited by a rigid spherical boundary. Nonetheless, the concept of an atomic 





radius is fruitful in predicting interatomic spacing. The existence and probable 
lattice constants of phases that have not yet been synthesized can be predicted 
from the additive properties of the atomic radii. Further, the electronic config- 
uration of the constituent atoms often can be inferred by comparison of mea- 
sured and predicted values of the lattice constants. 

To make predictions of lattice constants it is convenient to assign (Table 9) 
sets of self-consistent radii to various types of bonds: one set for ionic crystals 
with the constituent ions 6-coordinated in inert gas closed-shell configura- 
tions, another set for the ions in tetrahedrally-coordinated structures, and an- 
other set for 12-coordinated (close-packed) metals. 

The predicted self-consistent radii of the cation Na+ and the anion F- as 
given in Table 9 would lead to 0.97 k + 1.36 A = 2.33 A for the interatomic 
separation in the crystal NaF, as compared with the observed 2.32 A. This 
agreement is much better than if we assume atomic (neutral) configurations 
for Na and F, for this would lead to 2.58 A for the interatomic separation in the 
crystal. The latter value is $(n.n. distance in metallic Na+ interatomic distance 
in gaseous F,). 

The interatomic distance between C atoms in diamond is 1.54 A; one-half 
of this is 0.77 k. In silicon, which has the same crystal structure, one-half the 
interatomic distance is 1.17 A. In Sic each atom is surrounded by four atoms 
of the opposite kind. If we add the C and Si radii just given, we predict 1.94 k 
for the length of the C-Si bond, in fair agreement with the 1.89 observed for 
the bond length. This is the kind of agreement (a few percent) that we shall 
find in using tables of atomic radii. 

Ionic Crystal Radii 

Table 9 gives the ionic crystal radii in inert gas configurations for &fold 
coordination. The ionic radii can be used in conjunction with Table 10. Let us 

Table 10 Use of tbe standard radii of ions given in Table 9 
The interionic distance D is represented by D, = RC + RA + A,, for ionic c~ystals, 
where N is the coordination number of the cation (positive ion), R, and R, are the stan- 
dard radii of the cation and anion, and A, is a correction for coordination number. 
Room temperature. (After Zachariasen.) 
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consider BaTiO, with a lattice constant of 4.004 A at room temperature. Each 
Ba++ ion has 12 nearest 0-- ions, so that the coordination number is 12 and 
the correction A,, of Table 10 applies. If we suppose that the strncture is 
determined by the Ba-0 contacts, we have Dl,  = 1.35 + 1.40 + 0.19 = 2.94 A 
or a = 4.16 A; if the Ti-0 contact determines the structure, we have D, = 0.68 + 
1.40 = 2.08 or a = 4.16 A. The actual lattice constant is somewhat smaller 
than the estimates and may perhaps suggest that the bonding is not purely 
ionic, hut is partly covalent. 

ANALYSIS OF ELASTIC STRAINS 

We consider the elastic properties of a crystal viewed as a homogeneous 
continuous medium rather than as a periodic array of atoms. The continuum 
approximation is usually valid for elastic waves of wavelengths A longer than 
10-6cm, which means for frequencies below 10" or 10" Hz. Some of the ma- 
terial below looks complicated because of the unavoidable multiplicity of sub- 
scripts on the symbols. The basic physical ideas are simple: we use Hooke's law 
and Newton's second law. Hooke's law states that in an elastic solid the strain 
is directly proportional to the stress. The law applies to small strains only. We 
say that we are in the nonlinear region when the strains are so large that 
Hooke's law is no longer satisfied. 

We specify the strain in terms of the components e,, e,,, em, exY, e,, e,, 
which are defined below. We treat infinitesimal strains only. We shall not 
distinguish in our notation between isothermal (constant temperature) and 
adiabatic (constant entropy) deformations. The small differences between the 
isothermal and adiabatic elastic constants are not often of importance at room 
temperature and below. 

We imagine that three orthogonal vectors i r , j . ,  i of unit length are emhed- 
ded securely in the unstrained solid, as shown in Fig. 14. After a small uniform 
deformation of the solid has taken place, the axes are distorted in orientation 
and in length. In a uniform deformation each primitive cell of the crystal is 
deformed in the same way. The new axes x', y', z' may he written in terms of 
the old axes: 

The coefficients eaB define the deformation; they are dimensionless and have 
values < 1 if the strain is small. The original axes were of unit length, hut the 
new axes will not necessarily be of unit length. For example, 



Figure 14 Coordinate axes for the description of the state of strain; the 
orthogonal unit axes in the unstrained state (a) are deformed in the 
strained state (b). 

whence x' - 1 + E,  +.  . .. The fractional changes of length of the i, 9, and i 
axes are e,, eyy, E,,, respectively, to the first order. 

What is the effect of the deformation (26) on an atom originally at r = 

x i  + yf + zi? The origin is taken at some other atom. If the deformation 
is uniform, then after deformation the point will he at the position 
r' = xx' + yy' + zz'. This is obviously correct if we choose the 2 axis such that 
r = xi; then r' = xx' by definition of x'. The displacement R of the deforma- 
tion is defined by 

or, from (26), 

This may be written in a more general form by introducing u, u, w such that 
the displacement is given by 

If the deformation is nonuniform we must relate u, v, w to the local strains. We 
take the origin of r close to the region of interest; then comparison of (28) and 
(29) gives, by Taylor series expansion of R using R(0) = 0, 
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It is usual to work with coefficients enP rather than E , ~  We define the 
strain components e,, eYY, em by the relations 

using (30). The other strain components e,, e,, e, are defined in terms of the 
changes in angle between the axes: using (26) we may define 

We may replace the - signs by = signs if we neglect terms of order 2. The six 
dimensionless coefficients eaP(=epm) completely define the strain. 

Dilation 

The fractional increase of volume associated with a deformation is called 
the dilation. The dilation is negative for hydrostatic pressure. The unit cube of 
edges i, 9, i has a volume after deformation of 

by virtue of a well-hown result for the volume of a parallelepiped having 
edges x', y', z'. From (26) we have 

Products of two strain components have been neglected. The dilation 8 is then 
given by 

Stress Components 

The force acting on a unit area in the solid is defined as the stress. There 
are nine stress components: &, Xy, Xz, Yx, Yy, Y,, Z,, Zy ,  Zz. The capital letter 
indicates the direction of the force, and the subscript indicates the normal to 
the plane to which the force is applied. In Fig. 15 the stress component XI 
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ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS 

Hooke's law states that for sufficiently small deformations the strain is di- 
rectly proportional to the stress, so that the strain components are linear func- 
tions of the stress components: 

The quantities S,,, Slz . . . are called elastic compliance constants or 
elastic constants; the quantities Cll, C,,, . . . are called the elastic stiffness 
constants or moduli of elasticity. The S's have the dimensions of [area]/ 
[force] or [volume]/[energyl. The CS have the dimensions of [forcel/[area] or 
[energyl/[volume]. 

Elastic Energy Density 

The 36 constants in (37) or in (38) may be reduced in number by several 
considerations. The elastic energy density U is a quadratic function of the 
strains, in the approximation of Hooke's law (recall the expression for the energy 
of a stretched spring). Thus we may write 

where the indices 1 through 6 are defined as: 

The C's are related to the C's of (38), as in (42) below. 



The stress components are found from the derivative of U with respect to 
the associated strain component. This result follows from the definition of 
potential energy. Consider the stress X, applied to one face of a unit cube, the 
opposite face being held at rest: 

au -au- - l 6  - & = - = - - C,,e, + 2 2 (CIB + Cpl)ep de, de, 8 =z 

Note that only the combination $(Ea8 + eBa) enters the stress-strain relations. 
It follows that the elastic stiffness constants are symmetrical: 

Thus the thirty-six elastic stiffness constants are reduced to twenty-one. 

Elastic Stiffness Constants of Cubic Crystab 

The number of independent elastic stiffness constants is reduced further 
if the crystal possesses symmetry elements. We now show that in cubic crystals 
there are only three independent stiffness constants. 

We assert that the elastic energy density of a cubic crystal is 

and that no other quadratic terns occur; that is, 

do not occur. 
The minimum symmetry requirement for a cubic structure is the exis- 

tence of four three-fold rotation axes. The axes are in the [ I l l ]  and equivalent 
directions (Fig. 17). The effect of a rotation of 2 ~ 1 3  about these four axes is to 
interchange the x, y, z axes according to the schemes 

according to the axis chosen. Under the first of these schemes, for example, 

and similarly for the other terms in parentheses in (43). Thus (43) is invariant 
under the operations considered. But each of the terms exhibited in (44) is 
odd in one or more indices. A rotation in the set (45) can be found which will 
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Figure 17 Rotation by 2 ~ 1 3  about the axis 
marked 3 changes r + y; y + z:  andz + x .  

change the sign of the term, because e,, = -e,(_y,, for example. Thus the 
terms (44) are not invariant under the required operations. 

It remains to venfy that the numetical factors in (43) are correct. By (41), 

aulae,, = & = Clle, + cl,(ey, + e,) . (46) 

The appearance of C,,e, agrees with (38). On further comparison, we see that 

C l 2 = C l 3 ;  c L 4 = C 1 5 = C 1 6 = o .  (47) 

Further, from (43), 

on comparison with (38) we have 

Thus from (43) we find that the array of values of the elastic stiffness 
constants is reduced for a cubic crystal to the matrix 



For cubic crystals the stiffness and compliance constants are related by 

These relations follow on evaluating the inverse matrix to (50) 

Bulk Modulus and Compressibility 

Consider the uniform dilation e, = e,  = e, = iS. For this deformation the 
energy density (43) of a cubic crystal is 

We may define the bulk modulus B by the relation 

which is equivalent to the definition -Vdp/dV. For a cubic crystal, 

The compressibility K is defined as K = 11B. Values of B and K are given in 
Table 3. 

ELASTIC WAVES IN CUBIC CRYSTALS 

By consideling as in Figs. 18 and 19 the forces acting on an element of 
volume in the crystal we obtain the equation of motion in the x direction 

azu a& a% ax, P - = - + -  +- ;  
at2 ax ay az 

here p is the density and u is the displacement in the x direction. There are 
similar equations for the y and 2 directions. From (38) and (50) it follows that 
for a cubic crystal 

here the x, y, z directions are parallel to the cube edges. Using the definitions 
(31) and (32) of the strain components we have 

where u, v ,  w are the components of the displacement R as defined by (29). 
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Figure 18 Cube of volume hr Ay hz acted 
on by a stress -&(XI on the face at r ,  and 

ax, 
&(x + h r )  = Z(x)  + hr on the parallel 

face at r + h. The net force is 

( 2 h r ) A y  hz. Other forces in the x direction 

anse from the vanahon across the cube of 
the stresses& and&, whch are not s h m  The 
net x component ofthe force on the cube is 

The force equals the mass of the cube times 
the component of the acceleration in the r 
direction. The mass is p 4.z Ay 4 s  and the 
acceleration is a2u/af?. 

Figure 19 If springs A and B are stretched equally. the black between them experiences no net 
force. This illustrates the fact that a uniform stress & in a solid does not give a net force on a "01- 
ume element If the spring at B is stretched more than the spring at A ,  the block between them 
will be accelerated by the farce X,(B) - &(A). 

The corresponding equations of motion for a2~/at2 and aZw/at2 are found 
directly from (57a) by symmetly: 

We now look for simple special solutions of these equations. 

Waves in the [loo] Direction 

One solution of (57a) is given by a longitudinal wave 

where u is the x component of the particle displacement. Both the wavevector 
and the particle motion are along the x cube edge. Here K =  27r/A is the 



wavevector and o = 2 . 7 ~  is the angular frequency. If we substitute (58) into 
(57a) we find 

thus the velocity olK of a longitudinal wave in the [loo] direction is 

Consider a transverse or shear wave with the wavevector along the x cube 
edge and with the particle displacement o in they direction: 

o = v, exp [ i ( k  - ot)] . (61) 

On substitution in (57h) this gives the dispersion relation 

thus the velocity o/K of a transverse wave in the [loo] direction is 

0, = (c&p)'" . (63) 

The identical velocity is obtained if the particle displacement is in the z direc- 
tion. Thus for K parallel to [I001 the two independent shear waves have equal 
velocities. This is not true for K in a general direction in the crystal. 

Waves in the [ I 1 0 1  Direction 

There is a special interest in waves that propagate in a face diagonal direc- 
tion of a cubic crystal, because the three elastic constants can be found simply 
from the three propagation velocities in this direction. 

Consider a shear wave that propagates in the xy plane with particle dis- 
placement w in the z direction 

whence (32c) gives 

independent of propagation direction in the plane. 
Consider other waves that propagate in the xy plane with particle motion 

in the xy plane: let 

u = u, exp [ i ( G  + Kyy - ot)] ; o = v, exp [ i ( Q  + Kyy - wt)] . (66) 

From (57a) and (57b), 
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This pair of equations has a particularly simple solution for a wave in the [I101 
direction, for which & = K,, = . The condition for a solution is that the 
determinant of the coefficients of u and o in (67) should equal zero: 

This equation has the roots 

The first root describes a longitudinal wave; the second root describes a 
1 shear wave. How do we determine the direction of paficle displacement? The 

j first root when substituted into the upper equation of (67) gives 

whence the displacement components satisfy u = o. Thus the particle dis- 
placement is along [I101 and parallel to the K vector (Fig. 20). The second 
root of (44) when substituted into the upper equation of (67) gives 

whence u = -0. The particle displacement is along [IiO] and perpendicular to 
the K vector. 

Selected values of the adiabatic elastic stiffness constants of cubic crystals 
at low temperatures and at room temperature are given in Table 11. Notice the 
general tendency for the elastic constants to decrease as the temperature is in- 
creased. Further values at room temperature alone are given in Table 12. 

, 
Wave in [lo01 direction Wave in L l l O I  direction Wave in [I111 direction 
L:C11 L : k(Cl1 + C12 + 2C&j L : $C,, + ZC12 + 4C4) 
T : C 4  TI : C, T:f(C, , -C12+ C,) 

T2:;(cll-cl%) 

Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propa- 
gation directions in cubic crystals. The hvo transverse modes are degenerate for propagation in 
the [loo] and [ I l l ]  directions. 



Table 11 Adiabatic elastic stiffness constants of cubic crystals 
at low temperature and at room temperature 

The values given at 0 K were obtained by extrapolation of measurements carried out 
down to 4 K. The table was compiled with the assistance of Professor Charles S. Smith. 

Stiffness constants, in 10" dyne/cmZ (10"~lrn') 

Crystal GI CIS C, Temperature, K Density, g/crn3 

Table 12 Adiabatic elastic stiffness constants of several 
cubic crystals at room temperature or 300 K 

Stiffness constants, in 10" dynelcmP or 10" N/m2 

Diamond 
Na 
Li 
Ge 
Si 
Gash 
InSb 

MgO 
NaCl 
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There are three normal modes of wave motion in a clystal for a given 
magnitude and direction of the wavevector K. In general, the polarizations 
(directions of  article displacement) of these modes are not exactly parallel or 
perpendicular to K. In the special propagation directions [loo], [I l l ] ,  and 
[I101 of a cubic crystal two of the three modes for a given K are such that the 
 article motion is exactly transverse to K and in the third mode the motion 
is exactly longitudinal (parallel to K). The analysis is much simpler in these 
special directions than in general directions. 

SUMMARY 

Crystals of inert gas atoms are bound by the van der Waals interaction (in- 
duced dipole-dipole interaction), and this varies with distance as 1/R6. 

The repulsive interaction between atoms arises generally from the electro- 
static repulsion of overlapping charge distributions and the Pauli principle, 
which compels overlapping electrons of parallel spin to enter orbitals of 
higher enera.  . Ionic crystals are hound by the electrostatic attraction of charged ions of 
opposite sign. The electrostatic energy of a structure of 2N inns of charge 
?q is 

where a is the Madelung constant and R is the distance between nearest 
neighbors. . Metals are hound by the reduction in the hnetic energy of the valence elec- 
trons in the metal as compared with the free atom. 

A covalent bond is characterized by the overlap of charge distributions of 
antiparallel electron spin. The Pauli contribution to the repulsion is reduced 
for antiparallel spins, and this makes possible a greater degree of overlap. 
The overlapping electrons hind their associated ion cores by electrostatic 
attraction. 

Problems 

1. Quantum solid. In a qnantum solid the dominant repulsive energy is the zero- 
point energy of the atoms. Consider a crude one-dimensional model of crystalline 
He4 with each He atom confined to a line segment of length L. In the ground state 
the wave function within each segment is taken as a half wavelength of a free pari- 
cle. Find the zero-point kinetic energy per particle. 



2. Cohesive energy of bcc and fcc neon. Using the Lennard-Jones potential, cal- 
culate the ratio of the cohesive energies of neon in the bcc and fcc structures (Ans. 
0.958). The lattice sums for the bcc structures are 

3. Solid molecular hydrogen. For Hz one finds from measurements on the gas that 
the Lennard-Jones parameters are r = 50 X erg and u = 2.96 A. Find the 
cohesive energy in kJ per mole of H,; do the calculation for an fcc structure. 
Treat each H, molecule as a sphere. The observed value of the cohesive energy is 
0.751 kJ/mol, much less than we calculated; thus, quantum corrections must be 
very important. 

4. Possibility of ionic cryatab R+R-. Imagine a crystal that exploits for binding the 
coulomb attraction of the positive and negative ions of the same atom or molecule 
R. This is believed to occur with certain organic molecules, but it is not found 
when R is a single atom. Use the data in Tables 5 and 6 to evaluate the stability of 
such a form of Na in the NaCl structure relative to normal metallic sodium. Evalu- 
ate the energy at the observed interatomic distance in metallic sodium, and use 
0.78 eV as the electron affinity of Na. 

5. Linear ionic crystal. Consider a line of 2N ions of alternating charge ?q with a 
repulsive potential energy AIR" hehveen nearest neighbors. (a) Show that at the 
equilibrium separation 

(h) Let the clystal be compressed so that &+&(I - 6) .  Show that the work done 
in compressing a unit length of the crystal has the leading term $a2, where 

To obtain the results in SI, replace q2 by q 2 / 4 ~ 6 .  Note: We should not expect to ob- 
tain this result from the expression for U(Ro), hut we must use the complete expres- 
sion for U(R). 

6. Cubic ZnS structure. Using A and p from Table 7 and the Madelung constants 
given in the tea ,  calculate the cohesive energy of KC1 in the cubic ZnS structure 
described in Chapter 1. Compare with the value calculated for KC1 in the NaCl 
structure. 

7 .  Divalent ionic crystab. Barium oxide has the NaCl structure. Estimate the 
cohesive energies per molecule of the hypothetical crystals BaiO- and Batto-- 
referred to separated neutral atoms. The observed nearest-neighbor internuclear 
distance is & = 2.76 A; the first and second ionization potentials of Ba are 5.19 
and 9.96 eV; and the electron affinities of the first and second electrons added 
to the neutral oxygen atom are 1.5 and -9.0 eV. The first electron affinity of the 
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Undeformed body 7 

Tension 

, 

Figure 21 Youngs modulus is defined as stresslstrain for a ten- 
sile stress acting in one direction, with the specimen sides left Figure 22 This deformation is compounded 
free. Poisson's ratio is defined as (h/1o)/(SI/l) for this situation. from the two shears e, = -e,. 

neutral oxygen atom is the energy released in the reaction 0 + e + 0-. The sec- 
ond electmn affinity is the energy released in the reaction 0- f e + 0--. Which 
valence state do you predict will occur? Assume R,, is the same for both forms, and 
neglect the repulsive energy. 

8. Young's modulus and Poisson's ratio. A cubic crystal is subject to tension in the 
[loo] direction. Find expressions in terns of the elastic stiffnesses for Young's 
modulus and Poisson's ratio as defined in Fig. 21. 

9.  Longitudinal wave velocity. Show that the velocity of a longitudinal wave in the 
[ I l l ]  direction of a cubic crystal is given by o, = [$(C,,+ 2C,, + 4~,)/~]*. Hint: 
For such a wave u = v = w. Let u = u8'~'+yfzJAe~'"l, and use Eq. (57a). 

10. Transverse wave velocity. Show that the velocity of transverse waves in the [ I l l ]  
direction of a cubic crystal is given by v, = [+(c,,- C,, + C,lplE. Hint: See 
Problem 9. 

11.  Effective shear constant. Show that the shear constant :(c,, -CIS) in a cubic 
clystal is defined by setting e, = -eyy = $e and all other strains equal to zero, as in 
Fig. 22. Hint: Consider the energy density (43); look for a C' such that U = ;C'eP. 

12. Determinantal approach. It is known that an R-dimensional square matrix with 
all elements equal to unity has roots R and 0, with the R occurring once and the 
zero occurring R - 1 times. If all elements have the value p,  then the roots are 
Rp and 0. (a) Show that if the diagonal elements are q and all other elements are 
p, then there is one root equal to ( R  - l )p  + q and R - 1 roots equal to q - p. 
(b) Show from the elastic equation (57) for a wave in the [ I l l ]  direction of a cubic 
clystal that the determinantal equation which gives o2 as a function of K is 

where q = $P(c,, + 2C,) and p = $?(c,, + C,). This expresses the condition 
that three linear homogeneous algebraic equations for the three displacement 



components u, u, w have a solution. Use the result of part (a) to find the three 
roots of 0%; check with the results given for Problems 9 and 10. 

13. General propagation direction. (a) By substitution in (57) find the determinan- 
tal equation which expresses the condition that the displacement 

R ( ~ )  = [u,$ + yo? + ~ $ 1  exp li(K . r - wt)l 

be a solution of the elastic wave equations in a cubic crystal. (b) The sum of the 
roots of a determinantal equation is equal to the sum of the diagonal elements at<. 
Show from part (a) that the sum of the squares of the three elastic warre velocities 
in any direction in a cubic crystal is equal to (CII + 2C,)lp. Recall that v: = oz/lC. 

14. Stability criteria. The criterion that a cubic crystal with one atom in the primi- 
tive cell be stable against small homogeneous deformations is that the energy den- 
sity (43) be positive for all cornhinations of strain components. What restrictions 
are thereby imposed on the elastic stiffness constants? (In mathematical language 
the problem is to find the conditions that a real symmetric quadratic form should 
be positive definite. The solution is given in books on algebra; see also Korn and 
Korn, Mathematical Handbook, McGraw-Hill, 1961, Sec. 13.5-6.) Ans. C,, > 0, 
C,, > 0, Cf, - C t  > 0, and C,, + ZC,, > 0. For an example of the instability 
which results when C,, - C,,, see L. R. Testardi et al., Phys. Rev. Letters 15, 
250 (1965). 
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Figure 1 Important elementary excitations in solids. 
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Figure 2 (Dashed lines) Planes of atoms 
when in equilibrium. (Solid lines) Planes 
of atoms when displaced as for a longitudi- 
nal wave. The coordinate u measures the 
displacement of the planes. 

Figure 3 Planes of atoms as displaced during 
passage of a transverse wave. 
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CHAPTER 4: PHONONS I. CRYSTAL VIBRATIONS 

VIBRATIONS OF CRYSTALS WITH MONATOMIC BASIS 

Consider the elastic vibrations of a crystal with one atom in the primitive 
cell. We want to find the frequency of an elastic wave in terms of the wavevec- 
tor that describes the wave and in terms of the elastic constants. 

The mathematical solution is simplest in the [loo], [110], and [ I l l ]  propa- 
gation directions in cubic crystals. These are the directions of the cube edge, 
face diagonal, and body diagonal. When a wave propagates along one of these 
directions, entire planes of atoms move in phase with displacements either 

b 
parallel or perpendicular to the direction of the wavevector. We can describe 
with a single coordinate u, the displacement of the planes from its equilibrium 
position. The problem is now one dimensional. For each wavevector there are 

i three modes as solutions for us, one of longitudinal polarization (Fig. 2) and 
i two of transverse polarization (Fig. 3). 

k We assume that the elastic response of the crystal is a linear function of 

/ the forces. That is equivalent to the assumption that the elastic energy is a 
I quadratic function of the relative displacement of any two points in the crystal. 

Terms in the energy that are linear in the displacements will vanish in 

1 equilibrium-see the minimum in Fig. 3.6. Cubic and higher-order terms may 
i be neglected for sufficiently small elastic deformations. 
! 

1 We assume that the force on the planes caused by the displacement of the 
plane s + p is proportional to the difference us+, -us of their displacements. 

i For brevity we consider only nearest-neighbor interactions, with p = 21. The 

1 total force on s from planes s + 1: 
i 

F, = C(u,+, - us) + C(u,-, - u,) . (1) 

This expression is linear in the displacements and is of the form of Hooke's law. 
The constant C is the force constant between nearest-neighbor planes 

and will differ for longitudinal and transverse waves. It is convenient hereafter 
to regard C as defined for one atom of the plane, so that F, is the force on one 
atom in the planes. 

The equation of motion of an atom in the planes is 

where M is the mass of an atom. We look for solutions with all displacements 
having the time dependence exp(-iot). Then dZu,ldt2 = -ozua, and (2) becomes 



This is a difference equation in the displacements u and has traveling 
wave solutions of the form: 

u,,, = u exp(isKa) exp(+ iKa) , (4) 

where a is the spacing between planes and K is the wavevector. The value to 
use for a will depend on the direction of K. 

With (4), we have from (3): 

-02Mu exp(*iKa) = Cu{exp[i(s + l)Ka]+ exp[i(s - I)&] - 2 exp(isKa)J . ( 5 )  

We cancel u exp(isKa) from both sides, to leave 

With the identity 2 cos Ka = exp(iKa) + exp(-i&), we have the dispersion 
relation w(K). 

oz = (ZC/M)(l- cos Ka) . (7) 

The boundary of the first Brillouiu zone lies at K = +da. We show from 
(7) that the slope of o versus K is zero at the zone boundary: 

do2/dK = (2CaIM) sin Ka = 0 (8) 

at K = ?&a, for here sin Ka = sin (km) = 0. The special significance of 
phonon wavevectors that lie on the zone boundary is developed in (12) below. 

By a trigonometric identity, (7) may be written as 

A plot of o versus K is given in Fig. 4. 

Figure 4 Plot of o versus K .  The region of K * l / n  or A B o corresponds to the contin- 
uum approximation; here o is directly proportional to K. 



4 Phonons I .  Crystal Vibratim 93 

First Brillouin Zone 

What range of K is physically significant for elastic waves? Only those in 
the first Brillouin zone. From (4) the ratio of the displacements of two succes- 
sive planes is given by 

The range -.rr to +.rr for the phase Ka covers all independent values of the 
exponential. 

The range of independent values of K is specified by 

This range is the first Brillouin zone of the linear lattice, as defined in 
Chapter 2. The extreme values are G, = ? d a .  Values of K outside of the 
first Brillouin zone (Fig. 5) merely reproduce lattice motions described by 
values within the limits ?ria. 

We may treat a value of K outside these limits by subtracting the integral 
multiple of 2.rrla that will give a wavevector inside these limits. Suppose K lies out- 
side the first zone, but a related wavevector K' defined K' = K - 2mla  lies within 
the first zone, where n is an integer. Then the displacement ratio (10) becomes 

because exp(i2m) = 1. Thus the displacement can always be described by a 
wavevector within the fust zone. We note that 2 m l a  is a reciprocal lattice vec- 
tor because 2 d a  is a reciprocal lattice vector. Thus by subtraction of an appro- 
priate reciprocal lattice vector from K, we always obtain an equivalent 
wavevector in the first zone. 

At the boundaries K,, = -C.rrla of the Brillouin zone the solution u, = 

u exp(isKa) does not represent a traveling wave, but a standing wave. At the 
zone boundaries sK,,ua = ?ST, whence 

i Figure 5 The wave represented by the solid curve conveys no information not given by the 
dashed curve. Only wavelengths longer than 2n are needed to represent the ,notion. 



This is a standing wave: alternate atoms oscillate in opposite phases, because 
us = ?1 according to whether s is an even or an odd integer. The wave moves 
neither to the right nor to the left. 

This situation is equivalent to Bragg reflection of x-rays: when the Bragg 
condition is satisfied a traveling wave cannot propagate in a lattice, but 
through successive reflections back and forth, a standing wave is set up. 

The critical value K,, = +m/a found here satisfies the Bragg condition 
2d sin 0 = nA: we have 0 = $m, d = a ,  K = 2m/A, n = 1, so that A = 2a. With 
x-rays it is possible to haven equal to other integers besides unity because the 
amplitude of the electromagnetic wave has a meaning in the space between 
atoms, hut the displacement amplitude of an elastic wave usually has a mean- 
ing only at the atoms themselves. 

Group Velocity 

The transmission velocity of a wave packet is the group velocity, given as 

va = do/dK , 

or 

the gradient of the frequency with respect to K. This is the velocity of energy 
propagation in the medium. 

With the particular dispersion relation (9), the group velocity (Fig. 6) is 

vg = ( c ~ ~ / M ) ~  cos $ Ka . (14) 

This is zero at the edge of the zone where K = r/a. Here the wave is a standing 
wave, as in (12) ,  and we expect zero net transmission velocity for a standing wave. 

Long Wavelength Limit 

When Ka < 1 we expand cos Ka - I - ;(Ka)', so that the dispersion rela- 
tion (7) becomes 

w2 = (C/M)@a2 . (15) 

The result that the frequency is directly proportional to the wavevector in the 
long wavelength limit is equivalent to the statement that the velocity of sound 
is independent of frequency in this limit. Thus v = o l K ,  exactly as in the con- 
tinuum theory of elastic waves-in the continuum limit Ka < 1. 

Derivation of Force Constants from Experiment 

In metals the effective forces may be of quite long range and are carried 
from ion to ion through the conduction electron sea. Interactions have been 
found between planes of atoms separated by as many as 20 planes. We can make 
a statement about the range of the forces from the observed experimental 
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Figure 6 Group velocity u, versus K for model of 
Fig. 4. At the zone boundary K = wla the group 
velocity is zero. 

dispersion relation for w .  The generalization of the dispersion relation (7) t o p  
nearest planes is easily found to be 

w2 = (21M) c. Cp(l - cos pKa) . (16a) 
p>n 

We solve for the interplanar force constants C, by multiplying both sides 
by cos rKa, where r is an integer, and integrating over the range of indepen- 
dent values of K :  

via 

MIIT'" dK w: cos rKa = 2~ C p L  dK (1 - cos pKa) ms rKa 
WIO P>O li/o 

The integral vanishes except for p = r. Thus 

,./a 

CP = - dK w$ cos 
,./a 

gives the force constant at range pa, for a structure with a monatomic basis 

TWO ATOMS PER PRIMITIVE BASIS 

The phonon dispersion relation shows new features in crystals with two or 
more atoms per primitive basis. Consider, for example, the NaCl or diamond 
structures, with two atoms in the primitive cell. For each polarization mode in 
a given propagation direction the dispersion relation w versus K develops two 
branches, known as the acoustical and optical branches, as in Fig. 7. We have 
longitudinal LA and transverse acoustical TA modes, and longitudinal LO and 
transverse optical TO modes. 

If there are p atoms in the primitive cell, there are 3p branches to the dis- 
persion relation: 3 acoustical branches and 3p - 3 optical branches. Thus ger- 
manium (Fig. 8a) and KBr (Fig. Sh), each with two atoms in a primitive cell, 
have six branches: one LA, one LO, two TA, and two TO. 



Figure 7 Optical and acoustical branches of the dis- pbonon branch 
persion relation far a diatomic linear lattice, showing 
the limiting frequencies at K = 0 and K = K., = v t a .  ?r 

K 
- 

The lattice constant is a. a 

Kt&,, in [ I l l ]  direction 

Figure 8a Pbonon dispersion relations in the I1111 
direction in germanium at 80 K. The huo TA phonon 
branches are horizontal at the zone boundary position, 
&, = (2/a)(+$+). The LO and TO branches coincide at 
K = 0; this also is a consequence of the crystal symmetry 
of Ge. The results were obtained with neutron inelastic 
scattering by G. Nilsson and G. Nelin. 

0 
Kt&,, in I1111 d i d o n  

Figure 8b Dispersion curves in the [ I l l ]  
direction in KBr at 90 K, after A. D. B. 
Woods, B. N. Bmckhouse, R. A. Cowley, 
and W. Cochran. The extrapolation to K = 0 
of the TO, LO branches are called mr, mL. 

The numerology of the branches follows from the number of degrees of free- 
dom of the atoms. With p atoms in the primitive cell and N primitive cells, there 
are pN atoms. Each atom has three degrees of freedom, one for each of the x ,  y, z 

directions, mahng a total of 3pN degrees of freedom for the crystal. The number 
of allowed K values in a single branch is just N for one Brillouin zone.' Thus the 

'We show in Chapter 5 by application of periodic b o u n d q  conditions to the modes of the 
crystal of volume V that there is one K value in the volume (2w)VV in Fourier space. The volume of a 
Brillouin zone is (Zn)'N, where V. is the volume of a crystal primitive cell. Thus the number of 
allowed Kvalues in a Brillouin zone is VN., which is just N, the number ofprimitive cells in the crystal. 
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Figure 9 A diatomic ctystal structure with masses M,, Mz connected by force constant C be- 
tween adjacent planes. The displacements of atoms M I  are denoted by u,-,, u,, u,,,, . . . , and of 
atoms M, by 0,-,, v., v,,,. The repeat &stance is a in the direction o f  the wavevector K .  The atoms 
are shown in their undisplaced positions. 

LA and the two TA branches have a total of 3N modes, thereby accounting for 3N 
of the total degrees of freedom. The remaining (3p - 3)N degrees of freedom are 
accommodated by the optical branches. 

We consider a cubic clystal where atoms of mass MI lie on one set of planes 
and atoms of mass M, lie on planes interleaved between those of the first set 
(Fig. 9). It is not essential that the masses be different, but either the force con- 
stants or the masses will be different if the two atoms of the basis are in non- 
equivalent sites. Let a denote the repeat distance of the lattice in the direction 
normal to the lattice planes considered. We treat waves that propagate in a 
symmetry direction such that a single plane contains only a single type of ion; 
such directions are [ I l l ]  in the NaCl structure and [loo] in the CsCl structure. 

We write the equations of motion under the assumption that each plane 
interacts only with its nearest-neighbor planes and that the force constants are 
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to 
obtain 

We look for a solution in the form of a traveling wave, now with different 
amplitudes u, u on alternate planes: 

We define n in Fig. 9 as the distance between nearest identical planes, not 
nearest-neighbor planes. 

On substitution of (19)  in (18) we have 



The homogeneous linear equations have a solution only if the determinant of 
the coefficients of the unknowns u, o vanishes: 

or 

M,M204 - 2C(M1 + M2)02 + 2C2(1 - cos Ka) = 0 . (22) 

We can solve this equation exactly for w2, but it is simpler to examine the 
limiting cases Xn < 1 and Ka = +TI at the zone boundary. For small Ka we 
have cos Ka E 1 - K2a2 + . . . , and the two roots are 

(optical branch) ; 

02= - ;c 
K2a2 

MI + MZ 
(acoustical branch) 

The extent of the first Brillouin zone is -v/a 5 K 5 d a ,  where a is the repeat 
distance of the lattice. At K,, = ?r/a the roots are 

The dependence of o on K is shown in Fig. 7 for M, > M2. 
The particle displacements in the transverse acoustical (TA) and trans- 

verse optical (TO) branches are shown in Fig. 10. For the optical branch at 
K = 0 we find, on substitution of (23) in (201, 

The atoms vibrate against each other, hut their center of Inass is fured. If the 
two atoms cany opposite charges, as in Fig. 10, we may excite a motion of this 

Figure 10 Transverse optical and 
transverse amustical waves in a di- 
atomic linear lattice, illustrated by the 
particle dqlacements far the two 
modes at the same wavelength. Acoustical mode 
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type with the electric field of a light wave, so that the branch is called the opti- 
cal branch. At a general K the ratio ulu will be complex, as follows from either 
of the equations (20). Another solution for the amplitude ratio at small K is 
u = u, obtained as the K = 0 limit of (24). The atoms (and their center of 
mass) move together, as in long wavelength acoustical vibrations, whence the 
term acoustical branch. 

Wavelike solutions do not exist for certain frequencies, here between 
(2C/M,)'" and (2C/M,)'". This is a characteristic feature of elastic waves in 
polyatomic lattices. There is a frequency gap at the boundary K,, = ? ~ / a  of 
the first Brillouin zone. 

QUANTIZATON OF ELASTIC WAVES 

i The energy of a lattice vibration is quantized. The quantum of energy is 
j called a phonon in analogy with the photon of the electromagnetic wave. The 
; energy of an elastic mode of angular frequency o is 
L 

when the mode is excited to quantum number n; that is, when the mode is occu- 
pied by n phonons. The term $ fiw is the zero point energy of the mode. It occurs 
for both phonons and photons as a consequence of their equivalence to a quan- 
tum harmonic oscillator of frequency w, for which the energy eigenvalues are 
also (n + i)fi~. The quantum theory of phonons is developed in Appendix C. 

We can quantize the mean square phonon amplitude. Consider the stand- 
ing wave mode of amplitude 

Here u is the displacement of a volume element from its equilibrium position 
at x in the crystal. The energy in the mode, as in any harmonic oscillator, is half 
kinetic energy and half potential energy, when averaged over time. The kinetic 
energy density is 2 p(&lat)2, where p is the mass density. In a crystal of volume 
V, the volume integral of the kinetic energy is ipVo2u; sin2&. The time aver- 
age kinetic energy is 

because <sin2 wt> = i. The square of the amplitude of the mode is 

This relates the displacement in a given mode to the phonon occupancy n of 
the mode. 

What is the sign of o ?  The equations of motion such as (2) are equations 
for oZ, and if this is positive then w can have either sign, + or -. But the 



energy of a phonon must be positive, so it is conventional and suitable to view 
o as positive. If the crystal structure is unstable, then o2 will be negative and o 
will be imaginary. 

PHONON MOMENTUM 

A phonon of wavevector K will interact with particles such as photons, 
neutrons, and electrons as if it had a momentum hK. However, a phonon does 
not carry physical momentum. 

The reason that phonons on a lattice do not carry momentum is that a 
phonon coordinate (except for K = 0) involves relative coordinates of the 
atoms. Thus in an Hz molecule the internuclear vibrational coordinate rl - rz 
is a relative coordinate and does not carry linear momentum; the center of 
mass coordinate $(rl + r2) corresponds to the uniform mode K = 0 and can 
carry linear momentum. 

In crystals there exist wavevector selection rules for allowed transitions 
between quantum states. We saw in Chapter 2 that the elastic scattering of an 
x-ray photon by a crystal is governed by the wavevector selection rule 

where G is a vector in the reciprocal lattice, k is the wavevector of the incident 
photon, and k' is the wavevector of the scattered photon. In the reflection 
process the crystal as a whole will recoil with momentum -hG, but this uni- 
form mode momentum is rarely considered explicitly. 

Equation (30) is an example of the rule that the total wavevector of inter- 
acting waves is conserved in a periodic lattice, with the possible addition of a 
reciprocal lattice vector G .  The true momentum of the whole system always is 
rigorously conserved. If the scattering of the photon is inelastic, with the 
creation of a phonon of wavevector K, then the wavevector selection rule 
becomes 

If a phonon K is absorbed in the process, we have instead the relation 

Relations (31) and (32) are the natural extensions of (30). 

INELASTIC SCAWERING BY PHONONS 

Phonon dispersion relations o(K) are most often determined experimen- 
tally by the inelastic scattering of neutrons with the emission or absorption of a 
phonon. A neutron sees the crystal lattice chiefly by interaction with the nuclei 
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of the atoms. The kinematics tttering of a neutron beam by a crystal 
lattice are described by the gc evector selection m1 

and by the requirement of conservation of energy ; the wavevector of 
the phonon created (+) or absorbed ( - )  in the  process, and G is 
any reciprocal lattice vector. 1 (on we choose G such that K lies in the 
first Brillouin zone. 

Wavevector, in units Snla 

Figure 1 1  The dispersion curves of sodium far ~honons  propagating in the [001], [110], and 
[ I l l ]  directions at 90 K, as determined hy inelastic scattering of neutrons, by Woods, Brockhouse, 
March and Bowers. 

i Figure 12 .4 triple ads neutron spectrometer at Bruoklravm. (Coxirtesy oCB. If. Grier.) 



The kinetic energy of the incident neutron is p2/2Mn, where M, is the mass 
of the neutron. The momentum p is given by hk, where k is the wavevector of 
the neutron. Thus h2k2/2M, is the kinetic energy of the incident neutron. If k' 
is the wavevector of the scattered neutron, the energy of the scattered neutron 
is fi2k'2/2M,. The statement of conservation of energy is 

where h o  is the energy of the phonon created (+) or absorbed (-)  in the 
process. 

To determine the dispersion relation using (33) and (34) it is necessary in 
the experiment to find the energy gain or loss of the scattered neutrons as a 
function of the scattering direction k - k'. Results for germanium and KBr are 
given in Fig. 8; results for sodium are given in Fig. 11. A spectrometer used for 
phonon studies is shown in Fig. 12. 

SUMMARY 

The quantum unit of a crystal vibration is a phonon. If the angular fre- 
quency is o, the energy of the phonon is fio. 

When a phonon of wavevector K is created by the inelastic scattering of a 
photon or neutron from wavevector k to k', the wavevector selection rule that 
governs the process is 

k = k l + K + G ,  

where G is a reciprocal lattice vector. 

All elastic waves can be described by wavevectors that lie within the first 
Brillouin zone in reciprocal space. 

If there are p atoms in the primitive cell, the phonon dispersion relation will 
have 3 acoustical phonon branches and 3p - 3 optical phonon branches. 

Problems 

1. Monatomic linear lattice. Consider a longitudinal wave 

u, = u cos(mt - sKa) 

which propagates in a monatomic linear lattice of atoms of mass M, spacing a, and 
nearest-neighbor interaction C. 
(a) Show that the total energy of the wave is 

where s runs over all atoms 



(h) By substitution of u, in this expression, show that the time-average total energy 
per atom is 

where in the last step we have used the dispersion relation (9) for this problem 

2. Continuum wave equation. Show that for long wavelengths the equation of mo- 
tion (2) reduces to the continuum elastic wave equation 

where o is the velocity of sound 

3. Basis oftwo unlike a t o m .  For the problem treated by (18) to (26), find the am- 
~ l i tude  ratios ulv for the two branches at &, = ria. Show that at this value of K 
the two lattices act as if decoupled: one lattice remains at rest while the other lat- 
tice moves. 

4. Kohn anomaly. We suppose that the interplanar force constant C, between planes 
s and s + p is of the form 

sin pk,a 
C, =A- 

Pa 

where A and k, are constants and p runs over all integers. Such a form is expected in 
metals. Use this and Eq. (16a) to find an expression for 0% and also for do2/JK. Prove 
that JwZ/aK is infinite when K = k,. Thus a plot of wZ versus K or of o versus K has a 

vertical tangent at k,: there is a kink at k,  in the phonon dispersion relation o(K). 

5. Diatomic chain. Consider the normal modes of a linear chain in which the force 
constants between nearest-neighbor atoms are alternately C and 10C. Let the 
masses he equal, and let the nearest-neighbor separation be aI2. Find o(K) at 
K = 0 and K = &a. Sketch in the dispersion relation by eye. This problem simu- 
lates a crystal of diatomic molecriles such as H,. 

6.  Atomic vibrations in a metal. Consider point ions of mass M and charge e im- 
mersed in a uniform sea of conduction electrons. The ions are imagined to be in 
stable equilibrium when at regular lattice points. If one ion is displaced a small dis- 
tance r from its equilibrium position, the restoring force is largely due to the elec- 
tnc charge within the sphere of radius r centered at the equilibrium position. Take 
the number density of ions (or of conduction electrons) as 3/4?rR3, which defines R. 
(a) Show that the frequency of a single ion set into oscillation is o = (e2/MR3)1'e. 
(b) Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and 
some common sense, estimate the order of magnitude of the velocity of sound in 
the metal. 

'7. Soft phonon modes. Consider a Line of ions of equal mass but alternating in 
charge, with e, = e(- 1)P as the charge on the pth ion. The interatomic potential is 

'This problem is rather difficult. 
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Figure 1 Plot of Planck distribution function. At high temperatures the occupancy of a state is 
approximately linear in the temperature. The function (n) + b, which is not plotted, approaches 
the dashed line as asymptote at high temperatures. 

106 



We discuss the heat capacity of a phonon gas and then the effects of 
anharmonic lattice interactions on the phonons and on the crystal. 

PHONON HEAT CAPACITY 

By heat capacity we shall usually mean the heat capacity at constant vol- 
ume, which is more fundamental than the heat capacity at constant pressure, 
which is what the experiments determine.' The heat capacity at constant vol- 
ume is defined as Cv = (dU/dT), where U is the energy and T the temperature. 

The contribution of the phonons to the heat capacity of a crystal is called 
the lattice heat capacity and is denoted by C,.,. The total energy of the 
phonons at a temperature T(= k,T) in a crystal may he written as the sum of 
the energies over all phonon modes, here indexed by the wavevector K and 
polarization index p: 

Ui, = 2 2 U,, = z zcn,NJJio, 2 

K v K P 
(1) 

1 
(n) = errp(ho/.r) - l ' ( 2 )  

where the (...) denotes the average in thermal equilibrium. A graph of (n) is 

Planck Distribution 

Consider a set of identical harmonic oscillators in thermal equilibrium. 
The ratio of the number of oscillators in their (n + 1)th quantum state of exci- 
tation to the number in the nth quantum state is 

N,,+,IN. = exp(-fio/~) , 7= kBT , (3) 

'A thermodynamic relation gives Cp - C, = 902BVT, where a is the temperature coefficient 
of linear expansion, V the volume, and B the bulk modulus. The fractional difference between C, 
and C, is usually small in solids and often may be neglected. As T- 0 we see that C,+Cv, pro- 
vided a and B are constant. 



by use of the Boltzmann factor. Thus the fraction of the total number of oscil- 
lators in the nth quantum state is 

We see that the average excitation quantum number of an oscillator is 

z s  exp-shw/~) 
(n) = 

' 
z eT(-sfiolr) 

(5) 

The summations in (5) are 

with x = exp(-ftwl~). Thus we may rewrite (5) as the Plauck distribution: 

x - (n) = -- - 
1 

1 - x exp(fw/7) - 1 

Nomal Mode Enumeration 

The energy of a collection of oscillators of frequencies on;, in thermal 
equilibrium is found from (1) and (2): 

It is usually convenient to replace the summation over K by an integral. Sup- 
pose that the crystal has DP(o)do modes of a given polarization p in the fre- 
quency range o to o + d o .  Then the energy is 

The lattice heat capacity is found by differentiation with respect to tempera- 
ture. Let x = h o / ~  = ho/kBT: then 8U/aT gives 

x2 exp x 
~ ~ = k , ~ I d o ~ , , ( o )  p (expx - ' 

The central prohlem is to find D(w), the number of modes per unit fre- 
quency range. This function is called the density of modes or, more often, den- 
sity of states. 

Density of States in One Dimension 

Consider the boundary value prohlem for vibrations of a one-dimensional 
line (Fig. 2) of length L carrying N + 1 particles at separation a. We suppose 
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Figure 2 Elastic line of N + I atoms, with N = 10, fur boundary conditions that the end atoms 
s = 0 and s = 10 are k c d .  The particle displacements in the normal modes for eitl~cr longitu&~d 
or transverse displacrme~~ts are of the form u, sin sKa. This form is antomatically zero at the 
atom at the ends = 0 ,  and we choose K to make the displacement zero at the ends  = 10 

Figure 3 Thc boundary condition sin sKa = O for s = 10 can be satisfied by choosing K = .rr/lOa, 
ZdIOa, . . ., S.rr/lOa, where 10a is the length L of the line. The present figure is in K space. The 
dots are not atoms but are the allowed valucs of K. Of the N + 1 particles on the line, only N - 1 
are allowcd to move, and their most general motion car1 be expressed in terms of the N - 1 al- 
lowed vali~es of K.  This quantization of K has nothing to do with qnantnm mechanics but follows 
classically from the boondaryconditions that tlre cnd atoms be fixed. 

that the s = 0 and s = N at the ends of the line are held fixed. Each 
norrrlal vibrational modc of polarization p has the form of a standing wave, 
where u ,  is the displacement of the particle s: 

v, = 4 0 )  exp-io,,+,t) sin sKtl , (11) 

wtiere wKl, is related to K by the appropriate dispersion relation. 
As in Fig. 3,  thc wavevector K is restricted by the fixed-end boundary con- 

ditions to the values 

The solution for K = n/L has 

u, a sin (s.rra/L) (13) 

and vanishes for s = 0 and s = N as required. 
The solution for K = NT/L = d a  = K,,,, has u, sin ST; this permits no 

111otioll of any atom, because sinsz- vanishes at each atom. Thus there are 
N - 1 allowed independent values of K in (12). This number is equal to the 
number of particles allowed to Inove. Each allowed value of K is associated 
with a sta~ldi~ig wave. For the one-dimensional line there is one mode for each 
iriterval AK = T/L,  so that the number of modes per unit range of K is LIT for 
K 5 d a ,  and 0  for K > rrla. 

Therc are three polarizations p for each value of K: in one dimension two 
of these are transverse and one longitudinal. In three dimensions the polariza- 
tions are this simple only for wavevectors in ccrtain special crystal directions. 

Another device for enumerating modes is equally valid. We consider the 
medium as unbounded, hut require that the solutions be periodic over a large 
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Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of lat- 
tice constant a, with periodic boundary conditions applied over a square of side L = 10o. The uni- 
form mode is marked with a cross. There is one allowrd value of K per area (271/l&~)~ = (ZwIL)', so 
that within the circle of area 7iKi the smoothed number of allowed paints is ITK'(L/ZW)'. 

We can obtain the group velocity doldK from the dispersion relation o versus 
K. There is a singularity in Dl(o)whenever the dispersion relation w(K) is hori- 
zontal; that is, whenever the group velocity is zero. 

Density of States in Three Dimensions 

We apply periodic boundary conditions over N3 primitive cells within a 
cube of side L, so that K is determined by the condition 

whence 

Therefore, there is one allowed value of K per volume (25~lL)~ in K space, or 

allowed values of K per unlt volume of K space, for each polarization and for 
each branch. The volume of the specimen is V = L3. 

The total number of modes with wavevector less than K is found from (18) 
to he (L125~)~ times the volume of a sphere of radius K. Thus 

N = (L/25~)~(4?ik"/3) (19) 



for each polarization type. The density of states for each polarization is 

D ( W )  = d ~ / d ~  = ( v I C / 2 d ) ( d ~ l d w )  . (20)  

Debye Model for Density of States 

In the Debye approximation the velocity of sound is taken as constant for 
each polarization type, as it would be for a classical elastic continuum. The dis- 
persion relation is written as 

w = u K  , (21)  

with v the constant velocity of sound. 
The density of states (20)  becomes 

If there are N primitive cells in the specimen, the total number of acoustic 
phonon modes is N. A cutoff frequency oD is determined by (19)  as 

To this frequency there corresponds a cutoff wavevector in K space: 

On the Debye model we do not allow modes of wavevector larger than K,. The 
number of modes with K 5 K, exhausts the number of degrees of freedom of a 
monatomic lattice. 

The thermal energy ( 9 )  is given by 

for each polarization type. For brevity we assume that the phonon velocity is 
independent of the polarization, so that we multiply by the factor 3 to obtain 

where x = h o / r  --= fi.wlk,T and 

xD = hwulk,T = BIT . (27)  

This defines the Debye temperature 0 in terms of w, defined by (23) .  
We may express 0 as 
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Figure 7 Heat capacity C, of a solid, according to 
the Debye approximation. The vertical scale is in J 
mol-' K-I. The holizuntal scale is the temperature 
normalized to the Debye temperature 0 .  The re- 
gion of the T3 law is below 0.18. The asymptotic 
value at high values of TI0 is 24.943 J mol-' deg-'. 

Figure 8 Heat capacity of silicon and germa- 
nium. Note the decrcase at low temperatures. 
To convert a value in caVmol-K to Jlmol-K, 

Temperature, K multiply by 4.186. 

so that the total phonon energy is 

where N is the number of atoms in the specimen and XD = BIT. 
The heat capacity is found most easily by differentiating the middle ex- 

pression of (26) with respect to temperature. Then 

The Debye heat capacity is plotted in Fig. 7. At T P 0 the heat capacity ap- 
proaches the classical value of 3Nkn. Measured values for silicon and germa- 
nium are plotted in Fig. 8. 



Debye PLaw 

At very low temperatures we may approximate (29) by letting the upper 
limit go to infinity. We have 

where the sum over s-4 is found in standard tables. Thus U - 37r4Nk,P/503 for 
T G 8, and 

which is the Dehye T3 approximation. Experimental results for argon are plot- 
ted in Fig. 9. 

At sufficiently low temperature the T3 approximation is quite good; that is, 
when only long wavelength acoustic modes are thermally excited. These are just 
the modes that may be treated as an elastic continuum with macroscopic elastic 
constants. The energy of the short wavelength modes (for which this approxima- 
tion fails) is too high for them to he populated significantly at low temperatures. 

We understand the T3 result by a simple argument (Fig. 10). Only those 
lattice modes having h o  < kBT will be excited to any appreciable extent at a 
low temperature T. The excitation of these modes will he approximately classi- 
cal, each with an energy close to k,T, according to Fig. 1. 

Of the allowed volume in K space, the fraction occupied by the excited 
modes is of the order of  do^)^ or (KT/KD)3, where KT is a "thermal" wavevec- 
tor defined such that hvK, = k,T and K ,  is the Debye cutoff wavevector. Thus 
the fraction occupied is (T/O)3 of the total volume in K space. There are of the 
order of 3N(T/8)3excited modes, each having energy kBT. The energy is 
-3Nk,T(T/O)3, and the heat capacity is -12NkB(T/O)3. 

For actual crystals the temperatures at which the T3 approximation holds 
are quite low. I t  may be necessary to be below T = 8/50 to get reasonably pure 
T3 behavior. 

Selected values of 8 are given in Table 1. Note, for example, in the alkali 
metals that the heavier atoms have the lowest 8>, because the velocity of 
sound decreases as the density increases. 

Einstein Model of the Density of States 

Consider N oscillators of the same frequency o, and in one dimension. 
The Einstein density of states is D(o) = N6(o - w,), where the delta function 
is centered at ow The thermal energy of the system is 

Nho U = N(n)ho = e""/' , 

with o now written in place of o,, for convenience 



Figure 9 Low temperature heat capacity of solid argon, plotted against T3. In this temperature 
region the experimental results are in excellent agreement with the Debye T3 law with B = 92.0 K. 
(Conrtesy of L. Finegold and N. E. Phillips.) 

Figure 10 To obtain a qualitative explanation of the Debye T3 law, we suppose that all phonon 
modes of wavevector less than K ,  have the classical thermal energy k,T and that modes between 
K, and the Debye cutoff K, are not excited at all. Of the 3N possible modes, the fraction excited is 
(KdKDJ1 = (T/O)3, because this is the ratio of the volume of the inner sphere to the outer sphere. 
Tne enerais  U - k,T . 3N(T@, and the heat capacity is C, = JU/aT= 12NkB(T/B)3. 
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Figure 11 Comparison of values of the heat capacity of diamond with values calcu- 
hted on the earliest quantum (Einstein) model, using the characteristic temperature 
& = W k ,  = 1320 K. To convert to Jlmol-deg, multiply by 4.186. 

The heat capacity of the oscillators is 

C v - - (;gv - =Nk, f:y(e6iy - , (34) 

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu- 
tion of N identical oscillators to the heat capacity of a solid. In three dimensions 
N is replaced by 3N, there being three modes per oscillator. The high tempera- 
ture limit of Cv becomes 3Nk8, which is known as the Dnlong and Petit value. 

At low temperatures (34) decreases as exp(-fiw/~), whereas the experi- 
mental form of the phonon contribution is known to he T3as accounted for by 
the Debye model treated above. The Einstein model, however, is often used to 
approximate the optical phonon part of the phonon spectrum. 

General Result for D(m) 

We want to find a general expression for D(w), the number of states per unit 
frequency range, given the phonon dispersion relation o(K). The number of d- 
lowed values of K for which the phonon frequency is between o and w + dw is 

Mw) dw = ($ Ishe" B K  . (35) 

where the integral is extended over the volume of the shell in K space hounded 
by the two surfaces on which the phonon frequency is constant, one surface on 
which the frequency is w and the other on which the frequency is o + dw. 

The real problem is to evaluate the volume of this shell. We let dS, denote 
an element of area (Fig. 12) on the surface in K space of the selected constant 



Figure 12 Element of area dS ,  on a constant 
frequency surface in K space. The volume 
between -two surfaces of constant frequency at 
wand w + dw is equal to J dS,do/lV,wl. 

frequency w. The element of volume between the constant frequency surfaces 
w and w + dw is a right cylinder of base dS, and altitude dK,, SO that 

J = J ~ S J K ~  . 
shell 

Here dKL is the perpendicular distance (Fig. 13) between the surface w con- 
stant and the surface w + dw constant. The value of dK, will vary from one 
point to another on the surface. 

The gradient of w, which is VKw, is also normal to the surface w constant, 
and the quantity 

is the difference in frequency between the two surfaces connected by dKk 
Thus the element of the volume is 

where vg = lVKwl is the magnitude of the group velocity of a phonon. For (35) 
we have 

We divide both sides by dw and write V = L3 for the volume of the crystal: the 
result for the density of states is 
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Surface o + dw = constant 

Figure 13 Tlre quantity dK, is the perpendicular distance 
between two constant frequency surfaccs in K space, one at 
frequency o and the other at frequency o + dw. 

(a) (b) 

Figure 14 Density of states as a function of frequency for (a) the Debye solid and (b) an actual 
crystal structure. The specbum for the crystal starts as o2 for small o, but discontinuities develop 
at singular points. 

Thc integral is taken over the area of the surface o constant, in K space. The 
result refers to a single branch of the dispersion relation. We can use this re- 
sult also in electro~l band theory. 

There is a special interest in the contribution to D(w) frorn points at which 
the group velocity is zero. Such critical points produce singularitics (known as 
Van Hove singnlarities) in the distribution function (Fig. 14). 

ANHARMONIC CRYSTAL INTERACTIONS 

The theory of lattice vibrations disciissed thus far has been limited in the 
potential energy to terms quadratic in the interatomic displacements. This is 
the harmonic theory; among its consequences are: 

Two lattice waves do not interact; a single wave docs not decay or change 
form with time. 
There is no thermal expansion. 
Adiabatic and isothermal elastic constants are equal. 
The elastic constants are independent of pressure and temperature. 
The heat capacity becomes constant at high temperatures T > 8. 



In real crystals none of these consequences is satisfied accurately. The dcvia- 
tions may bc attributed to the neglect of anharmonic (higher than quadratic) 
terms in the interatomic displacements. We discuss some of the simpler as- 
pects of anharnionic effects. 

Beautiful demonstrations of anharmonic effects are the experiments on 
thc interaction of two pllonons to poduce a third phonon at a frequency 
w3 = wl + 0~ Three-phonon processes are caused by third-order terms in the 
lattice potential energy. The physics of the phonon interaction can be stated 
simply: the presence of one phonon canses a periodic elastic strain whidi 
(through the anharmonic interaction) modulates in space and time the elastic 
constant of the crystal. A second phonon perceives the modulation of the elas- 
tic constant and thereupon is scattered to produce a third phonon, just as from 
a moving three-dimensional grating. 

Thermal Expansion 

We may understand thermal expansion by considering for a classical oscil- 
lator the ellect of anharmonic terms in the potential energy on the mean scpa- 
ration of a pair of atoms at a temperature T .  We take the potential energy of the 
atoms at a displacement x from their equilibrium separation at absolute zero as 

with c, g, andf all positive. The term in x3 represents the asymmetry of the 
mutual repulsion of the atoms and the term in x4 represents the softening of the 
vibration at large amplitudes. The ~ninimum at x = 0 is not an absolute mini- 
mum, hut for small oscillations the form is an adequate representation of an in- 
teratomic potential. 

We calculate the average displacement by using the Boltzmann distribu- 
tion function, which weights the possible values of x according to their 
thermodynamic probability 

with p = l /k ,T.  For displacements such that the anharmonic terms in the 
energy are small in comparison with k,T, we may expand the integrands as 

whence the thermal expansion is 

3tz (x) = -kRT 
4cZ 
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Figure 15 Lattice constant of solid argon as a 
funaion of temperature. 

in the classical region. Note that in (38) we have left a2 in the exponential, but 
we have expanded exp(pgx3 + pfi4) s 1 + pgx3 + pfi4 + . . .. 

Measurements of the lattice constant of solid argon are shown in Fig. 15. 
The slope of the curve is proportional to the thermal expansion coefficient. 
The expansion coefficient vanishes as T+ 0, as we expect from Problem 5. In 
lowest order the thermal expansion does not involve the symmetric termfi4 in 
U(x) ,  but only the antisymmetric term gx3. 

THERMAL CONDUCTMTY 

The thermal conductivity coefficient K of a solid is defined with respect to 
the steady-state flow of heat down a long rod with a temperature gradient 
dT/&: 

where jL, is the flux of thermal energy, or the energy transmitted across unit 
area per unit time. 

This form implies that the process of thermal energy transfer is a random 
process. The energy does not simply enter one end of the specimen and pro- 
ceed directly (hallistically) in a straight path to the other end, but diffuses 
through the specimen, suffering frequent collisions. If the energy were propa- 
gated directly through the specimen without deflection, then the expression 
for the thermal flux would not depend on the temperature gradient, but only 
on the difference in temperaturc AT between the ends of the specimen, re- 
gardless of the Tength of the specimen. The random nature of the conductivity 
process brings the temperature qadient and, as we shall see, a mean free path 
into the expression for the thermal flux. 



Table 2 Phonon mean free paths 

[Calculated from (44), taking v = 5 x 10' cmlsec as a representative sou~ld velocity. 
The e's obtained in this way refer to umklapp processes.] 

'Parallel to optic axis .  

From the kinetic theory of gases we find below thc tbllowing expression 
for the thermal conductivity: 

K = ;cue , (42) 

where C is the heat capacity per unit volu~ne, v  is the average particle velocity, 
and Z is the mean free path of a prticle between collisions. This result was ap- 
plied first by Debye to describe thermal conductivity in dielectric solids, with C 
as the heat capacity of the phonons, o the phonon velocity, and e the phonon 
mean free path. Several representative values of the mean free path are given 
in Table 2. 

We give the elementary kinetic theory which leads to (42). The flux of par- 
ticles in the x direction is in(lozl) ,  where n  is the concentration of molec~iles; 
in equilibrium there is a flux of equal magnitnde in the opposite direction. The 
(. . .) denote average valuc. 

If c is thc heat capacity of a particle, then in moving frurn a region at local 
temperatine T + AT to a region at local temperature 2' a particle will give up 
energy c  AT. Now AT between the ends of a free path of the particle is given hy 

where T is the average time between collisions. 
The net flnx of energy (from both senses of the particle flux) is therefore 

dT 1 dT j,, = - n ( d ) c r  = - z n ( v 2 ) c ~ -  . 
dx dx 

If, as for phonons, u  is constant, we may write (43) as 

- -k dl- u -  ~ e - ;  
dx 

with e = OT and C = nc. Thns K = $ c u t .  
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Thermal Resistivity of Phonon Gas 

The phonon mean free path t! is determined principally by two processes, 
geometrical scattering and scattering by other phonons. If the forces between 
atoms were purely harmonic, there would be no mechanism for collisions be- 
tween different phonons, and the mean free path wolild be limited solely by 
collisions of a phonon with the crystal boundary, and by lattice imperfections. 
There are situations where these effects are dominant. 

With anharmonic lattice interactions, there is a coupling between differ- 
ent phonons which limits the value of the mean free path. The exact states of 
the anharmonic system are no longer like pure phonons. 

The theory of the effect of anharmonic coupling on thermal resistivity pre- 
dicts that C is proportional to l/T at high temperatures, in agreement with 
many experiments. We can understand this dependence in terms of the nnm- 
ber of phonons with which a given phonon can interact: at high temperature 
the total number of excited phonons is proportional to T. The collision fre- 
quency of a given phonon should be proportional to the number of phonons 
with which it can collide, whence e 1/T. 

To define a thermal conductivity there must exist mechanisms in the crys- 
tal whereby the distribution of phonons may be brought locally into thermal 
equilibrium. Without such mechanisms we may not speak of the phonons at 
one end of the crystal as being in thermal equilibrium at a temperature T, and 
those at the other end in equilibrium at T , .  

It is not sufficient to have only a way of limiting the mean free path, but 
there must also be a way of establishing a local thermal equilibrium distribu- 
tion of phonons. Phonon collisions with a static imperfection or a crystal 
boundary will not by themselves establish thermal equilibrium, because such 
collisions do not change the energy of individual phonons: the frequency o2 of 
the scattered phonon is equal to the frequency o, of the incident phonon. 

It is rather remarkable also that a three-phonon collision process 

will not establish equilibrium, but for a subtle reason: the total momentum of 
the phonon gas is not changed by such a collision. An equilibrium distribution 
of phonons at a temperature T can move down the crystal with a drift velocity 
which is not disturbed by three-phonon collisions of the form (45). For such 
collisions the phonon momentum 

is conserved, because on collision the change in J is K3 - K2 - K1 = 0. Here nK 
is the number of phonons having wavevector K. 

For a distribution with J + 0, collisions such as (45) are incapable of es- 
tablishing complete thermal cquilihrium because they leave J unchanged. If 



Figure 16a Flow of gas molecules in a state of drifting equilibrium down a long open tube with 
frictionless walls. Elastic collision processes among the gas molecules do not change the momen- 
tum or energy flux of the gas because in each collision the velocity of the center of mass of the col- 
liding particles and their energy remain unchanged. Thus energy is transported from left to right 
without being driven by a temperature gradient. Therefore the thermal resistivity is zero and the 
thermal conductivity is infinite. 

Figure 16b The usual definition of thermal conductivity in a gas refers to a situation where no 
mass flow is permitted. Here the tube is closed at both ends, preventing the escape or entrance of 
molecules. With a temperature gradient the colliding pairs with above-average center of mass ve- 
locities will tend to be directed to the right, those with below-average velocities will tend to he di- 
rected to the left. A slight concentration gradient, high on the right, will be set up to enable the 
net mass transport to be zero while allowing a net energy transport from the hot to the cold end. 

Figure 16c In a crystal we may arrange to create phonons chiefly at one end, as by illuminating 
the left end with a lamp. From that end there will be a net flux of phonons toward the right end of 
the crystal. If only N processes (K, + K, = K,) occur, the phonon flux is unchanged in momentum 
on collision and some phonon flux will persist down the length of the crystal. On arrival of 
phonons at the right end we can arrange in principle to convert most of their energy to radiation, 
thereby creating a sink for the phonons. Just as in (a) the thermal resistivity is zero. 

we start a distribution of hot phonons down a rod with J # 0, the distribution 
will propagate down the rod with J unchanged. Therefore there is no thermal 
resistance. The problem as illustrated in Fig. 16 is like that of the collisions be- 
tween molecules of a gas in a straight tube with frictionless walls. 
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Figure 16d In U processes there is a large net change in phonon momentum in each collision I event. An initial net phonon flu will rapidly decay as we move to the right. The ends may act as 
I 
I sources and sinks. Net energy transport under a temperature gradient occurs as in (b). 

Figure 17 (a) Normal K, + K, = K, and (b) umklapp K, + K, = K3 + G phonon collision 
processes in a two-dimensional square lattice. The square in each figure represents the first 
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the 
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons 
absorbed in the collision process; those with arrowheads away from the center of the zone repre- 
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of 
the x-component of the phonon flux has been reversed. The reciprocal lattice vector G as shown is 
of length 2 d a ,  where a is the lattice constant of the crystal lattice, and is parallel to the K,  axis. 
For all processes, N or U ,  energy must be conserved, so that o, + w, = o,. 

Umklapp Processes 

The important three-phonon processes that cause thermal resistivity are 
not of the form K1 + K2 = K3 in which K is conserved, but are of the form 

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by 
Peierls, are called umklapp processes.  We recall that G may occur in all mo- 
mentum conservation laws in crystals. In all allowed processes of the form of 
(46) and (47), energy is conserved. 



We have seen examples of wavc interaction processes in crystals for which 
the total wavevector change need not be zero, but may be a reciprocal lattice 
vector. Such processes are always possible in periodic lattices. The argument is 
particularly strong for phonons: the only meaningful phonon K's lie in the first 
Brillouin zone, so that any longer K produced in a collision must he brought 
back into the first zone by addition of a G. A collision of two phonons both 
with a negative valiie of K, can by an umklapp process (G # O), create a phonon 
with positive K,. Umklapp processes are also called U processes. 

Collisions in wliidi G = O are called normal processes or N processes. At 
high temperatures T > 0 all phonon modes are excited because kBT > &om. 
A substantial proportion of all phonon collisions will then he U processes, with 
the attendant high momentum change in the collision. In this regime we can 
estimate the thermal resistivity without particular distinction between Nand U 
processes; by the earlier argument about nonlinear effects we expect to find a 
lattice thermal resistivity T at high temperatures. 

The energy of phonons K,, K, suitable for umklapp to occur is of the order 
of ikB8, because each of thc phonons 1 and 2 mnst have wavevectors of the 
order of ;G in order for the collision (47) to be possible. If both phonons have 
low K, and therefore low energy, there is no way to get from their collision a 
phonon of wavevector outside the first zone. The uniklapp process must con- 
serve energy, just as for the normal process. At low temperatures the number 
of suitable phonons of the high energy ;kB0 rcquired may he expected to vary 
roughly as exp(-8/2T), according to the Boltzmann factor. The exponential 
form is in good agreement with experiment. In summary, the phonon mean 
free path which enters (42) is the mean free path for urnklapp collisions be- 
tween phonons and not for all collisions between phonons. 

Geometrical effects may also be in~portant in limiting the mean free path. 
We must consider scattering by crystal boundaries, the distribution of isotopic 
masses in natural chemical elements, chemical impurities, lattice imperfec- 
tions, and amorphous structiires. 

When at low temperatures the mean free path t becomes comparable with 
the width of the test specimen, the value o f t  is limited by the width, and the 
thermal conductivity becomes a function of the dimensions of the specimen. This 
effect was discovered by de Haas and Biermasz. The abrupt decrease in thermal 
conductivity of pure crystals at low temperatures is caused by the size effect. 

At low tcmperatiires the umklapp process becomes ineffective in limiting 
the thermal conductivity, and the size effect becomes dominamt, as shown in 
Fig. 18. One would expect then that the pho~~om niean free path would be con- 
stant and of the order of the diameter U of the specimen, so that 

K = C v D  . (48) 
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Figure 18 Thermal conductivity of a 
highly pr~rified crystal of sodium fluo- 
ride, after 11. E. Jackson, C. T. Walker, 
and T. F. McNelly. 
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The only temperature-dependent term on the right is C, the heat capacity, 
which varies as T%t low temperatures. We expect the thermal conductivity to 
vary as T h t  low temperatures. The size effect enters whenever the phonon 
mean free pat11 becomes comparahle with the diameter of the specimen. 

Dielectric crystals may have thermal conductivities as high as metals. Syn- 
thetic sapphire (A1,0,) has one of the highest values of the conductivity: nearly 



200 W c m  K-' at 30 K. The maximum of the thermal conductivity in sapphire 
is greater than the maximum of 100 W cm-' K-' in copper. Metallic gallium, 
however, has a co~lductivity of 845 W cm-' K-' at 1.8 K. The electronic contri- 
bution to the thermal conductivity of metals is treated in Chaptcr 6.  

In  an otherwise perfect crystal, the  distribution of isotopes of the chemical 
elements often provides an important mechanism for phonon scattering. The 
random distribution of isotopic mass disturbs the periodicity of the density as 
seen by an elastic wave. In  some substances scattering of phonons by isotopes 
is comparable in importance to  scattering by other phonons. Kcsults for gcr- 
manium are show1 in Fig. 19. Enhanced thcrmal condncti\lty has been oh- 
served also in isotopically pure silicon and diamond; the  latter has device 
importance as a heat sink for laser sources. 

Problems 

1. Singularity in density of ntatex. (a) Frnm the dispersion relation rlcrivcd in Chap- 
ter 4 for a irroiratoinic linear lattice nf N atnms with nearest-neighhnr interactions, 
show that t l ~ r  density of modes is 

where w, is the maximum frequenc).. (b) Suppose that an optical phonon branch 
has the form w(K) = w,-AK2, near K = 0 in three dimensions. Show that D(w) = 

( L / ~ ' T ) ~ ( ~ ' T / A " ' ) ( ~  - w)lJ2 for w < w, and D(w) = 0 for o > o,. Here the density 
oC modes is discontinuous. 

2.  Rma thennal dilation of crystal cell. (a) Estimate for 300 K the root mean 
squarc thcrmal dilation A m '  for a primitive cell of sodium. Take the bulk modulus 
as 7 X 10" crg ~ m - ~ .  Note that the Debye temperature 158 K is less than 300 K, so 
that thc thcrmal cnc rg  is of the order of k,T. (b) Use this result to estimate the root 
mean square thcrmal fluctuation Aala of the lattice parameter. 

3. Zero point lattice displacement and atrain. (a) In the Debye approximation, 
show that the mean square displacement of an atom at absolute zero is (RZ) = 

3hw38dp3, where v is the velocity of sound. Start from the result (4.29) summed 
over the independent lattice modes: (R? )= (h/2pV)Zw-'. We have included a factor 
of to go from mean square amplitude to mean square displacement. (b) Show that 
Zw-' and (d) diverge for a one-dimensional lattice, but that the mean square strain 
is finite. Consider ((dkva~)? = i2ICui as the mean square strain, and show that it is 
equal to fiw%/4h4N03 Tor a linc of i\r atoms each of mass M, counting longitudinal 
modes only The divergence of R2 is not significant for any physical measurement. 

4.  Heat capacity of layer lattice. (a) Consider a dielectric crystal made up of layers 
of atoms, with rigid coupling between layers so that the motion of the atoms 
is restricted to the plane of the layer. Show that the phonon heat capacity in 
the Debye approximation in the low temperature limit is proportional to 'P. 
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(b) Suppnse instead, as in many layer structures, that adjacent layers are very weakly 
bound to each other. What form would you expect the phonon heat capacity to ap- 
proach at extremely low temperatures? 

'5. Griineinen constant. (a) Show that the free energy of a phonon mode of fre- 
quency o is kgT In [2 sinh (ho/2k,T)]. It is necessary to r e t a i ~ ~  the zero-point energy 
i h o  to obtain this result. (h) If A is the fractional volurrre change, then the free en- 
ergy of the crystal may be written as 

F(A, T) = ~BA'  + k , ~ x  In [2 sinh (fiwK/2kBT)] 

where B is the bulk modulus. Assume that the volume deparrdence of o~ (  is 
Swlw = -yA, whcrc y is known as the Criineisen constant. If y is taken as indepcn- 
dent nf the mode K, show that P is a minimum with respect to A whcn BA = yZiho 
cot11 (fiw/2kBT), and show that this may be written in terrrrs of the thermal energy 
density as A = yU(T)/B. (c) Show that on the Debye model y = -a In Old In V. Note: 
Many approximations are involved in this theory: the result (a) is valid only if o is in- 
dependent of tcmperature; y may be quite different for differerrt modes. 

 h his pmblcm is solnewhat difficult. 
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Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na' ions: they are 
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s 
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration 
l s 2 2 s 2 2 p ~  In an alkali metal the atomic cores occupy a relatively small part (-15 percent) of the 
total volume of the crystal, hut in a nohle metal (Cu, Ag, Au) the atomic cores are relatively larger 
and may he in contact with each other. The common crystal structure at room temperature is 
hcc for the alkali metals and fcc for the nohle metals. 



In a theory which has given results like these, 
there must certainly be a great deal of truth. 

H .  A. Lorentz 

We can understand many physical properties of metals, and not only of the 
simple metals, in terms of the free electron model. According to this rnodel, die 
valence electrons of the constituent atoms becorne coriduction electrons and 
move about freely through the volurrie of the metal. Even in metals for which 
the free electron model works best, the charge distribution of thc conduction 
electrons reflects the strong electrostatic potential of the ion cores. The utility 
of the free electron model is greatest for properties that depend essentially on 
the kinetic properties of the conduction electrons. The interaction of the 
conduction clcctrons with the ions of the lattice is treated in the next chapter. 

Thc simplest metals are the alkali metals-lithium, sodium, potassium, 
cesium, and rubidium. In a free atom of sodium tlie valence electron is in a 
3s state; in the metal this electror~ becomes a conduction electron in the 3s 
conduction band. 

A r~ionovalent crystal which contains N atoms will have N conduction 
electrons and N positive ion cores. Thc Nat ion core contains 10 electrons that 
occupy the Is, 29, and 2p shells of the free ion, with a spatial distribution that 
is csscntially the same when in the metal as in the free ion. The ion cores fill 
only about 15 percent of the volume of a sodiurri crystal, as in Fig. 1. The 
radius of the free Na+ ion is 0.98 A, whereas one-half of the nearest-neighbor 
distance of the rr~etal is 1.83 A. 

The interpretation of metallic properties in terms of the motion of free 
electrons was developed long before the invention of quantum mechanics. The 
classical theory had several conspicuous successes, notably the derivation of tlie 
form of Ohm's law and the relation between the electrical and thermal conduc- 
tivity. The classical theory fails to explain the heat capacity and the magnetic 
susceptibility of the conduction electrons. (These are not failures of the free 
electron model, but failures of the classical Maxwell distribution function.) 

There is a further difficulty with the classical model. From many types of 
experiments it is clear that a conduction electron in a metal can move freely in 
a straight path over many atomic distances, undeflected by collisions with 
other cond~~ction electrons or by collisions with the atom cores. In a very pure 
specimen at low temperatures, the mean free path rnay be as long as 10' inter- 
atomic spacings (rnore tivan 1 cm). 

Why is condensed matter so transparent to conduction electrons? The 
' 

answer to the question contains two parts: (a) A conduction electron is not 



deflected by ion cores arranged on a periodic lattice because mattcr waves can 
propagate freely in a periodic structure, as a consequencc of the mathematics 
treated in thc following chapter. (b) A conduction elrctron is scattered only in- 
frequently hy other conductio~i electrons. This property is a consequence of 
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a 
gas of free electroris subject to thc Pa111i principle. 

ENERGY LEVELS IN ONE DIMENSION 

Consider a free electron gas in one dimension, t ak i~~g  account of quantum 
theory and of the Pauli principle. An electron of maqs m is confined to a length L 
by infinite harriers (Fig. 2). The wavefunction $,(x) of the electron is a solu- 
tion of the Schrodinger equation X+ = E+; with the neglect of potential cnergy 
we have X = p2/2m, where p is the momentum. In quantum theory p may be 
represented by the operator -i?i dldx, so that 

where t, is the e n c r a  of the electron in the orbital. 
We use thc term orbital to denote a solution of the wave equation for a 

system of only one electron. The term allows us to distinguish between an 
exact quantum state of the wave equation of a system of N interacting elec- 
trons and an approxirrlate quantum state which we construct by assigning the 
N electrons to N different orbitals, where each orbital is a solution of a wave 
equation for one electron. The orbital model is exact only if there are no inter- 
actions between electrons. 

The boundary conditions are cL,(O) = 0; $,,(L) = 0, as imposed by the infi- 
riite potential energy barriers. They are satisfied if the wavefunction is sir~elike 
with an integral number n of half-wavelengths between 0 and L: 

where A is a constant. \Ve see that (2) is a solution of (1), because 

whence the energy E, is given by 

We want to accommodate N electrons on the linc. According to the Pauli 
exclusion principle, no two electrons can have all their quantum numbers 
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Energy levels 

Wavefunctions, 
A = Z L  relative scale 

V 

w- g ---- ----- ---- 3 2   IN : Figure 2 First three energy levels and wave- 
+ .- 9 G functions of a free electron of mass m confined 9 
C. to a line of length L. The energy levels arc la- .- 

beled according to the quantum number n 
$ 4  ------- ------- 2 3  

which gives thc liu~nber of half-wavelengths in r 
W A =2L the wavefunction. The wavelengths are indi- 

--------------- cated on the wavefunctions. The energy E, of 
the level of quantum number n is equal to 

x- (h'/~m)(n/21,)~. 

identical. That is, each orbital can be occupied by at most one electron. This 
applies to electrons in atoms, molecules, or solids. 

In a linear solid the quantum numbers of a conduction electron orbital are 
n and m,, where n is any positive integer and the magnetic qnanti~m number 
m, = +:, according to spin orientation. A pair of orbitals labeled by the quan- 
tum number n can accomlnodate two electrons, one with spin up and one with 
spin down. 

If there are six electrons, then in the ground state of the system the filled 
orbitals are thosc given in the table: 

Electroll glectron 
n nccupancy n o~rupancy 

More than one orbital may have the same energy. The number of orbitals with 
the saIrle energy is called the degeneracy. 

Let nF denote thc topmost filled energy level, where we start filling the 
levels from the bottom (n = 1) and continue filling higher levels with elec- 
trons until all N electrons are accommodated. It is convenient to suppose that 
N is an even number. The condition enF = N determines nF, the value of n for 
the uppermost filled level. 

The Fermi energy eF is defined as the energy of the topmost filled level 
in the ground state of the N electron system. By (3) with n = n, we have in one 
dimension: 



EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION 

The ground state is the state of the N electron system at absolute zero. 
What happens as the temperature is increased? This is a standard problem in 
elementary statistical mechanics, and thc sohition is given by the Fermi-Dirac 
distribution function (Appendix D and TP, Chapter 7). 

The kinetic cncrgy of the electron gas increases as the temperature is in- 
creased: some energy levels are occupied which were vacant at absolute zero, 
and some levels are vacant which were occupied at absolute zero (Fig. 3). Thc 
Fermi-Dirac distribution gives the probability that an orbital at energy E 

will be occupied in art ideal electron gas in thermal cq~iilihrium: 

The quantity p is a function of the temperature; p is to be chosen for the 
particular problcm in siich a way that the total number of in the system 
comcs out correctly-that is, equal to N .  At absolute zero = E ~ ,  because in the 
limit T + 0 the functionf(e) changes discontinuously from the value 1 (filled) to 
the value 0 (empty) at = cF = p. At all iemperatures f j ~ )  is equal to when 
E = p, for then the denominator of ( 5 )  has the valuc 2. 

6/kB, in units of 1@ K 

Figure 3 Femi-Dirac distrihutiorr function (5) at the valious labelled temperah~res, for 
T, - cl /kB = 50,000 K. The results apply to a gas in three di~ne~lsions. The total number of parti- 
cles is constant, independent of temperature. The chemical potential p at each te~nperaturc may 
be read off the graph as the energy at whichj = 0.5. 
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The quantity y is the chemical potential (TP, Chapter 5), and we see 
that at absolute zero the chemical potential is eqml to the Fermi energy, de- 
fined as the energy of the topmost filled orbital at absolute zero. 

The high energy tail of the distrihi~tion is that part for which 6 - y 9 k,T; 
here the exponential term is dominant in the denominator of (5 ) ,  so 
that f (e)  - exp[(p - <)/k,T].  This l im~t  is called the Boltzmann or  Maxwell 
distribution. 

FREE ELECTRON GAS IN THREE DIMENSIONS 

The free-particle Schrodinger equation in three dimensions is 

If the electrons are confined to a cube of edge J,, the wavefunction is the 
standing wave 

$,,(r) = A  sin ( m n ~ / L )  sin (m,y/L)  sin (m,z /L)  , ( 7 )  

where n,, f ly ,  11, are positive integers. The origin is at one corner of the cubc. 
It is convenient to  introduce wavefiinctions that satisfy periodic boundary 

conditions, as we did for phonons in Chapter 5. We now require the wavefunc- 
tions to be periodic in 1, y, z with period L. Thus 

and si~liilarly for thc y and z coordinates. Wavefunctions satisfying the free- 
particle Schrodinger equation and the periodicity condition are of the form of 
a traveling plane wave: 

$k(r) = exp (ik . r) r 
provided that the components of the wavevector k satisfy 

and similarly fork,, and k,. 
Any component of k of the form 2 n d L  will satisfy thc periodicity 

coridition over a Icngth L,  where n is a positive or negativr integer. The com- 
ponents of k are the quantum nurnhers of the prohlem, along with the 
quantum number m, for the spin direction. We confirm that these values of k, 
satisfy (8), for 



On substituting (9) in (6) we have the energy ek of the orbital with 
wavevector k: 

The magnitude k of the wavevector is related to the wavelength h by k = 2?rlh. 
The linear momentum p may be represented in quantum mechanics by 

the operator p = -ifiV, whence for the orbital (9) 

so that the plane wave $k is an eigenfunction of the linear momentum with the 
eigenvalue fik. The particle velocity in the orbital k is given by v = fiklm. 

In the ground state of a system of N free electrons, the occupied orbitals 
may be represented as points inside a sphere in k space. The energy at the sur- 
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface 
have a magnitude k, such that (Fig. 4): 

From (10) we see that there is one allowed wavevector-that is, one dis- 
tinct triplet of quantum numbers k,, k,,, k,-for the volume element ( 2 7 r / ~ ) ~  of 
k space. Thus in the sphere of volume 4?rk23 the total number of orbitals is 

where the factor 2 on the left comes from the two allowed values of the spin 
quantum number for each allowed value of k. Then (15) gives 

which depends only on the particle concentration. 

Figure 4 In the ground state of a system of N free 
electrons the occupied orbitals of the system fill a 
sphere of radius k ,  where EF = fL2k,22m is the energy of 
an electron having a wavevector k,. 



Table 1 Calculated free electron Fermi surface parameters for metals at room temperature 

(Except for Na, K, Rh, Cs at 5 K and Li at 78 K) 

Fermi 
Elcciron Radius'" Fermi Fermi F e r ~ n i  terriperature 

concentration, parameter \vdvevectur, vc1ocit)i energy, & - ~ ~ / k *  
V;llmw Metal in C I I I - ~  r. in cm-' in cm sC1 in eV in dee K 

- -- 

"The d~mens~onless radlus parameter IS defined as r,, = ~,la,, where a" is the first Bohr radlus and r, IS the radlus of a ~ p h e r r  that contrlns one electron 



Energy, + 

Using (14) and (l6), 

Figure 5 Density of single-particle states as a func- 
tion of energy, for a free electron gas in three dimen- 
sions. The dashed curve represents the density 
f ( E ,  T )D(E)  of filled orbitals at a finite temperature, 
but such that k,T is small in comparison with E,. The 
shaded area represents the filled orbitals at absolute 
zero. The average energy is increased when the tem- 
perature is increased from 0 to T, for electrons are 
thermally excited from region 1 to region 2. 

This relates the Fermi energy to the electron concentration NN. The electron 
velocity vF at the Fermi surface is 

Calculated values of k,, v,, and E, are given in Table 1 for selected metals; also 
given are values of the quantity TF which is defined as ~ , / k , .  (The quantity TF 
has nothing to do with the temperature of the electron gas!) 

We now find an expression for the number of orbitals per unit energy 
range, D(E), called the density of states.' We use (17) to obtain the total 
number of orbitals of energy SE:  

so that the density of states (Fig. 5) is 

'Strictly, D ( E )  is the density of one-particle states, or density of orbitals. 
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This result may he expressed more simply by comparing (19) and (20) to ohtain 
at E 

Within a factor of the ordcr of unity, the number of orbitals per unit energy 
range at the Fermi energy is the total number of conduction electrons divided 
by the Fermi energy, just as we would expect. 

HEAT CAPACITY OF THE ELECTRON GAS 

The question that caused the greatest difficulty in the early development 
of the electron theory of metals concerns the heat capacity of the conduction 

: electrons. Classical statistical mechanics predicts that a free particle should 

: have a heat capacity of k,, where k, is the Boltzrnann constant. If N atoms 
i each give one valence electron to the electron gas, and the electrons arc freely 
i mobile, then the electronic contribution to the heat capacity shonld be ;h'k,, 
i just as for the atoms of a monatomic gas. But the observed electronic contribu- 

tion at room temperature is usually less than 0.01 of this value. 

i This important discrepancy distracted the early workers, such as Lorentz: 

[ How can the electrons participate in electrical conduction processes as if they ' were mobile, while not contributing to the heat capacity? The question was / answcrcd only upon the discovery of the Pauli exclusion principle and the 
Fermi distribution function. Fermi found the correct result and he wrote, 
"One recognizes that the specific heat vanishes at absolute zero and that at low 
temperatures it is proportional to the absolute temperatnre." 

When we heat the specimen from absohite zero, not every electron gains 
1 an energy -kBT as expectcd clawically, but only those electrons in orbitals 
/ within an energy range k,T of the Fermi level are excited thermally, as in 
! 
i Fig. 5. This gives an immediate qualitative solution to the problem of the heat 
I 

capacity of the conduction electron gas. If N is the total number of electrons, ! 
i only a fraction of the order of TITF can he excited thermally at temperature T, 

[ because only these lie within an energy rangc of the order of kBT of the top of 
I the energy distribution. 

Each of these NT/Tr clcctrons ha5 a thermal energy of the order of kBT. 
The total electronic thermal kinetic energy U is of the order of 

The electronic heat capacity is given by 

and is directly proportional to T, in agreement with the experimental 
results discussed in the following section. At room temperature CeI is smaller 



than the classical value Nk, by a factor of the order of 0.01 or less, for 
TF -5  X 104K.  

We now derive a quantitative expression for the electronic heat capacity 
valid at low temperatures kllT 4 eF. The increase AU = U(T) - 17(0) in the 
total energy (Fig. 5)  of a system of W electrons when heated from 0 to T is 

Here f ( c )  is the Fer~ni-Dirac function (5): 

and D ( c )  is the number of orbitals per unit energy range. i17e multiply the 
identity 

by eF to obtain 

We use (26)  to rcwritc (24)  as 

The first integral on the right-hand side of (27)  gives the energy needed to 
take electrons from eF to the orbitals of energy l > c ~ ,  a i d  the second integral 
gives the energy needed to bring the electrons to C ,  f ro~n orbitals below c,. 
Both contributions to the energy are positive. 

The product f ( ~ ) D ( r ) d e  in the first intcgral of (27) is the number of 
electrons elevated to orhitals in the energy range d~ at an energy C .  The factor 
[l - . f ( ~ ) ]  in the second integral is the probability that an electron has been 
removed from an orbital E .  The function AU is plotted in Fig. 6 .  

The heat capacity of the electron gas is f o u ~ ~ d  on differentiating AU with 
respect to T .  Tlie orily temperature-depe~idellt term in (27)  is f ( r ) ,  whence we 
can group terms to obtain 

At the terriperatures of interest in metals, r/tF < 0.01, and we see from 
Fig. 3 that ( C  - r F )  dYdT has large positive peaks at energies near c,. It is a 
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Figure 6 Temperature dependence of the 
energy of a noninteracting fermion gas in three 
dimensions. The energy is plotted in normal- 
ized form as AUINE,, where N is the number of 
electrons. The temperature is plotted as k B T k p .  

Region of degenerate quantum gas 

Figure 7 Plot of the chemical potential p versus temperature as k,T for a gas of noointeracting 
fermions m three dimensions. For convenience in plotting, the units of p and k,T are 0 . 7 6 3 ~ ~  

good approximation to evaluate the density of states D(E)  at E ,  and take it 
outside of the integral: 

Examination of the graphs in Figs. 7 and 8 of the variation of the chemical 
potential p with T suggests that when kgT < eF we ignore the temperature 



I 1.00 
P - 

EF 

Figure 8 Variation with temperature of the chemical 
potential p, for free electrorr Fermi gases in unc and 
three dimensions. In common metals T / E ~  = 0.01 at 
room temperature, so that p is closely equal to E,. 0.95 1 I 
These curves were calculated from series expansions 0 0.1 0.2 
of the integral for the number of particles in the - r - 
system. t~ 

dependence of the chemical potential p in the Fermi-Dirac distribution func- 
tion and replace p by the constant E,. We have then, with T = kBT, 

We set 

X = (E - E&T , (31) 

and it follows from (29) and (30) that 

We may safely replace the lower limit by -w because the factor ex in the inte- 
grand is already negligible at r = e F / 7  if we are concerned with low tempera- 
tures such that E ~ / T  - 100 or more. The integral in (32) then becomes 

whence the heat capacity of an electron gas is 

From (21) we have 

for a free electron gas, with kRTF -- eF. Thus (34) becomes 
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Recall that although T,  is called the Fermi temperature, it is not the electron 
temperature, but only a convenier~t reference notation. 

Experimental Heat Capacity of Metals 

At temperatures much below both the Debye temperature 0 and the 
Fermi temperature T,, the heat capacity of metals may be written as the sum 
of elcctron and phonon contributions: C = yT + AT3, where y and A are con- 
stants characteristic of the material. The electronic term is linear in T and is 
dominant at sufficiently low temperatures. It is convenient to exhibit the ex- 
perimental values of C as a plot of CIT versus p: 

for then the points should lie on a straight line with slope A and Intercept 7. 
Such a plot for potassium is shown In Fig. 9. Observed values of y, called the 
Sommerfeld paramctcr, are pven in Table 2. 

Thr ohscrved values of the coefficient y are of the expected magnitude, 

, but often do not agree very closely with the value calculated for free electrons 
of mass m by use of (17) and (34). It is coIrlmon practice to express the ratio of 
the observed to the free electron values of the electronic hcat capacity as a 
ratio of a thermal effective mass nLth to the electron mass m, where mm IS de- 

1 fined by the relation 

This form arises in a natural way because eF is i~iversely proportional to the 
mass of the electron, whence y a m. Values of the ratio are given in Table 2. 
The departure from unity involves three scparate effects: 

The interaction of thc conduction electrons with the periodic potential of 
the rigid crystal lattice. The effective mass of an electron in this potential is 
called the hand effective mass. 

Figure Y Experimental heat capacity values for potassi~lm, plotted as C/T versus T2. (Aftcr 
W. H. Lien and N.  E. Phillips.) 
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The interaction of the conduction electrons with phonons. An electron 
tends to polarize or distort the lattice in its neighborhood, so that the rnov- 
ing electron tries to drag nearby ions along, thereby increasing the effective 
mass of the electron. 
The interaction of the conduction electrons with themselves. A moving elec- 
tron causes an inertial reaction in the surrounding electron gas, thereby in- 
creasing the effective mass of the electron. 

Heavy Fermions. Several metallic compoiinds have been discovered that have 
enormous values, two or three orders of magnitude higher than usual, of the elec- 
tronic heat capacity constant y. The heavy fermion compourids include UBe13, 
CcAI,, and CeCu,Si,. I t  has been suggested that f electrons in these compounds 
may have inertial masses as high as 1000 rn, because of the weak overlap of wave- 
functions off electrons on neighboring ions (see Chapter 9, "tight binding"). 

ELECTRICAL CONDUCTIVITY AND OHM'S LAW 

The momentum of a free electron is related to the wavevector by m v  = hk. 
In an electric field E and magnetic field B the force F on an electron of charge 
-e is -e[E + (1Ic)v X B ] ,  so that Newton's second law of motion becomes 

In the absence of collisions the Fermi sphere (Fig. 10) moves in k space at a 
uniform rate by a constant applied electric field. We integrate (39)  with B = 0 
to obtain 

k(t)  - k(0)  = -eEt/h . (40)  

If the force F = -eE is applied at tirne t = 0 to an electron gas that fills 
the Fermi sphere centered at the origin of k space, then at a later time t the 
sphere will be displaced to a new center at 

Sk = -eEtlh . (41)  

Notice that the Fcrmi sphere is displaced as a whole because every electron is 
displaced by the same 6k .  

Because of collisions of electrons with impurities, lattice imperfections, and 
phonons, the displaced sphere may be maintained in a steady state in an electric 
field. If the collisio~i time is r, the displacement of the Fermi sphere in the 
steady state is given by (41) with t = 7 .  The incremental velocity is v =$%ldm = 

-eErlm. If in a constant clectric field E there are n electrons of charge q = -e 
per unit volume, the electric current density is 

j = nqv = ne2rE/m . (42) 

This is Ohm's law. 



Fermi sphere 

k* 

Figure 10 (a) The Ferrni sphere encloses the occupied electron orbitals i n k  space in the ground 
state of the electron gas. The net momentum is zero, because for every orbital k there is an occu- 
pied orbital at -k. (b) Under the illfluc~rcc of a constant force F acting f i r  a time interval t eveT 
orbital has its k vector increased hy Sk = Ftlfi. This is equivalent to a displacement of the whole 
Fermi sphere by 6k. The total momentum is ATfiSk, if there are N electrons present. The applica- 
tion oT the force incrcascs tlrc clrcrgy of tile system by N(fi6k)2/2m. 

The electrical conducti\lty u is defined by j = uE, so by (42) 

The electrical resistivity p is defined as the reciprocal of the conductivity, 
so that 

I 

I 
p = mn/ne27 . (44) 

Values of the electrical conductivity and resistivity of the elements are given in 
Table 3. In Gaussian units u has the dimensions of frequency. 

It is easy to understand thc result (43) for the conductivity of a Fermi gas. 
We expect the charge transported to he proportional to thc chargc dcnsity ne; 

the factor e/m enters (43) because the acceleration in a given electric field is 
proportional to e and inversely proportional to the mass m. The time T describes 
the free time during whidi the field acts on the carrier. Closely the same result 
for the electrical conductivity is obtained for a classical (Mawwellian) gas of elec- 
trons, as realized at low carrier concentration in many semico~lductor problems. 

Experimental Electrical Resistivity of Metals 

The electrical resistivity of most metals is dominated at room te~nperature 
(300 K) hy collisions of thc conduction electrons with lattice phonons and at 





(a) (b) 

Figure 11 Electrical resistivity in most metals arises from collisions of electrons with irregulari- 
ties in the lattice, as in (a) by phonons and in (h) by impurities and vacant lattice sites. 

liquid helium temperature (4 K) by collisions with impurity atoms and me- 
chanical imperfections in the lattice (Fig. 11). The rates of these collisions 
are often independent to a good approximation, so that if the electric field 
were switched off the momentum distribution would relax back to its ground 
state with the net relaxation rate 

where rL and T, are the collision times for scattering by phonons and by imper- 
fections, respectively. 

The net resistivity is given by 

P = P L + P i ,  (46) 

where pL is the resistivity caused by the thermal phonons, and p, is the resistiv- 
ity caused by scattering of the electron waves by static defects that disturb the 
periodicity of the lattice. Often pL is independent of the number of defects 
when their concentration is small, and often p, is independent of temperature. 
This empirical observation expresses Matthiessen's rule, which is convenient 
in analyzing experimental data (Fig. 12). 

The residual resistivity, p,(O), is the extrapolated resistivity at 0 K because 
p, vanishes as T + 0. The lattice resistivity, pL(T) = p - p,(O), is the same for 
different specimens of a metal, even though p,(O) may itself vary widely. The 
resistivity ratio of a specimen is usually defined as the ratio of its resistivity at 
room temperature to its residual resistivity. I t  is a convenient approximate in- 
dicator of sample purity: for many materials an impurity in solid solution cre- 
ates a residual resistivity of about 1 pohm-cm (1 X ohm-cm) per atomic 
percent of impurity. A copper specimen with a resistivity ratio of 1000 
will have a residual resistivity of 1.7 x pohm-cm, corresponding to an 
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Figure 12 Resistance of potassium below 
20 K,  as measured on two specirrrells by 
D. MacDonald and K.  Mendelssohn. The 
differe~~t i~iterceyts at 0 K are attributed to 
different concentrations of impurities arrd 
static imperfections in the two specimens. 

impurity concentration of about 20 ppm. In exceptionally pure specimens the 
resistivity ratio may be as high as 10" whereas in some alloys (e.g., manganin) 
it is as low as 1.1. 

It is possible to obtain crystals of copper so pure that their conducticity at 
liquid helium temperatures (4 K )  is nearly 10' times that at room temperature; 
for these conditio~~s T = 2 X s at 4 K. The mean free path t of a conduc- 
tion electron is defined as 

where uF is the velocity at the Fermi surface, because all collisions involve only 
electrons near the Fermi surface. From Table 1 we have c~ = 1.57 X 10' cm s-' 
for Cu, thus the mean free path is ((4 K) = 0.3 cm. Mean free paths as long as 
10 cm have been observed in very pure metals in the liquid helium tempera- 
ture range. 

The temperature-dependent part of the electrical resistivity is proportional 
to the rate at which an electron collides with thermal phonons and thermal elec- 
trons. The collision rate with phonons is proportional to the co~rcentration of 
thermal phonons. One simple limit is at te~r~peratures over the Debye tempera- 
ture 0: here the phonon co~rcentration is proportional to the temperature T, so 
that p a T for T > 8. A sketch of the theory is given in Appendix J. 

Umklapp Scattering 

Umklapp scattering of electrons by phonons (Chapter 5) accounts for 
most of the electrical resistivity of metals at low tenrperatures. These are 
electron-phonon scattering processes in which a reciprocal lattice vector G is 
involved, so that electron momentum change in thc process may be much larger 



Figure 13 Two Fermi spheres in adjacent . . - 
zones: a construction to show the role of phonon 
umklapp processes in electrical resistivity. 40 

than in a normal electron-phonon scattering process at low temperatures. (In an 
umklapp process the wavevector of one particle may be "flipped over.") 

Consider a section perpendicular to [loo] through two adjacent Brillouin 
zones in bcc potassium, with the equivalent Fermi spheres inscribed within 
each (Fig. 13). The lower half of the figure shows the normal electron-phonon 
collision k' = k + q, while the upper half shows a possible scattering process 
k' = k + q + G involving the same phonon and terminating outside the first 
Brillouin zone, at the point A. This point is exactly equivalent to the point A' 
inside the orignal zone, where AA' is a reciprocal lattice vector G.  This scat- 
tering is an umklapp process, in analogy to phonons. Such collisions are strong 
scatterers because the scattering angle can be close to T. 

When the Fermi surface does not intersect the zone boundary, there is 
some minimum phonon wavevector q, for umklapp scattering. At low enough 
temperatures the number of phonons available for umklapp scattering falls 
as exp(-OdT), where 0, is a characteristic temperature calculable from the 
geometry of the Fermi surface inside the Brillouin zone. For a spherical Fermi 
surface with one electron orbital per atom inside the bcc Brillouin zone, one 
shows by geometry that q, = 0.267 k,. 

The experimental data (Fig. 12) for potassium have the expected exponen- 
tial form with 6, = 23 K compared with the Debye O = 91 K. At the very low- 
est temperatures (below about 2 K in potassium) the number of umklapp 
processes is negligible and the lattice resistivity is then caused only by small 
angle scattering, which is the normal (not umklapp) scattering. 

MOTION IN MAGNETIC FIELDS 

By the arguments of (39) and (41) we are led to the equation of motion for 
the displacement 6k of a Fermi sphere of particles acted on by a force F and 
by friction as represented by collisions at a rate 11~: 
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The free particle acceleration term is (M/dt)  6k and the effect of collisions 
(the friction) is represented by UWT,  where T is the collision time. 

Consider now the motion of the system in a uniform magnetic field B. The 
Lorentz force on an electron is 

If mv = fi6k, then the equation of motion is 

An important situation is the following: let a static magnetic field B lie 
along the z axis. Then the component equations of motion are 

The results in SI are obtained by replacing c by 1. 
In the steady state in a static electric field the time derivatives are zero, so 

that the drift velocity is 

where w, = eBlmc is the cyclotron frequency, as discussed in Chapter 8 for 
cyclotron resonance in semiconductors. 

Hall Eflect 

The Hall field is the electric field developed across two faces of a conduc- 
tor, in the direction j x B, when a current j flows across a magnetic field B. 
Consider a rod-shaped specimen in a longitudinal electric field E, and a trans- 
verse magnetic field, as in Fig. 14. If current cannot flow out of the rod in the 
y direction we must have 8uy = 0. From (52) this is possible only if there is a 
transverse electric field 



Section + + + + + * + + +  
perpendicular 

to B axis; 
drift velocitv 

Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular 
cross-section is placed in a magnetic field EL, as in (a). An electric field E, applied across the end 
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the 
negatively-charged electrons immediately after the electric field is applied as shown in (b). The 
deflection in the -y direction is caused by the magnetic field. Electrons accumulate on one face 
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans- 
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field. 

The quantity defined by 

is called the Hall coefficient. To evaluate it on our simple model we use j, = 

ne27E/m and obtain 

This is negative for free electrons, fore is positive by definition. 
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Table 4 Comparison of observed Hall coefficients with free electron theory 

~ ~ 

' 
wavr method at 4 K are by J. M. Goodman. The values of the carrier concentratioh n are from I Table 1.4 except for Na, K, Al, In. where Goodman's vahles are nsed. To corrvert tlrc valuc oTR, in 
CGS nnits to the value in volt-cn~/amp-gauss, ~ n u l t i p l ~  by 9 x 10"; to convert A, in CGS to 

conv. -1.89 1 electron - 1.48 
-2.619 1 electron 2 . 6 0 3  

conv. -2.3 
1 electron -4.944 

 con^^. 4 . 7  
1 electron -6.04 
1 electron 0 . 8 2  
1 electron 1 . 1 9  
1 clcctron -1.18 
- - 

-0.92 - - 

+1.136 I hole +I.135 
+ 1.774 1 hole +1.780 

- - 

- - 

conw -6000. - - 

The lower the carrier concesltration, the greater the magnitude of the 
Hall coefficient. Measuring RH is all important way of measuring the carrier 
concentration. Note: The symbol RH denotes the Hall coefficient (54), but the 
same sysnbol is sometimes used with a different meaning, that of Hall resis- 
tance in two-dimensional problems. 

The simple result (55) follows from the assusnption that all relaxation 
times are equal, independent of the velocity of the electron. A numerical fac- 
tor of order unity enters if the relaxation time is a function of the velocity. The 
expression becomes somewhat more complicated if both electrons and holes 
contribute to the conductivity. 

In Table 4 observed values of the IIall coefficient are compared with val- 
ues calculated from the carrier concentration. The most accurate Ineasure- 
ments are made by the method of helicon resonance which is treated as a 
problem in Chapter 14. 

The accurate values for sodium and potassium arc in excellent agreement 
with values calculated for one cond~~ction electron per atom, using (55). 



Notice, however, the experimental values for the trivalent elerrlents aluminum 
and indiu~n: these agree with values calculated for one positive charge carrier 
per atom and thus disagree in magnitude and sign with values calculated for 
the expected three negative charge carriers. 

The problem of an apparent positive sign for the charge carriers arises 
also for Be and As, as seen in the table. The anomaly of the sign was explained 
by Peierls (1928). The motion of carriers of apparent positive sign, which 
Heisenberg later called "holes," cannot be explaitled by a free electron gas, but 
finds a natural explanation in terms of the energy band theory to be devclopcd 
in Chapters 7-9. Band theory also accounts for thc occiirrence of very large 
values of the Hall coefficient, as for As, Sh, and Bi. 

THERMAL CONDUCTIVITY OF METALS 

In Chapter Fj we found an expression K = ;Cut for thr thermal cond~ictiv- 
ity of particles of velocity v ,  heat capacity C per nnit vohlme, and mean free 
path t?. The thermal conductivity of a Fermi gas follows from (36) for the heat 
capacity, and with E ,  = :mu; : 

2 nkZT &=-.L. u,.Z =- 2nkiT.r 
3 mu: 3m 

Here 4 = V ~ T ;  the electron concentration is n, and T is the collision time. 
Do the electrons or the phonons carry the greater part of the heat current 

in a metal? In pure metals the electronic contribution is dominant at all tem- 
peratures. In impure metals or in disordered alloys, the electron mean free 
path is rednced by collisions with impurities, and the phonon contribution may 
be comparable with the electronic contribution. 

Ratio of Thermal to Electrical Conductivity 

The Wiedemann-Franz law states that for metals at not too low tcmper- 
atures the ratio of the thermal conductivity to the electrical cond~lctlvlty is 
directly proportional to the temperature, ulth the value of the constant of 
proportionaky independent of the particular metal. This result was important 
in the history of the theory of metals, for it supported the picture of an 
electron gas as the carrier of charge and energy. It can be explained by using 
(43) for u and (56) for K: 
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Table 5 Experimental Lorenz numbers 

L x lO%att-ohmldeg2 L X l0"vatt-ohm/de$ 

Metal 0°C 100°C Metal 0°C 100°C 

The Lorenz number L is defined as 

and according to (57) shollld have the  value 

This re~r~arkable  result involves neither n nor m. Experimental values of L at  
0°C and at 100°C as given in Table 5 are in good agreement with (59). 

Problems 

1. Kinetic energy ofelectron gas. Show that the kinetic energy of a three-dimensional 
gas of N free electrons at 0 K is 

U , , = ~ N E ,  . (60) 

2. Pressure and bulk modulus of an electron gas. (a) Derive a relation connecting 
the pressure and volume of an electron gas at 0 K. Hint: Use the result of Problem 
1 and the relation hctween E ,  and electron concentration. The result may be writ- 

ten as p - $(~J,/v). (b) Show that the bulk modulus B = -V(apl;tV) of an electron 
gas at 0 K is B = $13 = 10Ud9V. (c) Estimate for potassium, using Table 1, the 
value of the electron gas contribution to B.  

3. Chemical potential in two dimensions. Show that the chemical potential of a 
Fermi gas ill two dimensions is given by: 

for n electrolls per unit area. Note: The density of orbitals of a free electron gav in 
two dimensions is independent of enera:  D(e) = m./7Tf12, per unit area of specimen. 



4 .  Fermi gases in astrophysics. (a) Given = 2 x g for the mass of thc Son, 
estimate the numbcr of electrons in the Sun. In a white dwarf star this number nf 
electrons may be ionized and contained in a sphere of radius 2 % 10' cm; find the 
Fermi energy of the clectrnns in  electron volts. (b) The energr. of an electron in the 
relativistic limit E S mc%s related to the wavevector as t = pc = hkc. Show that the 
Fermi energy in this limit is E P =  J2C ( N / v ) " ~ ,  roughly. (c) If the abovc numher of 
electrons were container1 within a pulsar of radius 10 km, show that thc Fermi en- 
ergy would bc =loX eV. This value explains why pulsars are believed to be cnrnposed 
largely of neutrons rather than of protons and electrons, for the energy rclease in the 
reaction n + p + e- is only 0.8 x lo6 eV, which is not large enough to enable many 
electrons to lnrm a Ferrrii sea. The neutron decay proceeds only until the electron 
concentration h~rilds up enough to create a Fermi level of 0.8 % lO%\7, at wlricl~ 
point the neutron, proton, and electron concentrations are in equiliblilnn. 

5 .  Liquid He". The atom He3 has spin and is a fermion. Thc dcnsity nf liquid He" 
is 0.081 g cm-'' near absolute zero. Calculate the Fermi encrgy E, and the Ferrni 
temperature TF. 

6 .  Frequency dependence of the electrical conductivity. Use the equation 
m(du/dt + t ; / ~ )  = -eE for the electron drift velocity v to show that the conductivity 
at f r cq~ lenc~  w is 

'7 .  Dynamic magnetoconductivity tensor for free electrons. A metal with a concen- 
tration n of frec clcctrons of charge -e is in a static m a ~ e t i c  field 84. The clcctric 
current density in the xy plane is related to the electric field by 

Assumc that the freqirency w 9 w, and w * l / ~ ,  where w, = eB/mc and T is the 
collision time. (a) Solve the drift velocity- equation (51) to find thc compnne~rts of 
the magnetncnnductivity tensor: 

where W; = 4me2/m. (b) Note from a Maxwell cqnatinn that the dielectric func- 
tion tensor of the medium is related to the conductivity tensor as E = 1 + i ( 4 - d ~ ) ~ .  
Coi~sider an electromagnetic wave with wavcvcctnr k = kg. Show that the disper- 
sion relation for this wave in the medium is 

At a given frequency there are two modes nf propagation with different wavevec- 
tors and different velocities. The two modes correspond to circularly polarized 

' ~ l l i s  problem is somewhat difficult. 
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wdves. Because a linearly polarized wave can he dccomposed into two circularly 
I~olarized waves, it follows that the plane of polarization of a linearly polarized wave 
will be rotated by the magnetic field. 

'8. Cohesive energy of free electron Fenni gas. We define the dimensionless 
length r,, as r,/a,, where r, is the radius of a spherc that contains one electron, 
and oH is thc bohr radius h2/e2m. (a) Show that the average kinetic energyper elec- 
trori in a frcc electron Fermi gas at 0 K is 2.21/<, where the energy is expressed in 
$bergs, with 1 Ry = me4Ah! (b) Show that the co~~lnmb energy of a point posi- 
tive charge e interacting with the uniform electron distribution of one electron in 
the volnme of radius r, is 3e2 /2r0 ,  or -3/rs in rydbergs. (c) Show that the 
coulornh self-encrg of the electron distribution in the sphcre is 3e2/5r,,, or 6/5r, in 
rydbergs. (d) The sum of (b) and (c) gives -1.80/rS fnr thc total coulomb energy 
per electron. Show that the equilibrium value of r, is 2.45. Will such a metal be 
stable with respect to separated I1 atoms? 

9. Static magnetoconductivity tensor. For the drift velocity theory of (51), show 
that the static cnrreut dcnsity can be written in matrix fonir as 

In the high magnetic field limit of W,T * 1 ,  show that 

In this limit a,, = 0,  to order l / w < ~ .  llie quantity uy, is called the Hall 
conductivity. 

10. Maximum surface resistance. Consider a square sheet of side L, thickness d ,  and 
electrical resistivity p. The resistance measured hetwccn opposite edges of the 
sheet is called the surface resistance: RSq = pL/lrl = pld, which is independent of 
the area L%f the sheet. (R,,, is called the resistance per square and is expressed in 
ohrrls per square, because pld has the dimensions of ohms.) If we express p by (44), 
then R,, = m/nde2r. Suppose now that the rrrininrilm value of the collision time is 
deter~rrined by scattering from the surfaces of the sheet, so that r = dlu,, where ti, 
is the Fernri velocity. Thus the maximum surface resistivity is RSq = rnok/nd2e2. 
Show for a rnonatomic metal sheet one atom in thickness that Rq = ii/e2 = 4.1 ka. 

'This problem is somewhat ddficult 
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Insulator Metal Semimetal Sem~conductor Sem~conductor 

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi- 
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions; 
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one 
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc- 
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors 
shown is at a finite temperature, with carriers excited thermally. The other semiconductor is 
electron-deficient because of impurities. 



CHAPTER 7: ENERGY BANDS 

When I started to think about it, I felt that the 
main problem was to explain how the electrons 
could meak b y  all the ions in a metal.. . . By 
straight Fourier analysis I found to my delight 
that the wave differed from the plane wave of 
free electrons only by a periodic modulation. 

F. Bloch 

The free electron model of metals gives us good insight into the heat 
capacity, thermal conductivity, electrical conductivity, magnetic susceptibility, 
and e l e c t r o ~ a m i c s  of mctals. But the model fails to hclp 11s with other large 
questions: the distinction between metals, semimetals, semiconductors, and 
insulators; the occnrrence of positive values of the Hall coefficient; the rela- 
tion of conduction electrons in the metal to the valence electrons of free 
atoms; and many transport properties, partic~llarly magnetotransport. We need 
a less nayve theory, and fortullately it tnms out that alniost any simple attempt 
to improve upon the free electron model is enormously profitable. 

The difference between a good conductor and a good insulator is striking. 
The electrical resistivity of a pure metal may be as low as 10-lo ohm-cm at a 
temperature of 1 K, apart from the possibility of superconductivity. The resis- 
tivity of a good insnlator may be as high as 10" ohm-cm. This range of lo3' 
may be the widest of any comrrloll physical property of solids. 

Evcry solid contains electrons. Thr important question for electrical con- 
ductibity is how the electrons respond to an applied electric field. We shall see 
that electrons in crystals are arranged in energy bands (Fig. 1 )  separated by 
regions in energy for which no wavelike electron orbitals exist. Such forbidden 
regions are called energy gaps or band gaps, and resnlt from the interaction 
of the co~lduction electron waves with the ion cores of the crystal. 

The crystal behaves as an insulator if the allowed energy bands are either 
filled or cmpty, for then no electrons can move in an electric field. The crystal 
behaves as a metal if one or more bands are partly filled, say between 10 and 
90 percent filled. The crystal is a semiconductor or  a semimetal if one or two 
bands are slightly filled or slightly empty. 

To understand thc difference between insulators and conductors, we rnust 
extend the free clectron model to take account of the periodic lattice of the solid. 
The possibility of a band gap is the most important new property that emerges. 

\'c shall encounter other quite remarkable properties of electrons in crys- 
tals. For example, they respond to applied electric or  magnetic fields as if the 
electrons were endowed with an effective mass m*, which may be larger or 
smaller than the frec clectron mass, or may even bc negative. Electrons in 



crystals respond to applied fields as if endowed with negative or positive 
charges, -e or +e ,  and herein lies the explanation of the negative and positive 
values of the Hall coefficient. 

NEARLY FREE ELECTRON MODEL 

On the free electron model the allowed energy values are distributed es- 
sentially continuously from zero to infinity. We saw in Chapter 6 that 

where, for periodic boundary conditions over a cube of side L, 

The free electron wavefunctions are of the form 

they represent running waves and carry momentum p = fik. 
The band structure of a crystal can often be explained by the nearly free 

electron model for which the band electrons are treated as perturbed only 
weakly by the periodic potential of the ion cores. This model answers almost 
all the qualitative questions about the behavior of electrons in metals. 

We know that Bragg reflection is a characteristic feature of wave propaga- 
tion in crystals. Bragg reflection of electron waves in crystals is the cause of 
energy gaps. (At Bragg reflection wavelike solutions of the Schrodinger equa- 
tion do not exist, as in Fig. 2 . )  These energy gaps are of decisive significance in 
determining whether a solid is an insulator or a conductor. 

We explain physically the origin of energy gaps in the simple problem of a 
linear solid of lattice constant a. The low energy portions of the band structure 

- 
Forbidden band 1% 

k 
"7 

k 

Figure 2 (a) Plot of energy E versus wavevector k for a free electron. (b) Plot of energy versus 
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E, 
shown is associated with the first Bragg reflection at k = ? d a ;  other gaps are found at higher 
energies at k n d a ,  for integral values of n. 
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are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (h) for 
electrons that are nearly free, but with an energy gap at k = f n/a. The Bragg 
condition ( k  + G)' = kZ for diffraction of a wave of wavevector k becomes in 
one dirrrension 

where C = 2xn/u is a reciprocal lattice vector and n is an integer. The first re- 
flections and the first energy gap occur at k = + d u .  The region in k space be- 
tween -ria and n/a is the first Brillouin zone of this lattice. Other energy 
gaps occur for other values of the integer n .  

The wavefimctions at k = ?n/a are not thc traveling waves exp(i~x1a) or 
exp(-i~x/a) of free electrons. At these special values of k the wavefunctions 
are made up of equal parts of waves traveling to the right and to the left. UThen 
the Bragg reflection condition k = +n/a is satisfied by the wavevector, a wave 
traveling to the right is Bragg-reflected to travel to the left, and vice versa. 
Each subsequent Bragg reflection will reverse the direction of travel of the 
wave. A wave that travels neither to the right nor to the left is a standing wave: 
it doesn't go anjwhere. 

Thc time-independent state is represented by standing waves. We can form 
two different standing waves from the two traveling waves 

so that the standing waves are 

+(+) = exp(inx/a) + exp(-inx/a) = 2 cos (nx/a) ; 

+(- ) = exp(i~x/u) - exp(-inx/a) = 2i sin (nxla) . ( 5 )  

The standing waves are labeled (+) or (-) according to whether or not they 
change sign when -x is substituted for x. Both standing waves are composed 
of equal parts of right- and left-directed traveling waves. 

Origin of the Energy Gap 

The two standing waves $(+) and +(-) pile up electrons at different 
regions, and therefore the two waves have different values of the potential 
energy in the field of the ions of the lattice. This is the origin of the energy 
gap. The probability density p of a particle is $*+ = I+12. For a pure traveling 
wave exp(ikx), we have p = exp(-ikx) exp(ikx) = 1, so that the charge density 
is constant. The charge density is not constant for linear combinations of plane 
waves. Consider the standing wave $(+) in (5);  for this we have 

This function piles up electrons (negative charge) on the positive ions centered 
at x = 0, a, ea, . . . in Fig. 3, where the potential energy is lowest. 



U, potential energy 

I 

p, probability density 

eling wave 

x 

Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores 
of a linear lattice. (b) Distribution of probability density p in the lattice for I$(-)I2 a sinZ m l a ;  

I$(+)I2 = cosZ m l a ;  and for a traveling wave. The wavefunction $(+) piles up electronic charge 
on the cores of the positive ions, thereby lowering the potential energy in comparison with the 
average potential energy seen by a traveling wave. The wavefnnction $(-) piles up charge in 
the region between the ions, thereby raising the potential energy in comparison with that seen by 
a traveling wave. This figure is the key to understanding the origin of the energy gap. 

Figure 3a pictures the variation of the electrostatic potential energy of a 
conduction electron in the field of the positive ion cores. The ion cores bear a 
net positive charge because the atoms are ionized in the metal, with the va- 
lence electrons taken off to form the conduction band. The potential energy of 
an electron in the field of a positive ion is negative, so that the force between 
them is attractive. 

For the other standing wave $(- ) the probability density is 

which concentrates electrons away from the ion cores. In Fig. 3b we show 
the electron concentration for the standing waves $(+), $(-), and for a travel- 
ing wave. 

When we calculate the average or expectation values of the potential 
energy over these three charge distributions, we find that the potential energy 
of p ( + )  is lower than that of the traveling wave, whereas the potential energy of 
p ( - )  is higher than the traveling wave. We have an energy gap of width E,  if 
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the energies of p ( - )  and p ( + )  differ by Eg. Just below the energy gap at 
points A in Fig. 2 the w-avefunction is +(+), and just above the gap at points B 
the wavefunction is $(-). 

Magnitude of the Energy Gap 

The wavefunctions at the Brillouin zone boundar). k = ?r/a are fi cos m / a  

and ~ sin mla,  normalized over unit length or line. Let 11s suppose that the 
potential energ). of an electron in the crystal at point x is 

U(x) = U cos 2 d a  . 

The first-order enerD difference between the two standing wave states is 

We see that the gap is equal to the Fourier component of the crystal potential. 

BLOCH FUNCTIONS 

F. Bloch proved the important theorem that the solutioris of the 
Schrochnger equation for a periodic potential must be of a special form: 

where uk(r) ha5 the period of the crystal lattice with uk(r) = llk(' + T). Here T 
is a translation vector of the lattice. The result ( 7 )  expresses the Bloch theorerri: 

The eigenfunctions of the wave equation for a periodic potential are 
the prodr~ct of a plane wave exp(ik . r )  times a function uk(r)  with the 
periodicity of the crystal lattice. 

A one-electron wavefunction of the for~n (7 )  is called a Rloch function and 
can be decomposed into a sum of traveling waves, as we see later. Bloch func- 
tions can he assembled into wave packets to represent electrons that propa- 
gate freely through the potential field of the ion cores. 

We give now a restricted proof of the Bloch theorem, valid \vlren +k is 
nondegenerate; that is, when there is no other wavefunction with the samc 
energy and wavevector as &. The general case will be treated later. \?7c con- 
sider N identical lattice points on a ring of le~lgth Nu.  The potcntial energy is 
periodic in a, with U(x) = U(x + sa), where s is an integer. 

Let us be guided by tlie symmetry of the ring to look for solutions of the 
wave equation such that 



where C is a constant. Then, on going once around the ring, 

+(x + Nu) = + ( x )  = C" + ( x )  , 

because $ ( x )  must be single-valued. It follows that C is one of the N roots o l  
unity, or 

C = exp(i2nslN) ; s = 0, 1,2, . . . , N - I . (9) 

We use (9) to see that 

satisfies (8), provided that uL(x) has the periodicity a,  so that uk(x) = uk(x + a ) .  
This is the Bloch result (7). 

KRONIG-PENNEY MODEL 

A periodic for which the wave equation can he solved in terms of 
elementary functions is the square-well array of Fig. 4. The wave equation is 

where U(x) is the potential energy and is the energy eigenvalue. 
In the region 0 < x < a in which U = 0, the eigenfunction is a linear 

combination, 

of plane waves traveling to the right and to the left, with energy 

E = h2P/2rn . (13)  

In the region -b < x < 0 within the barrier the solution is of the form 

fi = CeQ" + ~ e - ~ "  , (14) 

with 

U ,  - G = h2Q2/2m . ( 1 s )  

Figure 4 Square-well periodic potential as 
introduced by Kronig and Penney. i a + b )  41 0 a a c b  x- 
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\'t: want the complcte solution to have the Bloch form (7). Thus the solu- 
tion in the region n < x < a + b must be related to the solution (14) in the 
region - b  < r < 0 by the Bloch theorem: 

wl~ich serves to dcfine the wavevector k used as an index to label the 
solution. 

The constants A, B, C, D are chosen so that $ and d+idx are continuous at 
x = O and x = a. These are the usual quantum mechanical boundary condi- 
tions in problems that involve squarc potential wells. At x = 0, 

with Q lrom (14). At x = a, with the use of (16) for $(a) under the barrier in 
terms of $(-h),  

~ ~ i f i  + = (ce-Q" + neQb) eik(a+b) ; (19) 

i~ (& ' f i  - B~- '&)  = Q ( c ~ - Q ~  - neQb) e'kt"+b) , (20) 

The lour cqnations (17) to (20) have a solution only if the determinant of 
the coefficients ofA, B, C, D vanishes, yielding 

[(Q" K~)/ZQK] sinl~ Qb sin Ka + cosh Qb cos Ka = cos k(a + b )  . (214 

It is rather tedious to obtain this equation. 
The result is simplified if we represent the potential by the periodic delta 

function obtained when we pass to the limit b = 0 and Uo = m in such a way 
that Qzba12 = Y, a finite quantity. In this limit Q & K and Qb 4 1. Then (21a) 
reduces to 

(P/Ka)sin Ka + cos Ka = cos ka . (2lb) 

The ranges of K for which this equation has solutio~ls are plotted in Fig. 5, 
for the case P = 3 d 2 .  The corresponhng values of the energy are plotted in 
Fig. 6. Note thc cnergy gaps at the zone boundaries. The wavevector k of the 
Bloch function is the important index, uot the K in (12), which is related to the 
cnergy by (13). A treatment of this problem in wavevector space is given later 
in this chapter. 

WAVE EQUATlON OF ELECTRON IN A PERIODIC POTENTIAL 

We considered in Fig. 3 the approximate fonu we expect for the sohltion 
of the Schrodinger equation if the wavevector is at a zone houndq ,  as at 
k = 2min. We treat in detail the wave equation for a general potential, at general 
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t (PI&) sin Ka + cos Ka 

Figure 5 Plot of the function (PIKa) sin Ka + cos Ka, for P  = 3 ~ 1 2 ,  The allowed values of the 
energy e are given by those ranges of Ka = ( 2 r n ~ f f i ' ) ~ a  for which the function lies between 51 .  
For'other values of the energy there are no traveling wave or Bloch-like solutions to the wave 
equation, so that forbidden gaps in the energy spectrum are formed. 

Figure 6 Plot of energyvs. wavenumber for the 
Kronig-Penney potential, with P = 3 ~ 1 2 .  Notice 
the energy gaps at ka = W ,  ZW,  377. . . . 

values of k. Let U(x) denote the potential energy of an electron in a linear lattice 
of lattice constant a. We know that the potential energy is invariant under a crys- 
tal lattice translation: U(x) = U(x + a). A function invariant under a crystal lattice 
translation may be expanded as a Fourier series in the reciprocal lattice vectors 
G. We write the Fourier series for the potential energy as 

The values of the coefficients UG for actual crystal potentials tend to decrease 
rapidly with increasing magnitude of G. For a bare coulomb potential U, 
decreases as 1/G2. 



We want the poteutial energy U(x)  to be a real function: 

U(x) = 2 UG(eiG" + e-'") = 2 IIc cos Gx 
G>O G>O 
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For convenience we have assumed that the crystal is symmetric about x = 0 
and that UO = 0. 

The wave equation of an electron in the crystal is X* = e+, where X is the 
hamiltonian and is the energy eigenvahe. The solutions + are called eigen- 
functions or orbitals or Bloch functions. Explicitly, the wave equation is 

Equation (24) is written in the one-electron approximation in which the 
orbital $(x) describes the motion of one electron in the potential of the ion 
cores and in the averagc potential of the other conduction electrons. 

The wavefunction $(x)  may be expressed as a Fouricr series summed over 
all values of the wavevector permitted by the boundary conditions, so that 

where k is real. (We could equally well write the index k as a subscript on C, as 
in Ck. ) 

The set of values of k has the form 2 ~ n l L ,  because these vallles satisfy 
periodic boundary conditions over length L. Here n is any integer, positive or 
negative. We do not assume, nor is it generally tnic, that * ( x )  itself is periodic 
in the fundamental lattice translation a. Thc translational properties of * ( x )  
are determined by the Bloch theorem (7). 

Not all wavevectors of the sct 2 m / L  enter the Fourier expansion of 
any one Bloch function. I f  one particular wavevector k is contained in a @, 
then all other wavevectors in the Fourier expansion of this @ will have the 
form k + G, where G is any reciprocal lattice vector. V7e prove this result in 
(29) below. 

Wc can label a wavefunction t,b that contains a component k as 4k or, 
eqnally well, as &+,, because if k enters the Fourier expansion then k + G 
may enter. The wavevectors k + C rnnning over G are a restricted subsct of 
the set ZmlL,  as shown in Fig. 7. 

We shall usually choose as a label for the Bloch function that k which lies 
within the first Brillouin zone. When other conventions are used, we shall say 
so. This situation differs from the phonon problcrn for a monatomic lattice 
where there are no comporle~lts of the ion motion outside the first zone. The 
electron problen~ is like the x-ray diffraction problem because like the electron 
wavefunctior~ the electromagnetic field exists everywhere within the crystal 
and not o111y at the ions. 



Figure 7 The lower points represent values of the wavevector k = 2 m / L  allowed by the periodic 
houndary condition on thc wavefunction over a ring of circumfcrcnce L  composed of 20 primitive 
cells. The allowed valiies continue to i m. The uppcr points represent the first few wavevcctors 
which may enter into the Fourier expansiorl of a wavefunction *(XI, starting from a palt ic~~lar 
wavevector k = k, = - 8 (2~r /L ) .  Thc: shortest reciprocal lattice vector is 2wIa = 20(2~7/L). 

To solve the wave equation, substitute (25) in (24) to obtain a set of linear 
algebraic cquations for the Fourier coefficients. The kinetic energy term is 

and the potential energy term is 

The wave eqi~ation is obtained as the sum: 

Each Fourier component must have the same coefficient on both sides of the 
equation. Thus we have the central equation 

with the notation 

Equation (27) is a useful form of the wave equation in a periodic lattice, 
although unfamiliar because a set of algebraic equations has taken the place of 
the usual differential equation (24). The set appears unpleasant and formida- 
ble because there are, in principle, an infinite number of C(k - G) to be de- 
termined. In practice a small number will often suffice, pcrhaps two or four. It 
takes some experience to appreciate the practical advantages of the algebraic 
approach. 
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Rentatement of the Bloch Theorem 

Once we determine the C's from (27), the wavcfiinction (25) is given as 

+bk(x) = 2 C(k - G) e i (k  '" , 
C 

which may he rearranged as 

with the definition 

uk(x) = 2 C(k - G) e-ic7 
G 

Because uk(x) is a Fourier series over the reciprocal latticc vectors, it is in- 
variant under a crystal lattice translati011 T, so that uk(x) = uk(x + T). We verify 
this directly by evaluating uk(x + T): 

Because exp(-iGT) = 1 by (2.17), it follows that uL(x + T) = uk(x), thereby 
establishing the periodicity of uk. This is an alternate and exact proof of the 
Bloch theorem and is valid even when the $rk are degenerate. 

Crystal Momentum of an Electron 

What is the significance of the wavevector k used to label the Bloch func- 
tion? It has several properties: 

Under a crystal lattice translation which carries r to r + T we have 

because uk(r  + T) = uk(r). Thus exp(ik T) is the phase factor by which a 
Bloch function is multiplied when we make a crystal lattice translation T. 
If the lattice potential vanishes, the central equation (27) reduces to 
(Ak - c)C(k) = 0, so that all C(k - G) are zero exccpt C(k), and thus uk(r) 
is constant. We have I J ~ ( ~ )  = eik.r, just as for a free electron. (This assumes 
we have had the foresight to pick the "right" k as the label. For many pur- 
poses other choices of k, differing by a reciprocal lattice vector, will be more 
convenient.) 
The quantity k enters in the conservation laws that govern collision processes 
in crystals. (The conservation laws are really selection rules for transitions.) 
Thus fik is called the crystal momentum of an electron. If an electron k 
absorbs in a collision a phonon of wavevector q, the selection rule is k + q = 

k' + G.  In this process the electron is scattered from a state k to a state k t ,  
with G a reciprocal lattice vector. Any arbitrariness in labeling the Bloch func- 
tions can be absorbed in the G without changing the physics of the process. 



Solution of the Central Equation 

The central equation (27), 

represents a set of simultaneous linear equations that connect the coefficients 
C(k - G) for all reciprocal lattice vectors G. I t  is a set because there are as 
many cquations as there are coefficients C. These equations are consistent if 
the determinant of the coefficients vanishes. 

Let us write out the eqnations for an explicit problem. \Ve let g denote the 
shortest G. We suppose that the potential energy U(x) contains only a single 
Fourier component Up = K g ,  denoted by U .  Then a hlock of the determinant 
of the coefficients is given by: 

To see this, write out five successive equations of the set (31). The determi- 
nant in principle is infinite in extent, but it will often be sufficient to set equal 
to zero the portion we have shown. 

At a given k, each root E or ek lies on a different energy band, except in 
case of coincidence. The solntion of the determinant (32)  gives a set of energy 
eigenvalues enk, where n is an index for ordering the energies and k is the 
wavevector that labels Ck. 

Most often k will be taken in the first zone, to reduce possible confusion in 
the labeling. If we chose a k different from the original by some reciprocal 
lattice vector, we would have obtained the same set of equations in a different 
order-but having the same energy spectrum. 

Kronig-Penney Mock1 in Reciprocal Space 

As an example of the use of the central equation (31) for a problem that is 
exactly solvable, we use the Kronig-Penney model of a periodic delta-filnction 
potential: 

U(z) = 2 UG cos Gx = AGE 6(x - sa) , 
G>O 

where A is a constant and a the lattice spacing. The sum is over all integers s 
between 0 and l la.  The boundary conditions are periodic over a ring of unit 
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length, which lrieans over l / o  atoms. Thus the Fourier coefficients of the 
potential are 

U ,  = 1 dx WGI)  cos Gx = dr S ( x  - so) cos GGI 
(34)  

All U ,  are equal for the delta-function potential. 
We write the central equation with k as the Bloch index. Thus (31)  

becomes 

where Ar = fi2k'/2m and the sum is over all integers n.  We want to solve (35) 
for ~ ( k ) .  

\Ve define 

f (k )  = Z c ( k  - 2 m / a )  , (36) 

so that (35)  becomes 

Because the suru (36)  is over all coefficients C, we have, for any n; 

f (k) = f  (k - 2 m / a )  . (38)  

This relation lets us write 

C(k - 2m/cr) = - (2mA/ri2) f(k)[(k - 2 n ~ r / a ) ~  - 2fn</ri2)]-' . (39) 

We sum but11 sides over all n to obtain, using (36) and cancelling f (k)  from 
both sides, 

( f i 2 / 2 m ~ )  = -Z [ ( k  - 2rmla)" ( 2 d h 2 ) ] - '  . (40)  

The sum can be carried out with the help of the standard relation 

After trigonometric manipulations in which we use relations for the difference 
of two cotangents and the of two sines, the sum in (40)  bccomes 

a2 sin Ka 
4Ka(cos ka - cos Ka) 

' 

where we write: l? = 2me/7i2 as in (13) .  



The final result for (40) is 

( m ~ n ~ / 2 f i ' ) ( K a ) -  ' sin Ku + cos Ka = cos ka  , (43) 

which agrees with the Kronig-Penney result (21b) with P written for m ~ a ~ / 2 i i ' .  

Empty Lattice Approximation 

Actual band structures are usually exhibited as plots of energy versus 
wavevector in the first Brillo~~in zonc. When wavevectors happen to be given 
outside the first zone, they are carried hack into the first zone by subtracting a 
suitable reciprocal lattice vector. Such a translation can always be found. The 
operation is helpful in visualization. 

When band energies are approximated fairly well by free electron ener- 
gies et = fi212/2m, it is advisable to start a calculation by carrying the free elec- 
tron energies hack into thc first zone. The procedure is simple enough once 
one gets the hang of it. We look for a G such that a k' in the first zone satisfies 

where k is unrestricted and is the true free electron wavevector in the empty 
lattice. (Once the plane wave is niodulated by the lattice, there is no single 
"true" wavevector for the state I//.) 

If we drop the prime on k' as unnecessary baggage, the free electron 
energy can always be written as 

with k in the first zone and G allowed to run over the appropriate reciprocal 
lattice points. 

We consider as an example the low-lying free electron bands of a simple 
cubic lattice. Sl~ppose we want to exhibit the energy as a function of k in the 
[loo] direction. For convenience, choosc units such that 6212m = 1. We sllow 
several low-lying bands in this empty lattice approximation with their energies 
~ ( 0 0 0 )  at k = 0 and e(k,OO) along the k, axis in the first zonc: 

- -- 

Band 

1 000 0 k," 
2,3 100,100 (k,  2 2v/a)" 
4,5,6,7 010,0i0,001,00i ( Z ~ / U ) ~  + ( 2 ~ 1 ~ ) ~  
8,9,10,11 - ~ l o , l o l , l T o , l o i  2(2rr/a)' (k ,  + ~ T / < I ) ~  + ( ~ T / < L ) ~  

12,13,14,15 110 ,~0 l , f i 0 , i 0 i  2(27r/n)' (k, - ~ T / ( L ) ~  + (2da) '  
16,17,18,19 0 1 1 , ~ ~ 1 , 0 1 ~ , 0 i i  2(2rrl[~)' kz + 2(2~/a) '  
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Figure 8 Low-lying free electron energy bands 
of the empty sc lattice, as tra~isfornied to the first 
Brillouin zone and plotted vs. (k ,OO).  The free 
electron energy is fi2(k + G)'/Zrn, where the G's 
are given in the second coli~mn of the table. Thc 
bold curvcs are in the first Urillouin zone, with 
w i n  5 k, 5 mlu. Energy bands drawn in this 
way are said to be in the rednced wne  sche~ne. 

These free electron bands are plotted in Fig. 8. It is a good exercise to plot the 
same bands for k parallel to the [ I l l ]  direction of wwevector space. 

Approximate Solution Near a Zone Boundary 

\Vc suppose that the Fourier components LrG of the potential energy are 
small in comparison with the kinetic energy of a free electron at the zone 
boundary. We first consider a wavevector exactly at the zone boundary at :G, 
that is, at T/U.  Here 

so that at the zone boundary the kinetic energy of the two component waves 
k = ?$G are equal. 

If c($G) is an important coefficient in the orbital (29) at the zone boundary, 
then c(-;G) is also an important coefficient. This result also follows from the 
discussion of (5) .  We retain only those equations in thc central equation that 
contain both coefficients c ( ~ G )  and C(-:G), and neglect all other coefficients. 



One equation of (31)  becomes, with k = :G and h = fi2(&2)'/2rn, 

Another equation of (31)  becomes. with k  = ;G: 

These two equations have nontrivial solutions for the two coefficients if 
the energy E satisfies 

whence 

The energy has two roots, one lower than the free electron kinetic energy by 
U ,  and one higher by U. Thus the potential energy 2U cos Gx has created an 
energy gap 2U at the zone boundary. 

The ratio of the C's may be found from either (44)  or (45) :  

where the last step uses (47) .  Thus the Fourier expansion of $ ( x )  at the zone 
boundary has the two solutions 

These orbitals are identical to (5). 
One solution gives the wavefunction at the bottom of the encrgy gap; the 

other gives the wavefunction at the top of the gap. Which solution has the 
lower energy depends on the sign of U. 

We now solve for orbitals with wavevcctor k near the zone boundary iG. 
We nse the same two-component approximation, now with a wavefunction of 
the form 

$ ( x )  = C(k)  e"" + C(k - G )  ei(k-Gb . (49)  

As directed by the central eqnation (31) ,  we solve the pair of equations 
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with hk defined as k 2 k 2 m .  These equations have a solution if the energy r 
satisfies 

u - E  = o  U hi-c I Pk - 

whencc 6' - E ( A ~ - ~  + hLj + hk-Ghk-@ = 0 
The energy has two roots: 

and each root describes an energy band, plotted in Fig. 9. It is convenient to 
expand the energy in terms of a quantity K (thc mark over the K is called a 
tilde), which rrieasures the difference k - k - ;G in wavevector between k 
and the zone boundary: 

in the region k2G1(1/2rn < 1U(. Here h = (fi2/2m)(k G)' as beforc. 
Writing the two zone boundary roots of (47) as E ( ? ) ,  we nlay write (51) as 

Figure 9 Solutions of (50) in the periodic zone scheme, in the region near a boundaly of the first 
Brillouin zone. Thc units are such that U = -0.45, G = 2, and fLZ/m = 1. The ficc electron curve is 
drawn for comparison. The coergy gap at the zone houndaryis 0.90. The value of U has deliberately 
heen chosen large for this illi~stration, too large for the hvo-terrn approximation to be accurate. 



/ ~ i r s t  I 
hand I 

Figure 10 Ratio of the coefficients i11 *(x) = C(k) exp(ikx) + C(k - 6) exp[ i (k  - G)x] as calcu- 
lated rrzar the boundary of the first Rrillouin zone. One component dominates as we move away 
from the boundary 

These are the roots for the energy when the wavevector is very close to the 
zone boundary at f ~ .  Note the quadratic dependence of the energy on the 
wavevector K. For I! negative, the solution E ( - )  correspondq to the nppcr of 
the two bands, and e(+)  to the lower of the two bands. The two C's are plotted 
in Fig. 10. 

NUMBER OF ORBITALS IN A BAND 

Consider a linear crystal constructed of an even number N of primitive 
cells of lattice constant a. In order to count states we apply periodic boundary 
conditions to the wavefunctions over the length of the crystal. The allowcd 
values of the electron wavevector k in the first Brillouin zone are given by (2): 

We cut the series off at N n / L  = n/a, for this is the zone boundary. The point 
-Nn/L = -nla is not to be counted as an independent point because it is 
connected by a reciprocal lattice vector with nla. The total number of points is 
exactly N, the number of primitive cells. 

Each primitive cell contributes exactly one independent value of k 
to each energy band. This result carries over into three dimensions. With 
account taken of the two independent orientations of the electron spin, there 
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are 2N independent orbitals in each energy band. If there is a single 
atom of valence, one in each primitive cell, the band can be half filled with 
electrons. If each atom contributes two valence electrons to the band, the 
band can be exactly filled. If there are two atoms of valence, one in each prim- 
itive cell, the band can also be exactly filled. 

Metals and Insulators 

If the valence electrons exactly fill one or more bands, leaving others 
empty, the crystal will be an insulator. An external electric field will not cause 
current flow in an insulator. (We suppose that the electric field is not strong 
enough to disrupt the electronic structure.) Provided that a filled band is sepa- 
rated by an energy gap from the next higher band, there is no continuous way 
to change the total momentum of the electrons if every accessible state is 
filled. Nothing changes when the field is applied. This is quite unlike the situa- 
tion for free electrons for which k increases uniformly in a field (Chapter 6). 

A crystal can be an insulator only if the number of valence electrons in a 
primitive cell of the crystal is an even integer. (An exception must be made for 
electrons in tightly bound inner shells which cannot be treated by band 
theory.) If a crystal has an even number of valence electrons per primitive cell, 
it is necessary to consider whether or not the bands overlap in energy. If the 
bands overlap in energy, then instead of one filled band giving an insulator, we 
can have two partly filled bands giving a metal (Fig. 11). 

The alkali metals and the noble metals have one valence electron per 
primitive cell, so that they have to be metals. The alkaline earth metals have 
two valence electrons per primitive cell; they could be insulators, but the 
bands overlap in energy to give metals, but not very good metals. Diamond, 
silicon, and germanium each have two atoms of valence four, so that there are 

Figure 11 Occupied states and band structures giving (a) an insulator, (b) a metal or a semimetal 
because of band overlap, and (c) a metal because of electron concentration. In (b) the overlap 
need not occur along the same directions in the Brillouin zone. If the overlap is small, with rela- 
tively few states involved, we speak of a semimetal. 



eight valence electrons per pr i r~~i t ive  cell; the bands do not overlap, and thc 
pure crystals are insulators at absolute zero. 

SUMMARY 

The  solutions of the wave equation in a periodic lattice are of the 
Bloch form i,bk(r) = uk(r) ,  where uk(r)  is invariant under  a cysta l  lattice 
translation. 

There are repons of energy for which no Bloch furictiorl solutions of the 
wave equation exist (see Proble~ri 5). These energies form forbidden regions 
in which the wavefu~ictio~is are damped in space and the values of thc k's are 
complex, as pictured in Fig. 12. The existence of forbiddcn rcgions of energy 
is prerequisite to the existence of insulators. 

Energy bands may often be  approximated by one or  two plane waves: for 
example, I / J ~ ( ? ~ )  = c(k)eikx + C(k - G)c'(~-'" near the zone b o u n d a y  at :G. 

The number of orbitals in a band is 2 N ,  where N is the number of primitive 
cells in the  specimen. 

Problems 

1.  Square lattice, free electron energies. (a) Show for a simple square lattice (two 
dimensions) that the kinetic energy of a free electron at a corner of the first zone is 
higher than that of an clcctron at midpoint of a side face of the zone by a factor of 2. 
(b) What is the cnrresponding factor for a simple cubic lattice (three dimensions)? 
(c) What hearing might the result of (b) have on the conductivity of divalent metals? 

2 .  Free electron energies in reduced zone. Consider the free electron energy bands 
of an fcc crystal lattice in the a~>proxiniatinn of an clnpty lattice, but in the reduced 
zone scheme in which all k' s are transformed to lic in the first Brillouin zone. Plot 
roughly in the [ill] direction the energies of all bands up to six times the lowest 
band energy at the zone boundary at k = i~ . r r /a ) ( ; ,  fr ,  i). Let this be the unit of en- 
ergy This problem shows why band edges need not necessarily be at the zone cen- 
ter. Several of the degeneracies (hand crossings) will he removcd when account is 
taken of the crystal potential. 

3. Kronig-Penney model. (a) For the delta-filnctinn potential and with P + 1, find at 
k = 0 the energy of the lowest energy band. (h)  Fnr the same problem find the band 
gap at k = d a .  

4 .  Potential energy in the diamond structure. (a) Show that for the diamond struc- 
ture the Fourier component U ,  of the cystal pote~ltial seen an electron is cqual 
to zero for G = 2A, where A is a basis vector in  the reciprocal lattice referred to the 
conventional cubic cell. (b) Show that in the usual first-order approximation to 
the solutions of the wave equation in a periodic lattice the energy gap vanishes at 
the zone boundary plane normal to the end of the vector A. 
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Real part of klG 

Figure 12 In the energy gap there exist solutions of the wave equation for complex values of the 
wavevector. At the buu~~dary uf the first zone thc real part of the wavevector is +c. The imaginaly 
part of k in the gap is plotted in the approximation of two plane waves, for U = 0.01 hPG2/2nr. In an 
infinite unbounded crystal the wavevector must be real, or else the amplitude will increase with- 
ol~t limit. But on a surface or at a ~ U I I L ~ ~ U I I  there can exist solutions with complex wavevector. 

'5.  Complex wavevectors in the energy gap. Find an expression for the imaginary 

p a t  of the wavevector in the energy gap at the boundaly of the first Brillouin zone, 

in the approximation that led to Eq. (46). Give the result for the Im(k) at the center 

of the energy gap. The r e s ~ ~ l t  for small Im(k) is 

The fur111 as plotted irr Fig. 12 is of impnrtance in the theory of Zener tunneling 

from one band to another in the presence of a strong electric ficld. 

6. Square lattice. Consider a square lattice in two dimensiom with the crystal potential 

Apply the central equation to find approximately the energy gap at the comer 

point (via, r i a )  of the Brillouin zone. It will suffice to solve a 2 X 2 dctcrminantal 

equation. 

 h his problem is somewhat difficnlt. 
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Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor 
range may be  extended upward by increasing the impurity concentration, and the range can be ex- 
tended downward to merge eventually with the insulator range. 



CHAPTER 8: SEMICONDUCTOR CRYSTALS 

Carrier conccntrations representative of metals, semimetals, and semicon- 
ductors arc shown in Fig. 1. Semiconductors are generally classified by their 
clcctrical resistivity at room temperature, with values in the range of lo-' to 
10"hm-cm, and strongly dependent "11 temperature. At absolutc zcro a pnre, 
perfect crystal of most serr~icor~ductors will be an insulator, if we arbitrarily de- 
fine an insulator as having a resistivity above 1014 ohm-cm. 

Uevices based on semiconductors include transistors, switches, diodes, 
photovoltaic cclls, detectors, and thermistors. These may be used as single 
circuit elemcnts or as components of integrated circuits. \Ye discuss in this 
chapter the central physical features of the classical semiconductor crystals, 
particularly silicon, germanium, and galliuni arsenide. 

Some useful no~r~enclature: the se~niconductor componnds of chemical 
formula AB, where A is a trivalent elemcnt and B is a pentavalent element, are 
called II1-V (three-five) compounds. Examples are indium antimonide and 
galliuni arsenide. il'herc A is divalent and B is hexavalent, the compound is 
called a 11-VJ compo~lnd; examples are zinc sulfide and cadmium sulfide. Silicon 
and germanium are sometimes called chamond-h-pe semiconductors, because 
they have the crystal structure of diamond. Diarriond itself is more an insulator 
rather than a semiconductor. Silicon carbide SiC is a IV-IV compound. 

A highly purified se~r~ico~iductor exhibits intrinsic conductivity, as distin- 
guisl~ed fro111 the impurity conductivity of lcss pnre specimens. In the intrln- 
sic temperature range thc clcctrical properties of a semiconductor are not 
essentially modificd by impnrities in the crystal. An electronic band scheme 
leading to intrinsic conductivity is indicated in Fig. 2. The coriduction band is 
vacant at absolute zero and is separated by am energy gap Eg from the filled 
valence band. 

The band gap is the difference in energy betwccn the lowest point of the 
conduction band and the highest point of the valence band. The lowest point 
in the conduction band is called the conduction band edge; the highest 
point in the valencc band is called the valence band edge. 

As thc temperatlire is increased, electrons are thermally excited from the 
valence band to the conduction band (Fig. 3). Both the electrons in the con- 
duction band and the vacant orbitals or holes left behind in the valcnce band 
contribute to the electrical conductivity. 

BAND GAP 

Thc intrinsic condiictivity and intrinsic carrier concentrations are largely 
controlled by Edk,T, the ratio of the band gap to the temperature. When this 
ratio is large, the concentration of intrinsic carriers will be low and the 
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Figure 2 Band scheme for intrinsic conductivity in a semiconductor. At 0 K the conductivity is 
zero because all states in the valence band are filled and all states in the conduction band are va- 
cant. As the temperature is increased, electrons are thermally excited from the valence band to the 
conduction band, where they become mobile. Such carriers are called 'intrinsic." 

Temperature, K Temperature, K 

(a) (b) 

Figure 3 Intrinsic electron concentration as a function of temperature for (a) germanium and 
(b) silicon. Under intrinsic conditions the hole concentration is equal to the electron concentra- 
tion. The intrinsic concentration at a given temperature is higher in Ge than in Si because the 
energy gap is narrower in Ge (0.66 eV) than in Si (1 11 eV). (After W. C. Dnnlap.) 

conductivity will be low. Band gaps of representative semiconductors are given 
in Table 1. The best values of the band gap are obtained by optical absorption. 

In a direct absorption process the threshold of continuous optical ab- 
sorption at frequency wg measures the band gap Eg = hwg as shown in Figs. 4a 
and 5a. A photon is absorbed by the crystal with the creation of an electron 
and a hole. 

In the indirect absorption process in Figs. 4b and 5b the minimum 
energy gap of the band structure involves electrons and holes separated by a 
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CRYSTAL WITH DIRECT GAP CRYSTAL WITH INDIRECT GAP 

Onset of indirect 

fiwg E~ + fin E, .~ ,  
Photon energy Q o  -+ Photon energy fio -+ 

(a) (h) 

Figure 4 Optical absorption in pure insulators at absolute zero. In (a) the threshold determines 
the energy gap as E,:= nop. In (h) the optical absorption is weaker near the threshold: at 
Qo = E, + fin a photon is absorbed with the creation of three particles: a free electron, a free 
hole, and a phonon of energy ha. In (b) the energy E,,, marks the threshold for the creation of a 
free electron and a free hole, with no phonon involved. Such a transition is called vertical; it is 
similar to the direct transition in (a). These plots do not show absorption lines that sometimes are 
seen lying just to the low energy side of the threshold. Such lines are due to the creation of a 
hound electron-hole pair, called an exciton. 

Conduhon 
band edge band edge 

/Valence band edge Valence hand edge 

Figure 5 In (a) the lowest point of the conduction hand occurs at the same value of k as the highest 
point of the valence band. A direct optical transition is drawn vertically with no significant change of 
k, because the absorbed photon has a very small wavevector. The threshold frequency og for absorp- 
tion by the direct transition determines the energy gap E,  = fiw,. The indirect transition in (h) in- 
volves both aphoton and aphonon because the hand edges of the conduction and valence bands are 
widely separated in k space. The threshold energy for the indirect process in (h) is greater than the 
true band gap. The absorption threshold for the indirect transition between the hand edges is at 
fiw = E, + fin, where n is the frequency of an emitted phonon of wavevector K - -kc At higher 
temperatures phonons are already present; if a phonon is absorbed along with a photon, the thresh- 
old energy is fiw = Eg - fin. Note: The figure shows only the threshold transitions. Transitions occur 
generally between almost all points of the two hands for which the wavevectors and energy can he 
conserved. 



Table 1 Energy gap between the valence and conduction bands 

(i = indirect gap; d = direct gap) 

E, eV 
- -  - - 

E,, eV 
- - - 

Crystal Gap 0 K 300 K C~ystal Gap 0 K 300 K 

Diamond i j .4 
Si i 1.17 1.11 
Ge i 0.744 0.66 
aSn d 0.00 0.00 
InSb d 0.23 0.17 
1114s d 0.43 0.36 
InP d 1.42 1.27 
Gap i 2.32 2.25 
GaAs d 1.52 1.43 
GaSb d 0.81 0.68 
AlSb i 1.65 1.6 

SiC(11rx) i 3.0 
Tc d 0.33 
HgTea d 0 . 3 0  
PbS d 0.286 
PbSe i 0.165 
PhTr i 0.190 
CdS d 2.582 
CdSe d 1.840 
C dTe d 1.607 
SnTe d 0.3 
Co2O d 2.172 

'HgTe is a semimetal: the bands overlap 

substantial wavevector kc. Here a direct photon transition at the energy of the 
minimum gap cannot satisfy the requirement of conservation of wavevector, 
because photon wavevectors are negligible at the energy range of interest. But 
if a phonon of wa\~evector K and frequency Cl is created in the process, then 
we can have 

as required hy the conservation laws. The phonon energy fin will generally he 
much less than E,: a phonon even of high wavevector is an easily accessible 
source of crystal momentum because the phonon energes are characteristi- 
cally small (-0.01 to 0.03 eV) in comparison with the energy gap. If the tem- 
perature is high ellough that the necessary p l ~ o ~ ~ o ~ l  is already tl~errr~ally excited 
in the crystal, it is possible also to have a photon absorption process in which 
thc phonon is absorbcd. 

The band gap may also he dediiced from the temperatnre dependence 
of the conductivity or of the carrier concentration in the intrinsic range. The 
carrier concentration is obtained from measurements of the Hall voltage 
(Chapter 6), sometimes supplemented by conductivity measurements. Optical 
~neasurements determine whether the gap is direct or indirect. The band 
edges in Ge and in Si are connected by indirect transitions; the band edges in 
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in aSn is 
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Figure 6 Optical absorption in pure indium antimonide, InSb. The transition is direct because 
both ronrlnction and valencc band edges are at the center of the Brilloilin zone, k = 0. Noticc the 
sharp threshold. (After 6. W Coheli and H. Y. Fan.) 

direct and is exactly zero; HgTe and IIgSe are semi~netals and have negative 
gaps-the conduction and valence bands overlap. 

EQUATIONS OF MOTION 

We derive the equation of motion of an electron in an energy band. We 
look at the  notion of a wave packet in an applied electric field. Suppose that 
the wave packet is made up of wavefunctions assembled near a particular 
wavevector k. The group velocity by definition is cr = d d d k .  The frequency as- 
sociated with a wavefiinction of energy E by quantum theoly is o = dii, and so 

The eflects of the crystal on the electron rnotion are contained in the disper- 
sion relation ~ ( k ) .  



The work S E  done on the electron by the electric field E in the time 
interval 6t is 

S E  = -eEvg 6t . 

We observe that 

S E  = (de/dk)Sk = fivg 6k , 

using (1). On comparing (2) with (3 )  we have 

whence fidkldt = -eE.  
We may write (4) in terms of the external force F as 

This is an important relation: in a crystal fidkldt is equal to the external force 
on the electron. In free space d(mv)/dt is equal to the force. We have not over- 
thrown Newton's second law of motion: the electron in the crystal is subject to 
forces from the crystal lattice as well as from external sources. 

The force term in ( 5 )  also includes the electric field and the Lorentz force 
on an electron in a magnetic field, under ordinary conditions where the mag- 
netic field is not so strong that it breaks down the band structure. Thus the 
equation of motion of an electron of group velocity v in a constant magnetic 
field B is 

dk 
(CGS) fi- = -sv x B ; 

dt 

where the right-hand side of each equation is the Lorentz force on the electron. 
With the group velocity v = C1gradp, the rate of change of the wavevector is 

dk e 
(CGS) - = -- Vkc X B ; 

dt fizc 

where now both sides of the equation refer to the coordinates in k space. 
We see from the vector cross-product in (7) that in a magnetic field 

an electron moves in k space in a direction normal to the direction of the gra- 
dient of the energy E ,  so that the electron moves on a surface of constant 
energy. The value of the projection kB of k on B is constant during the 
motion. The motion in k space is on a plane normal to the direction of B, and 
the orbit is defined by the intersection of this plane with a surface of constant 
energy. 
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Physical Deriuation of hk = F 

\'t! cons~der the Bloch eigenfunction $k belonging to thc cncrg): cigcn- 
value ek and wavevector k: 

The expectation valuc of the momentum of an electron in the Bloch state k is 

using Z IC(k + 6 )  j2 = 1. 
We examine the transfer of momentum between the electron and the lat- 

tice when the state k of the electron is changed to k + Ak by the application 
of an external force. We imagine an insulating crystal electrostatically neutral 
except for a single electron in the state k or an othemise empty band. 

We suppose that a wreak external force is applied for a time interval such 
that the total impulsc givcn to the entire crystal system is J = SF dt. If the 
cond~lction electron were free (mh = m), the total momentum imparted to 
the crystal system by the impulse would appear in the change of momentum of 
the conduction electron: 

The neutral cqystal suffers no net interaction with the electric field, either 
directly or indirectly through the free electron. 

If the conduction electron interacts with thc pcriodic potential of the crys- 
tal lattice, wc must have 

From the result (9) for pel we have 

Ap,, = fi,Ak + hG[(VkIC(k + G)I2) . Ak] . 
G 

(12) 

The change Apl,, in the lattice ~rlornentunr resulting from the change of 
state of the electron may be derived by an elementary physical consideration. 
An electron reflected by the lattice transfers momentum to thc lattice. If an 
incident electron with plane wave componcnt of momentum hk is reflected 
with momant~~m h(k + G), the lattice acquires the momentum -hG, as re- 
quired by momentum conservation. The momentum transfer to the lattice 
when the state $k goes over to $k+hk is 

Aplat = -fix G[(Vk/C(k + G)I2 . Ak] , 
G 

(13) 



because the portion 

Vk C(k + 6) 1' . Ak 

of each individual component of the initial state is reflected during the state 
change Ak. 

The total momentum change is therefore 

Apa + Ap~,t = J = fiAk , (15) 

exactly as for free electrons, Eq. (10). Thus from the definition of J,  we have 

* /d t  = F , (16) 

derived in (5) by a different method. A rigorous derivation of (16) by an en- 
tirely different method is given in Appendix E.  

Holes 

The properties of vacant orbitals in an othenvise filled band are important 
in semiconductor physics and in solid state electronics. Vacant orbitals in a 
band are commonly called holes, and without holes there would be no transis- 
tors. A hole acts in applied electric and magnetic fields as if it has a positive 
charge + e .  The reason is given in five stcps in the boxes that follow. 

1. k,,= -k, . 0 7 )  

The total wavevector of the electrons in a filled band is zero: Zk = 0, 
where the sum is over all states in a Brillouin zone. This result follows 
from the geometrical syrn~rletry of the Brillouin zone: every fundamental 
lattice type has symmetly under the inversion operation r+ -r about 
any lattice point; it follows that the Brillouin none of the latticc also has 
inversion symmetry. If the band is filled all pairs of orhitals k and -k are 
filled, and the total wavevector is zero. 

If an electron is missing from an orbital of wavevector k,, the total 
wavevector of the system is -k, and is attributed to the hole. This result 
is surprising: the electron is missing fro~ri k, and tllt: position of the hole 
is usually indicated graphically as situated at ke, as in Fig. 7. But the true 
wavevector of the hole is -k,, which is the wavevector of the point G 
if the hole is at E. The wavevector -k, cntcrs into sclcction rtilcs for 
photon absorption. 

The hole is an alternate description of a band with one missing elec- 
tron, and we either say that the hole has wavevector k ,  or that the band 
with one missing electron has total wavevector -k,. 
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Figure 7 Absorption of a photon of energy fio and negligible wavevector takes an electron from 
E in the filled valence band to Q in the conduction band. If k, was the wavevector of the electron 
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band 
after the absorption is -+, and this is the wavevector we must ascribe to the hole if we describe 
the valence band as occupied by one hole. Thus kh = -k,; the wavevector of the hole is the same 
as the wavevector of the electron which remains at 6. For the entire system the total wavevector 
after the absorption of the photon is k, + = 0, so that the total wavevector is unchanged by the 
absorption of the photon and the creation of a free electron and free hole. 

2 .  = - ~ , ( k , )  . (18) 

Here the zero of energy of the valence band is at the top of the band. 
The lower in the band the missing electron lies, the higher the energy of 
the system. The energy of the hole is opposite in sign to the energy of 
the missing electron, because it takes more work to remove an electron 
from a low orbital than from a high orbital. Thus if the band is symmet- 
ric,' e,(k,) = € @ ( - k g )  = - e h ( - k ) =  -ch(kh). We construct in Fig. 8 a 
band scheme to represent the properties of a hole. This hole band is a 
helpful representation because it appears right side up. 

3. vh = v, . (19) 

The velocity of the hole is equal to the velocity of the missing electron. 
From Fig. 8 we see that Veh(kh) = Ve,(ke), SO that vh(kh) = v,(k,). 

'Bands are always symmetric under the inversion k + -k if the spin-orbit interaction is 
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure 
permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the 
bands are symmetric if we compare subbands for which the spin direction is reversed. ~ ( k ,  T) = 

E(-k ,  J). See QTS, Chapter 9. 



Hole band constructed 

k 

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole, 
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole 
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va- 
lence band. We do not show the disposition of the electron removed from the valence band at k,. 

4. rnh = -me . (20)  

We show below that the effective mass is inversely proportional to the 
curvature d2e/dk2, and for the hole band this has the opposite sign to that 
for an electron in the valence band. Near the top of the valence band m, 
is negative, so that mh is positive. 

mc, 1  
5.  f i - = e ( E + ? v h X B )  dt . (21)  

This comes from the equation of motion 

(CGS) 
mc, f i-  = - 1 
dt 

e(E X B )  (22)  

that applies to the missing electron when we substitute -kh for k, and vh 
for v,. The equation of motion for a hole is that of a particle of 
positive charge e. The positive charge is consistent with the electric 
current carried by the valence band of Fig. 9: the current is carried by 
the unpaired electron in the orbital 6: 

j = ( - e )v (G)  = ( - e ) [ - v ( E ) ]  = ev(E)  , (23)  

which is just the current of a positive charge moving with the velocity as- 
cribed to the missing electron at E. The current is shown in Fig. 10. 
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Figure 9 (a) At t = 0 all states are filled except F at the top of the band; the velocity o, is zero at F 
because deldk, = 0. (b) An electric field E, is applied in the +x direction. The force on the elec- 
trons is in the -k, direction and all electrons make transitions together in the -k, direction, mov- 
ing the hole to the state E. (c) After a further interval the electrons move farther along ink space 
and the hole is now at D 

Figure 10 Motion of electrons in the conduction band and 
holes in the valence hand in the electric field E. The hole 
and electron drift velocities are in opposite directions, but their 
electric currents are in the same direction, the direction of the 
electric field. 

Effective Mass 

When we look at the energy-wavevector relation E = (h2/2m)k2 for free 
electrons, we see that the coefficient of k2 determines the curvature of E versus 
k. Turned about, we can say that llm, the reciprocal mass, determines the cur- 
vature. For electrons in a band there can be regions of unusually high curva- 
ture near the band gap at the zone boundary, as we see from the solutions in 
Chapter 7 of the wave equation near the zone boundary. If the energy gap is 
small in comparison with the free electron energy A at the boundary, the cur- 
vature is enhanced by the factor MEg. 

In semiconductors the band width, which is like the free electron energy, 
is of the order of 20 eV, while the band gap is of the order of 0.2 to 2 eV. Thus 
the reciprocal mass is enhanced by a factor 10 to 100, and the effective mass is 
reduced to 0.1-0.01 of the free electron mass. These values apply near the 
band gap; as we go away from the gap the curvatures and the masses are likely 
to approach those of free electrons. 

To summarize the solutions of Chapter 7 for U positive, an electron near 
the lower edge of the second band has an energy that may be written as 

E ( K )  = E, + (h212m,)l? ; m,lm = l/[(W/U)-11 . (24) 



Here K is the wavevector measured from the zone boundary, and me denotes 
the effective mass of the electron near the edge of the second band. An elac- 
tron near the top of the first band has the energy 

The curvature and hence the mass will bc ncgativc ncar thc top of the first 
band, hut we have introduced a mimls sign into (25) in order that the symbol 
m, for the hole mass will have a positive value-see (20) above. 

The crystal does not weigh any less if the effective mass of a carrier is less 
than the free electron mass, nor is Newton's secorld law violated for the crystal 
taken us n whole, ions plus carriers. The important point is that an electron in a 
periodic potential is accelerated relative to the lattice in an applicd clcctric or 
magnetic field as if the mass of the electron were equal to an effective mass 
which we now define. 

We differentiate the result (1) for the group velocity to obtain 

hie know from (5) that dkldt = F f i ,  whence 

If we identify fi2/(d2~/dk2) as a I I ~ ~ S S ,  the11 (27) ~ S S U I I I ~ S  the for111 of Newton's 
second law. \Ve define the effective mass m* by 

It is easy to generalize this to take account of an anisotropic clcctron cn- 
ergy surface, as for electrons in Si or Ge. Me introduce the components of the 
reciprocal effective mass tensor 

where p,  v are Cartesian coordinates. 

Physical Interpretation ofthe Effectke Mass 

How can an clrctron of mass m whcn put into a clystal respond to applicd 
fields as if the mass were m*'? It is helpfill to think of the process of Bragg re- 
flection of electron waves in a lattice. Consider the weak interaction approxi- 
mation treated in Chapter 7. Near the bottom of the lower band the orbital is 
represented quite adequately by a plar~e wave exp(ikx) with rrionielitn~ri hk; 
the wave component exp[i(k - G)r] with mome~ltum h(k-G) is sulall and 
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Beam 

v 

Figure 11 Explanation of negative effective masses which occur near, but below, a Brillouin zone 
boundary. In (a) the energy of the electron beam incident on a thin crystal is slightly too low to sat- 
isfy the condition for Bragg reflection and the beam is transmitted through the crystal. The appli- 
cation of a small voltage across the grid may, as in (b), cause the Bragg condition to be satisfied, 
and the electron beam will then he reflected from the appropriate set of crystal planes. 

increases only slowly as k is increased, and in this regon m* = m. An increase 
in the reflected component exp[i(k - G)x] as k is increased represents mo- 
mentum transfer to the electron from the lattice. 

Near the boundary the reflected component is quite large; at the bound- 
ary it becomes equal in amplitude to the forward component, at which point 
the eigenfunctions are standing waves, rather than running waves. Here the 
momentum component h(- k G )  cancels the momentum component fi($ G). 

A single electron in an energy band may have positive or negative effective 
mass: the states of positive effective mass occur near the bottom of a band be- 
cause positive effective mass means that the band has upward curvature 
(d2eldk2 is positive). States of negative effective mass occur near the top of the 
band. A negative effective mass means that on going from state k to state 
k + Ak, the momentum transfer to the lattice from the electron is larger than 
the momentum transfer from the applied force to the electron. Although k is 
increased by Ak by the applied electric field, the approach to Bragg reflection 
can gve  an overall decrease in the forward momentum of the electron; when 
this happens the effective mass is negative (Fig. 11). 

As we proceed in the second band away from the boundary, the amplitude 
of exp[i(k - G)x] decreases rapidly and m* assumes a small positive value. 
Here the increase in electron velocity resulting from a given external impulse 
is larger than that which a free electron would experience. The lattice makes 
up the difference through the reduced recoil it experiences when the ampli- 
tude of exp[i(k - G)x] is diminished. 

If the energy in a band depends only slightly on k, then the effective mass 
will be very large. That is, m*lm %- 1 when d2eldk2 is very small. The tight- 
binding approximation discussed in Chapter 9 gives quick insight into the for- 
mation of narrow bands. If the wavefunctions centered on neighboring atoms 
overlap very little, then the overlap integral is small; the width of the band 



narrow, and the effective mass large. The overlap of wavefunctions centered 
on neighboring atoms is small for the inner or core electrons. The 4f electrons 
of the rare earth metals, for example, overlap very little. 

EfJkctive Masses in Semiconductors 

In many semiconductors it has been possible to determine by cyclotron 
resonance the effective masses of carriers in the conduction and valence bands 
near the band edges. The determination of the energy surface is equivalent to 
a determination of the effective mass tensor (29). Cyclotron resonance in a 
semiconductor is carried out with centimeter wave or millimeter wave radia- 
tion at low carrier concentration. 

The current carriers are accelerated in helical orbits about the axis of a 
static magnetic field. The angular rotation frequency w, is 

eB (CGS) w = - m*c ' 

where m* is the appropriate cyclotron effective mass. Resonant absorption of 
energy from an rf electric field perpendicular to the static magnetic field 
(Fig. 12) occurs when the rf frequency is equal to the cyclotron frequency. 
Holes and electrons rotate in opposite senses in a magnetic field. 

We consider the experiment for m*/m = 0.1. At f, = 24 GHz, or w, = 

1.5 X 10" s-', we have B = 860 G at resonance. The line width is determined 
by the collision relaxation time T ,  and to obtain a distinctive resonance it is 
necessary that wcr 3 1. The mean free path must be long enough to permit the 
average carrier to get one radian around a circle between collisions. The re- 
quirements are met with the use of higher frequency radiation and higher 
magnetic fields, with high purity crystals in liquid helium. 

In direct-gap semiconductors with band edges at the center of the Bril- 
louin zone, the bands have the structure shown in Fig. 13. The conduction 
band edge is spherical with the effective mass mo: 

,,. , , , . . . , . . . . . . . . . .  
' 8 

. . 

A8 (shtiel 

- 
Figure 12 Arrangcmcnt of fields in Ef 

a cvclotron rrso~~ancr rxprrllrtrr!t 111  

a sr~~~icor~ductor. Tl~r srl!,t. oS the 
circulation is opposite for electrons 
and holes. 
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~ ~ l i t . ~ f f h ~ l ~ ~  Figure 13 Simplified view of the 
band edge structure of a direct-gap 

I semiconductor. 

Table 2 Effective masses of electrons and holes in direct-gap semiconductors 

Electron Heavy hole Light hole Split-off hole Spin-orhit 
Crystal m..Jm A. eV 

InSb 0.015 0.39 0.021 (0.11) 0.83 
InAs 0.026 0.41 0.025 0.08 0.43 
InP 0.073 0.4 (0.078) (0.15) 0.11 
GaSb 0.047 0.3 0.06 (0.14) 0.80 
GaAb 0.066 0.5 0.082 0.17 0.34 
Cu,O 0.99 - 0.58 0.69 0.13 

refcrred to the valence hand edge. The valence bands are characteristically 
threefold near the edge, with the heavy hole hh and light hole lh bands degen- 
erate at the center, and a band soh split off by the spin-orbit splitting A: 

Values of the mass parameters are given in Table 2. The forms (32)  are only 
approximate, because even close to k = O the heavy and light hole hands are 
not spherical-see the discussion below for Ge and Si. 

The perturbation theory of band edgcs (Problem 9.8) suggests that the 
electron effective mass should be proportional to the band gap, approximately, 



for a direct gap crystal. We use Tables 1 and 2 to find the fairly constant values 
mJ(mEg) = 0.063, 0.060, and 0.051 in (eV)-' for the series InSb, InAs, and 
In!?, in agreement with this suggestion. 

Silicon and Germanium 

The conduction amd valer~ce bands of ger~rlaniunl are shown in Fig. 14, 
based on a combination of theoretical and experime~ital results. The valence 
band edge in both Si and Ge is at k = 0 and is derivcd from p,, and pllz states 
of the frce atoms, as is clear from the tight-hinding approximation (Chapter 9)  
to the wa\~efiinctions. 

The p, level is fourfold degenerate as in the atom; the four states corre- 
spond to m, values & and & $. The p , ,  level is doubly degenerate, with 
mJ = ? i. The p31z states are higher in energy tllan tlie p , ,  states; the energy 
difference A is a measure of the spin-orbit interaction. 

The valence band edges are not simple. Holes ncar thc band edge are 
characterized by two cffrctivc masses, light and heavy These arise from the 
two hands formed from the p, ,  level of the atom. There is also a band formed 
from the p , ,  level, split off from the p,,, level by the spin-orbit interaction. 
The energy surfaces are not spherical, but warped (QTS, p. 271): 

~ ( k )  = ~k~ % [FI2k4 + C2(k:k; + k$: + kfki)J112 (33) 

The choice of sign distiriguishes the two Inasses. The split-off band has 
~ ( k )  = - A  + Ak2. The experiments give, in units h2/29ra, 

Si: A = -4.29 ; IBI = 0.68 ; ICI = 4.87 ; A = 0.044 eV 
Ge: A = -13.38 ; IBI = 8.48 ; ICI = 13.15 ; A = 0.29eV 

Roughly, the light and heavy holes in germanium have masses 0.043 m and 
0.34 m; in silicon 0.16 nL and 0.52 in; in diamond 0.7 rn and 2.12 rn. 

The conduction band edges in Ge are at the equivalent points L of the 
Brillouin zone, Fig. 15a. Each band edge has a spheroidal energy surfacc ori- 
ented along a (111) crystal axis, with a longitudinal mass ml = 1.59 nl and a 
transverse mass m, = 0.082 m. For a static magnetic field at an angle 0 with 
the longitudinal axis of a spheroid, the effective cyclotron mass m, is 

Results for Ce are shown in Fig. 16. 
111 silicor~ the conduction band edges are spheroids oriented along the 

equivalent (100) directions in the Brillouin zone, with mass parameters 
ml = 0.92 m and m, = 0.19 m, as in Fig. 17a. The hand edges lie along the lines 
laheled A in the zone of Fig. 15a, a little way in from the boundary points X. 

In GaAs we have A = -6.98, B = -4.5, ICI = 6.2, A = 0.341 eV. The 
band structure is shown in Fig. 1%. It has a mrect band gap with an isotropic 
conduction electron mass of 0.067 in. 



Figure 14 Calculated band structure of germanium, after C. Y. Fong. The general features are in 
good agreement with experiment. The four valence bands are shown in gray The fine structure of 
the valence band edge is caused by spin-orbit splitting. The energy gap is indirect; the conduction 
band edge is at the point (2.rr/a)(: i). The constant energy surfaces around this point are ellipsoidal. 



Figure 15 Sta~~dard labels of the symmetry points and awes of the Rrillouin zones of the fcc and 
hcc lattices. The zone centers are T. In (a) the boundary point at (2m/a)(100) is X; the houndary 
point at (2w/a)(; i f)  is L; the line 4 runs between I' and X. In (b) the corresponding sy~ribals are 
H, P, and A. 

Figure 16 Effective cyclotron mass of electrons in germa- 
nium at 4 K for magnetic field directions in a (110) planc. 
Thcrc are four independent m a s  spheroids in Ge, one 
along each [ I l l ]  axis, but viewed in the (110) plane hvo 
spheroids always appear equivalent. (After Drcssclhaus, 
Kip, and Kittel.) .4ngle in degrees in (110) plane from [001] axis 
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(a) 

Figure 17a Constant energy ellipsoids for 
electrons in silicon, drawn for mllm, = 5. 
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(b) 
Figure 17b Band structure of GaAs, after S. 6. Louie. 

INTRINSIC CARRIER CONCENTRATION 

We want the concentration of intrinsic carriers as a function of tempera- 
ture, in terms of the band gap. We do the calculation for simple parabolic band 
edges. We first calculate in terms of the chemical potential p the number of 
electrons excited to the conduction band at temperature T .  In semiconductor 
physics p is called the Fermi level. At the temperatures of interest we may 
suppose for the conduction band of a semiconductor that E - jt k,T, so that 
the Fermi-Dirac distribution function reduces to 

This is the probability that a conduction electron orbital is occupied, in an 
approximation valid when f, < 1. 

The energy of an electron in the conduction band is 

where E,  is the energy at the conduction band edge, as in Fig. 18. Here 
me is the effective mass of an electron. Thus from (6.20) the density of states 
at E is 



The concentration of electrons in the conduction band is 

whicl~ integrates to give 

The probleln is solved for when y  is known. It is useful to calculate the 
equilibrium concentration of holes p. The distribution functionfi, for lloles is 
rclatcd to the electron distribution functionf, byfh = 1 -f,, because a hole is 
the absence of an electron. Iic: have 

provided (y  - E )  % k,T. 
If the holes near the top of the valence band behave as particles with 

effcctivc mass mh, the density of hole states is given by 

where E, is the energy at the valence band edge. Proceeding as in (38) we obtain 

for the concentration p of holes in the valence band. 
Wc multiply together the expressions for n and p to obtain the equilibrium 

relation, with the energy gap E,  = E ,  - E, as in Fig. 18, 

This useful result does not involve the Ferrrii level p. At 300 K the value of rrp 
is 2.10 X 10'%m-" 2.89 x 10'%m-" and 6.53 X 10'\1n-" for the actual 
band structures or Si, Ge, and GaAs, respectively. 

Lic haw nowhcre assumed in the derivation that the material is intrinsic: 
the result holds for impnrity ionization as well. The only asslimption made is 
that the distance of the Fermi level from the edge of both bands is large in 
comparison with kBT. 

A simple kinetic argument shows why the product n p  is constant at a given 
te~nperature. Suppose that the equilibrium population of electrons and lloles 
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Figure 18 Energy scale for statistical calcula- 
tions. The Fermi distribution function is shown 
on the same scale, for a temperature kgT < Eg. 
The Fermi level p is taken to lie well within the 
band gap, as for an intrinsic semiconductor. If 
E = p, then f = i. 

is maintained by black-body photon radiation at temperature T.  The photons 
generate electron-hole pairs at a rate A(T) ,  while B(T)np is the rate of the re- 
combination reaction e + h = photon. Then 

dnldt = A(T) - B(T)np = dpldt . (44)  

In equilibrium dnldt = 0, dpldt = 0, whence np = A(T)IB(T). 
Because the product of the electron and hole concentrations is a constant 

independent of impurity concentration at a given temperature, the introduction 
of a small proportion of a suitable impurity to increase n, say, must decrease p. 
This result is important in practice-we can reduce the total canier concentra- 
tion n + p in an impure crystal, sometimes enormously, by the controlled intro- 
duction of suitable impurities. Such a reduction is  called compensation. 

In an intrinsic semiconductor the number of electrons is equal to the 
number of holes, because the thermal excitation of an electron leaves behind a 
hole in the valence band. Thus from (43)  we have, letting the subscript i de- 
note intrinsic and E,  = E, - E,, 

The intrinsic carrier concentration depends exponentially on Ep12kBT, 
where Eg is the energy gap. We set (39) equal to (42)  to obtain, for the Fermi 
level as measured from the top of the valence band, 



If m,, = m,, then p = Eg and the Fermi level is in the middle of the forbid- 
den gap. 

Intrinsic Mobility 

The mobility is the magnitude of the drift velocity of a charge carrier per 
unit electric field: 

p = ~ u I / E  . (48) 

The mobility is defined to he positive for both electrons and holes, although 
their drift velocities are opposite in a given field. By writing pe or p,, with 
subscripts for the electron or hole mobility we can avoid any confusion be- 
tween p as the chemical potential and a s  the mobility. 

The electrical conductivity is the sum of the electron and hole contributions: 

where n and p are the concentrations of electrons and holes. In Chapter 6 the 
drift velocity of a charge q was found to be u = q ~ E / m ,  whence 

where T is the collision time. 
The mobilities depend om temperature as a modest power law. The tem- 

perature dependence of the conductivity in the intrinsic region will be 
dominated by the exponential dependence exp(-Epk,T) of the carrier con- 
centration, Eq. (45). 

Table 3 gives experimental values of the mobility at room temperature. 
The mobility in SI units is expressed in m2N-s and is lo-' of the mobility in 
practical units. For most substances the values quoted are limited by the scat- 
tering of carriers by thermal phonons. The hole mohilities typically are smaller 
than the electron mobilities because of the occurrence of band degeneracy at 
the valence band edge at the zone center, thereby making possible interband 
scattering processes that reduce the mobility considerably. 

Table 3 Carrier mobilities at room temperature, in cm2N-s 

Crystal Electrons Hohs Crystal Electrons Holm 

Diamond 
Si 
Ge 
InSb 
InAs 
InP 
A1 As 
AlSb 

GaAs 
GaSb 
PbS 
PhSe 
PbTe 
AgCl 
KBr (100 K) 
SIC 
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In some crystals, particularly in ionic crystals, the holes are essentially 
immobile and get about only by thermally-activated hopping from ion to ion. 
The principal cause of this "self-trapping" is the lattice distortion associated 
with the Jahn-Teller cf'fect of degenerate states. The orbital degeneracy neces- 
sary for self-trapping is much more frequent for holcs than for electrons. 

There is a tendency for crystals with small cncrgy gaps at direct barid edges 
to havc high values of the electron mobility. Small gaps lead to small effcctive 
masses, which favor high mobilities. The highest mobility observed in a bulk 
semiconductor is 5 X lo6 cm2117-s in PbTe at 4 K, where the gap is 0.19 eV. 

IMPURITY CONDUCTIVITY 

Certain impurities and imperfections drastically affect the rlectrical prop- 
erties of a se~niconductor. The addition of boron to silicon in the proportion of 
1 boron atom to lo5 silicon atoms increases the conductivity of pure silicorl at 
room temperature by a factor of 10'. I11 a componnd semiconductor a stoichio- 
~netric deficiency of one constituent will act as an impurity; such semiconduc- 
tors are known as deficit semiconductors. The deliberate additioil of impuri- 
ties to a semiconductor is called doping. 

We consider the affect of impurities in silicon and germanium. These ele- 
ments crystallize in the diamond structure. Eacli atom lorms f'oiir covalent 
bonds, one with each of its nearest neighbors, corresponding to the chemical 
valence four. II an impurity atom of valence five, such as phosphorus, arsenic, 
or antimony, is slibstituted in the lattice in place of a normal atom, there will 
be one valcnce electron from the impurity atom left over after the four cova- 
lent bonds are establislied with the ncarest neighbors, that is, after the impii- 
rity atom has been acco~nmodated in the structure wit11 as little disturbance as 
possible. Impurity atoms that can give up an electron are called donors. 

Donor States. The structure in Fig. 19 has a positive charge on the impurity 
atom (which has lost one electron). Lattice constant studies have verified that 
the pentavalent impurities enter the lattice by substitution for normal atorns, 
and not in interstitial positions. The crystal as a wholc remains neutral because 
the electron remains in the crystal. 

The extra electron moves in the coulomb potential e / ~ r  of the impurity 
ion, where E in a co\~alent crystal is the static dielectric constant of the 
medium. The factor l / e  takes account of the reduction in the coulomb force 
between charges caused by thc electronic polarization of the mcdi~im. This 
treatment is valid for orbits large in compariso~l with the distance between 
atoms, a id  for slow motions of the electron such that thc orbital frequency is 
low in comparison with the frequency wg corrcsponding to the energy gap. 
These conditions are satisfied quite well in Ge and Si by the donor electron of 
P, As, or Sb. 



Figure 19 Charges associated with an arsenic ~mpurity atom in silicon. Arsenic has five valence 
electrons, but silicon has only four valence electrons. Thus four electrons on the arsenic form tetra- 
hedral covalent bonds similar to silicon, and the fifth electron is available for conduction. The 
arsenic atom is called a donor because when ionized it donates an electron to the conduction band. 

We estimate the ionization energy of the donor impurity. The Bohr theory 
of the hydrogen atom may be modified to take into account the dielectric 
constant of the medium and the effective mass of an electron in the periodic 
potential of the crystal. The ionization energy of atomic hydrogen is -e4m/2fi2 
in CGS and -e4m/2(4wc0fi)' in SI. 

In the semiconductor with dielectric constant E we replace e2 by e% and 
m by the effective mass me to obtain 

e4% - (13.6 
m e )  ev ; 

(CGS) Ed =-- -- 
2c2A2 € 2  

as the donor ionization energy of the semiconductor. 
The Bohr radius of the ground state of hydrogen is ti2/me2 in CGS or 

4wc0A2/me2 in SI. Thus the Bohr radius of the donor is 

€ti2 - ( 0 . 5 3 ~ )  ; (CGS) ad = -- - - 
m,e2 m$m 

The application of impurity state theory to germanium and silicon is com- 
plicated by the anisotropic effective mass of the conduction electrons. But the 
dielectric constant has the more important effect on the donor energy because 
it enters as the square, whereas the effective mass enters only as the first power. 

To obtain a general impression of the impurity levels we use me = 0.1 m 
for electrons in germanium and m, = 0.2 m in silicon. The static dielectric 
constant is given in Table 4.  The ionization energy of the free hydrogen atom is 
13.6 eV. For germanium the donor ionization energy Ed on our model is 5 meV, 
reduced with respect to hydrogen by the factor m$me2 = 4 x The 
corresponding result for silicon is 20 meV. Calculations using the correct 
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Table 4 Static relative dielectric constant of semiconductors 

Crystal Crystal E 

Diamond 
Si 
c:c 
I11SI-r 

InAs 
InP 

GaS b 
GaAs 
AlAs 
AlSb 
S i c  
c u , o  

Table 5 Donor ionization energies Ed of pentavalent 
impurities in germanium and silicon, in meV 

anisotropic niass tensor predict 9.05 meV for germanium and 29.8 meV for 
silico~i. Observed values of donor ionizatioli energics in Si and Ge are given in 
Table 5. In GaAs donors have Ed = 6 meV. 

The radius of the first Bohr orbit is increased by em/rr~, over the value 
0.53 A For the free hydrogen atom. Thc corresponding radius is (160)(0.53) = 

80 in germanium and (60)(0.,53) = 30 A in silicon. These arc large radii, so 
that donor orbits overlap at relatively low donor concentrations, compared to 
the number of host atoms. With appreciable orbit overlap, an "impurity band" 
is formed from the donor states: see the discussion of the metal-insulator tran- 
sition in Chaptcr 14. 

The semiconductor can conduct in the impurity band by electrons hop- 
pi~lg from donor to donor. The process of impurity band conduction sets in at 
lowcr donor concentratiori levels if there are also some acceptor atoms pre- 
sent, so that some of the donors are always ionized. It is easier for a donor 
electron to hop to an ionized (unoccupied) donor than to an occupied donor 
atom, in order that two electrons will not have to occnpy the same site during 
charge transport. 

Acceptor States. A hole may be bound to a trivalent impurity in germanium 
or silicon (Fig. 20), just as an electron is hound to a pentavalent impurity. 
Trivalent impurities such as B, Al, Ga, and In are called acceptors because 
they accept electrons from thc valence band i11 order to complete the covalent 
bonds with neighbor atoms, leaving holes in the band. 



Figure 20 Boron has only three valence electrons; it can complete its tetrahedral bonds only by 
taking an electron from a Si-Si bond, leaving behind a hole in the silicon valence band. The positive 
hole is then available for conduction. The boron atom is called an acceptor because when ionized 
it accepts an electron from the valence band. At 0 K the hole is hound. 

Table 6 Acceptor ionization energies E ,  of trivalent 
impurities in germanium and silicon, in meV 

When an acceptor is ionized a hole is freed, which requires an input 
of energy. On the usual energy band diagram, an electron rises when it gains 
energy, whereas a hole sinks in gaining energy. 

Experimental ionization energies of acceptors in germanium and silicon 
are given in Table 6. The Bohr model applies qualitatively for holes just as for 
electrons, but the degeneracy at the top of the valence band complicates the 
effective mass problem. 

The tables show that donor and acceptor ionization energies in Si are com- 
parable with k,T at room temperature (26 meV), so that the thermal ionization 
of donors and acceptors is important in the electrical conductivity of silicon at 
room temperature. If donor atoms are present in considerably greater num- 
bers than acceptors, the thermal ionization of donors will release electrons 
into the conduction band. The conductivity of the specimen then will be con- 
trolled by electrons (negative charges), and the material is said to be n type. 

If acceptors are dominant, holes will be released into the valence band 
and the conductivity will be controlled by holes (positive charges): the mater- 
ial is p type. The sign of the Hall voltage (6.53) is a rough test for n or p type. 
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A-type annealed 

1000/T 

Figure 21 Temperature dependence of the free carrier concentration in ultrapure Ge, after 
R. N .  Hall. The net cuncentration of electrically active irnpuritics is 2 X 10" ~ r n - ~ ,  as determined 
by Hall coefficient measurements. The rapid onset of intrinsic excitation as tlic temperature is in- 
creasrd is evident at low values of 1/T. The carrier corrccntration is closely constant between 20 K 
and 200 K. 

Another handy laboratory test is the sign of the thermoelectric potential, dis- 
cussed below. 

The numbers of holes and electrons arc equal in the intrinsic regime. The 
intrinsic electron concentration ni at 300 K is 1.7 X loi3 cm-3 in germanium 
and 4.6 X 10' cm-3 in silicon. Thc electrical resistivity of intrinsic material is 
43 ohm-cm for germanium and 2.6 X 10' ohm-crn for silicon. 

Germanium has 4.42 x 10" atoms per cm! The pi~rification of Ge has 
been carried further than any other element. The concentration of the 
comIrlon electrically active impurities-the shallow donor and acceptor 
impurities-has been reduced below 1 impurity atom in 10" Ge atoms 
(Fig. 21). For example, the concentration of I' in Ge can be reduced below 
4 X 10'' cm-! There are irnpuritics (H, 0; Si, C) whose conccntrations in Ge 
cannot usually be reduced below 10"- loL4 ~ r n - ~  , but these do not affect elec- 
trical measure~nents and therefore may be hard to detect. 

Thermal Ionization of Donors and Acceptors 

The calcl~lation of the equilibrium concentration of conduction electrons 
from ionized donors is identical with thc standard calculatio~l in statistical me- 
chanics of the thermal ionization of hydrogen atoms (TP, p. 369). If there are 
no acceptors present, the result in the low temperature limit kBT 4 Ed is 



Electron concentration, cm-3 

Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron 
co~ice~~tration n for a semicondnctor at a temperature such that np = l V U  c m P  The conductivity 
is symmetrical about n = 10'" cm-! For n > lO"', the specimen is n type; for n < lo"', it is p hFe. 
We have taken p, = ph, for the niobilities. 

with no = 2 ( r n J ~ , T / 2 d ~ ) ~ / ~ ;  here Nd is the concentration of donors. To obtain 
(53) we apply the laws of chemical eqililibria to the concentration ratio 
[e][@]/[Nd], and then set [ N i l  = [el = n. Identical reslllts hold for acceptors, 
under the assumption of no donor atoms. 

If the donor and acceptor concentrations are comparable, affairs are com- 
plicated and the equations are solved by numerical methods. However, the law 
of mass action (43) requires the n p  product to be constant at a given tempera- 
ture. An excess of donors will increase the electron concentration and de- 
crease the hole concentration; the sum n + p will increase. The conductivity 
will increase as n + p if the mobilities are equal, as in Fig. 22. 

THERMOELECTRIC EFFECTS 

Consider a selniconductor maintained at a constant temperature while an 
electric field drives through it an electric current density j,. If the current is 
carried only by electrons, the charge flux is 

where p, is the electron mobility. The average energy transported by an elec- 
tron is referred to the Fermi level p, 
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where E, is the energy at the conduction band cdge. R7e refer the energy to 
the Fermi level because different conductors in contact have the saIne Fermi 
level. The energy flux that acco~npanies the charge flux is 

The Peltier coefficient II is defined hy j, = IIjy; or the energy carried 
per unit charge. For electrons, 

II,= - ( ~ , - p + $ k ~ ~ ) l e  (56)  

and is negative because the energy flux is opposite to the charge flux. For 
holes 

jq = p e p ~ E  ; j ~ ,  = p ( p  - E ,  + $kBT)phE , (57) 

where E ,  is thc energy at the valence band edge. Thus 

and is positive. Equations (56)  and (58)  are the result of our simple drift veloc- 
ity t b e o ~ ~ ;  a trcatment by the Boltzn~ann transport cqliation gives minor nu- 
merical d i f k r e n c e ~ . ~  

The absolute thermoelectric power Q is defined from the open circuit 
electric field created by a temperature gradient: 

E = Q grad T . (59)  

The Peltier coefficient II is related to the thcrmoelectric power Q by 

This is thc famous Kelvin relation of irreversible thermodjmamics. A measure- 
ment of the sign of the voltage across a scrniconductor specirr~en, one end of 
which is heated, is a rough and ready uray to tell if the speci~nen is n typc or p 
type (Fig. 23). 

SEMIMETALS 

In semimetals the conduction band edge is very slightly lower in energy 
than the valence band edge. A small overlap in energy of the cor~duction and 
valence bands leads to small concentration of holes in the valence band and of 
electrons in the conduction band (Tahle 7). Three of the semimetals, arsenic, 
antimony, and bismuth, are in group V of the periodic table. 

Their atoms associate in pairs in the crystal lattice, with two ions and ten 
valence electrons per primitive cell. The even number of valence electrons 

'A si111ple discussion of Uoltzmann transport theory is given in Appendix I?.'. 



Figure 23 Peltier coclficient of 
n and p silicon as a function uf 
ternperaturc. Above 600 K the spec- 
imens act as intlirrsic scmiconduc- 
tors. The curves are ralci~lated and 
tlre points are experimentd. (After 
T H. Gehalle and G. \V, Hull.) 

Table 7 Electron and hole concentrations in semimetals 

Semimetal n,, in ern? 

Arsenic 
Antirrrony 
Bismuth 
Graphite 

could allow these elements to be insulators. Like semiconductors, the serni- 
metals may be doped with suitable impurities to vary the relative numbers of 
holes and electrons. Their concentrations may also be varied with pressure, for 
the band edge overlap varies with pressure. 

SUPERLATTICES 

Consider a multilayer crystal of alternating thin layers of different composi- 
tions. Coherent layers on a nanometer thickness scale may be deposited by 
moleciilar-beam epitaxy or metal-organic vapor deposition, thus building up a 
sriperperio&c structure on a large scale. Systems of alternate lay.ers of GaAs and 
GaAlAs have been studied to 50 periods or more, wit11 lattice spacing A of per- 
haps 5 nm (50 A). A superperiodic crystal potential arises from the sulperperiodic 
structure and acts on the conduction electrons and holes to create new (small) 
Brillouin zoncs and mini energy bands superposed on the hand structures of the 
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constitnent layers. Here we treat the motion of an electron in a superlatticc in an 
applied electric field. 

Bloch Oscillator 

Consider a collisionless electrori in a periodic lattice in one dimension, 
with motion normal to the planes of the superlattice. The equation of motion 
in a constant electric field parallel to k is fidkldt = -eE or, for motion 
across a Brillouin zone with reciprocal lattice vector G = 27r/A, we have 
fLG = fi2?r/A = eET, where T is the period of the motion. Thc Bloch 
frequency of the motion is o, = 2v/T = eEA/fi. The electron accelerates from 
k = 0 towarcl the zonc hoiinda~y; when it reaches k = ?r/A it reappears (as by 
an Unrklapp proccss) at the zone boundaly at the identical point - d A ,  using 
the argument of Chapter 2. 

\Ve consider the motion in a rnodel systcm in real space. We suppose that 
the clcctron lies in a simple energy band of width 6,: 

The velocity in k-space (momentum space) is 

v = fi-'de/tlk = (AedfL) sin kA , (62) 

and the position or  the clectron in real space, with the initial condition z = 0 
at t = 0, is given by 

z = $0 d t  = Jclk v(k)(dtldk) = (Aedfi) Jdk(-fileE) sin kA 

=(-~~leE)(coa kA - 1) = (-e,leE)(cos(-eEAtlTc) -1) . (63) 

This confirins that the Bloch oscillation frequency in real space is w, = eEAfi.  
The motion in the periodic lattice is quite different from the motion in free 
space, for which the acceleration is constant. 

Zener Tunneling 

Thus far we have considered the effect of the electrostatic potential -eEz 
(or -eEnA) on onc energy band; the potential tilts the urhole band. Higher 
bands will also he tilted similarly, creating the possibility of crossing between 
ladder levcls of different bands. The interaction hctween different band levels at 
thc same energy opens the possibility for an electron in one band at n to cross to 
another band at n'.  This field-indnced interband tunneling is an example of 
Zener breakdown, met most often at a single junction as in the Zener diode. 

SUMMARY 

The motion of a wave packet centered at wavevector k is described by 
F = f&dt, where F is the applied force. The motion in real space is ob- 
tained from the group vclocity vg = fi"Vkc(k). 



The smaller the energy gap, the smaller is the effective mass Im* ncar thc  

A crystal with one hole has one empty electron state in an otherwise filled 
bald. The properties of the hole are those of the N - 1 electrons in this 
band. 
(a) If the  electron is lnissilig from the state of wavevector k, ,  then the 
wavevector of the hole is k,, = -k,. 
(h)  The rate of change of kh In an applied ficld rcquirrs thc assignmrnt of a 
positive charge to the hole: eh = e = -e,. 
(c) If u, is the  velocity an electron would have in the state k,, then the veloc- 
ity to be  ascribed to  the hole of wavevector kh = - k, is uh = u,. 
(d)  The energy of the hole referred to  zero for a filled band is positive and is 

eh(kh)= - 4 , ) .  
(e)  The effective mass of a hole is opposite to  the effective mass of an elec- 
tron at  the  same point on thc e n e r g  hand: mh = -me. 

Problems 

1. Impurity orbits. Indium antilnonidc has Eg = 0.23 eV; rlielectric constant E = 18; 
electron cffcctivc mass 7n, = 0.015 m. (:alcnlate (a) the donor ioniratiorr enerc;  
(b) thc radius of thc ground state orbit. (c) At what miriimilnr donor corrcer~tratior~ 
will appreciable overlap effects hetween the orbits of acljacerrt impurity atorrls 
occur? This overlap tends to prodllce an in~pnrity band-a havrd of energy levels 
which permit cond~~ctivity presi~mabl~ by a hopI>ing rr~ecl~ariisrn in u r l~ id~  electroris 
iiiove froin one inipurity site to a neighboring ionized impurity site. 

2 .  Ionization of donors. Irr a particular semiconductor there are 1013 donors/cm3 
wit11 a11 iomizatio~r energy Ed of 1 meV and an effective mass 0.01 m. (a) Estimate the 
coricrrrtratio~l of curlduction electrons at 4 K. (b) What is the value of the Hall coeff- 
icelit? Assurne no acceptor atoms are present and that Eg % kgT.  

3 .  Hall effect with two carrier types. Assuming concentration n; p; relaxation times 
T,, .rjb; and masses m,, mi,, show that the Hall coefficient in the drift velocity approxi- 
mation is 

where b = p,/CLI, is the mobility ratio. In the derivation neglect terms of order B2. In 
SI we drop the c. Hint: In the presence of a longitudinal electric field, find the 
transverse electric field such that the transverse current vanishes. The algebra may 
seem tedious, but the result is worth the trouble. Use (6.64), but for two carrier 
types; neglect (w,:~)' in comparison with w,:~. 
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4 .  Cyclotron resonance for a spheroidal energy surface. Consider the energy 
surface 

whcrc m, is the transverse mass parameter and rrLl is the longitudinal mass parame- 
ter. A surface on which c(k) is constant will be a spheroid. Use the equation of mo- 
tion (6). with v = fi- lVkc. to show that w, = eBl(mlm,)'"c when the static magnetic 
field B lics in the xy plane. This result agrees with (34) when 0 = d 2 .  The rcsult is 
in CGS: to obtain SI, omit the c. 

5.  Magnetoresistance with two carrier types. Problerri 6.9 shows thal in the drift 
velocity approximation the motion of charge carriers in electric and magnetic ficlds 
does not lead to transverse magnetoresistance, The result is different with two car- 
rier types. Considcr a conductor with a concentration n of electro~is of effective 
n ~ w s  me anrl rclaxation time 7,; and a concentration p of holes of effective 
rnws 7nh and relaxation time rh. Treat the limit of \rely strong magnetic fields, w , ~  * 1. 
(a) Slrow in this limit that uyr = (n  - p)ec/B. (h) Show that the Hall field is given by, 
with Q = wc7, 

which vanishes if n = p. (c) Show that the effective conductivity in the x direction is 

If n = p, u B-'. If 71 + p ,  u saturatcs in strong fields; that is, it approaches a limit 
independent ofB as B + m. 
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Zone 3 

Copper N u ~ ~ ~ i n n r n  

Figure 1 Free electron Fermi surfaces for fcc metals with one (Cu) and three (Al) valence elec 
trons per primitive cell. The Fermi surfacc shown for copper has been deformed from a sphert 
to agree wit11 the qe r imen ta l  resnlts. The second ;.one of aluminum is nearly half-filled wit1 
electrons. (A. R. Mackintosh.) 



CHAPTER 9: FERMI SURFACES AND METALS 

Few people would define a metal as "a solid 
with a Fermi surface." This may nevertheless be 
the most meaningful definition of a metal one 
can give today; it represents a profound advance 
in the understanding of why metals behave as 
they do. The concept of the Fermi surface, as 
developed by  quantum physics, provides a pre- 
cise explanation of the main physical properh'es 
of metals. 

A. R. Mackintosh 

Thc Fermi surface is the surface of constant energy E~ in k space. The 
Fcrmi surface separates the unfilled orbitals from the filled orbitals, at 
absolute zero. The electrical properties of thc metal are determined by the 
volume and shape of the Fermi surfacc, hecaiise the current is due to changes 
in the occupancy of states near thc Fcrmi sllrface. 

The shape may be vcry intricate as viewed in the reduced zone scheme 
below and yet havc a simple interpretation when reconstructed to lie near the 
surfacc of a sphere. Lie exhibit in Fig. 1 the free electron Ferrni surfaces con- 
striicted for two metals that have the face-centered cubic crystal strtictiire: 
copper, with one valence electron, and aluminum, with three. The free elec- 
tron Fermi surfaces were developed from spheres of radi~is k, determined by 
the valence electron concentration. The wrface for copper is deformed by in- 
teraction with the lattice. How do we construct these surfaces from a sphere? 
The constructions rcquire the reduced and also the periodic zone schemes. 

Reduced Zone Scheme 

It is always possible to select the wavevector index k of any Rloch function 
to lie within the first Brilloui~i zone. The procedurc is known as mapping the 
band in the reduced zone scheme. 

If we encounter a Bloch function written as Jik.(r) = ei""ut.(r), with k' 
outside the first zone, as in Fig. 2, we may always find a suitable reciprocal lat- 
tice vector G such that k = k' + G lies within the first Brillouin zone. Then 

where uk(r) = e - iC 'r t~k , (~ ) .  Rnth e-'G'r and uw(r) are periodic in the crystal lat- 
tice, so uk(r) is also, whence 4i(r) is of the Bloch form. 

Even with free electrons it is useful to work in the reduced zone scheme, 
as in Fig. 3. Any energy tk. for k' outside the first zone is equal to an ek in the 
first zone, where k = k' + G. Thus we necd solve for the energy only in the 



Figure 2 First Brillouin zone of a square lattice of 
side a .  The wavevector k' can he carried into the first 
zone by forming k' + G. The wavevector at a point A on 
the zone boundary is carried by G to the point A' on the 
opposite b o u n d q  of the same zone. Shall we count 
both A and A' as lying in the first zone? Because they 
can be connected by a reciprocal lattice vector, we 
count them as one identical point in the zone. 

Figure 3 Energy-wavevector relation q = &'k2/2rn for 
\ free electrons as drawn in the reduced zone scheme. \ 

This construction often gives a useful idea of the over- \ 
all appearance of the hand structure of a crystal. The \\ 
branch AC if displaced by -2'7r/a gives the usual free \ 
electron c u m  for negative k, as suggested by the \ 

\ 
dashed curve. The branch A'C if displaced by 2 d a  \ 
gives the usual curve for positive k.  A crystal potential \ 

\ 
U ( x )  will introduce hand gaps at the edges of the zone A' A 

(as at A and A') and at the center of the zone (as at C ) .  
The point C when viewed in the extended zone 
scheme falls at the edges of the second zone. The 

7r -- 0 '7r overall width and gross features of the hand structure - 
a 

are often indicated properly by such free electron k -  

bands in the reduced zone scheme. I- First Bdlouin zone 

first Brillouin zone, for each band. An energy band is a single branch of the el, 

versus k surface. In the reduced zone scheme we may find different energies 
at the same value of the wavevector. Each different energy characterizes a dif- 
ferent band. Two bands are shown in Fig. 3. 

Two wavefunctions at the same k but of different energies will be inde- 
pendent of each other: the wavefunctions will be made up of different combi- 
nations of the plane wave components exp[i(k + G) . r] in the expansion of 
(7.29). Because the values of the coefficients C(k + G) will differ for the 
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different bands, we should add a symbol, say n, to the C's to serve as a band 
index: C,(k + G) .  Thus the Bloch function for a state of wavevector k in the 
band n can be written as 

Periodic Zone Scheme 

We can repeat a given Brillouin zone periodically through all of wavevec- 
tor space. To repeat a zone, we translate the zone by a reciprocal lattice vector. 
If we can translate a band from other zones into the first zone, we can translate 
a band in the first zone into every other zone. In this scheme the energy ek of a 
band is a periodic function in the reciprocal lattice: 

Here E ~ + ~  is understood to refer to the same energy band as EL. 

0 k- 
Figure 4 Three energy bands of a linear lattice   lotted in (a)  the extended (Brillonin), 
(b) reduced, and (c) periodic zone schemes. 



The result of this construction is known as the periodic zone scheme. 
The periodic property of thr energy also can be seen easily from the central 
equation (7.27).  

Consider for example an energy band of a simple cubic lattice as calcu- 
lated in the tight-binding approximation in (13) below: 

~k = -a - 2 y  (COS kxa + cos k,a + cos k,a) , (3) 

where a and y are constants. One reciprocal lattice vector of the sc lattice is 
G = ( 2 ~ r l a ) i ;  if we add this vector to k the only change in ( 3 )  is 

cos kp -+ cos (k ,  + 2.rrla)a = cos (k,a + 27r) , 

but this is identically equal to cos k,a. The energy is unchanged when the 
wavevector is increased by a reciprocal lattice vector, so that the energy is a 
periodic function of the wavevector. 

Thrce different zone schemes are useful (Fig. 4): 

The extended zone scheme in which different bands are drawn in differ- 
ent zones in wavevector space. 
The reduced zone scheme in which all bands are drawn in the first 
Brillouin zone. 
The periodic zone scheme in which every hand is drawn in every zone. 

CONSTRUCTION OF FERMI SURFACES 

We consider in Fig. 5 the analysis for a square lattice. The equation of the 
zone boundaries is 2k.G + G~ = 0 and is satisfied if k terminates on the plane 
normal to G at thc midpoint of G. The first Brillouin zone of the square lattice 
is the area enclosed by the perpendicular bisectors of GI and of the three reci- 
procal lattice vectors equivalent by symmetry to G ,  in Fig. 5a. These four reci- 
procal lattice vectors are 2(2?r/a)& and ?(2 .da )$ .  

The second zone is constructed from G2 and the three vectors equivalent 
to it by syrn~netry, and similarly for the third zone. The pieces of the second 
and third zones are drawn in Fig. 5b. 

To determine the boundaries of some zones we have to co~lsider sets of 
several nonequivalent reciprocal lattice vectors. Thus the boundaries of sec- 
tion 3, of the third zone are formed from the perpendicular hisectors of three 
G's, namely (27r /a)k;  ( 4 d a ) k ;  and (27r/a)(& + 4). 

The free electron Fermi surface for an arbitrary electron concentration is 
shown in Fig. 6. It is inconvenient to have sections of the Fermi surface that 
belong to the same zone appear detached from one another. The detachment 
can be repaired by a transformation to the reduced zone scheme. 

We take the triangle labeled 2, and move it by a reciprocal lattice vector 
G = -(2?r/a)& such that the triangle reappears in the area of the first 
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Figure 5 (a) Construction in k space of the first three Brillouin zones of a square lattice. The 
three shortest forms of the reciprocal lattice vectors are indicated as G,, G,, and G3. The lines 
drawn are the perpendicular bisectors of these G's. (b) On constructing all lines equivalent by 
symmetly to the three lines in (a) we obtain the regions in k space which form the first three 
Brillouin zones. The numbers denote the zone to which the regions belong; the numbers here are 
ordered according to the length of the vector G involved in the construction of the outer boundary 
of the region. 

Figure 6 Brillouin zones of a square lattice in two 
dimensions. The circle shown is a surface of constant 
energy for free electrons; it will be the Fermi surface 
for some particular value of the electron concentra- 
tion. The total area of the filled region i n k  space de- 
pends only on the electron concentration and is inde- 
pendent of the interaction of the electrons with the 
lattice. The shape of the Fermi surface depends 
on the lattice interaction, and the shape will not be 
an exact circle in an actual lattice. The labels within 
the sections of the second and third zones refer to 
Fig. 7. 

1st zone 2nd zone 3rd zone 

Figure 7 Mapping of the first, second, and third Brillouin zones in the reduced zone scheme. 
The sections of the second zone in Fig. 6 are put together into a square by translation through an 
appropriate reciprocal lattice vector. A different G is needed for each piece of a zone. 



1st zone 2nd zone 3rd zone 

Figure 8 The free electron Fermi surface of Fig. 6, as viewed in the reduced zone scheme. The 
shaded areas represent occupied electron states. Parts of the Fermi surface fall in the second, 
third, and fourth zones. The fourth zone is not shown. The first zone is entirely occupied. 

Figure 9 The Ferm~ surface in the thlrd zone as 
drawn m the peno&c zone scheme. The fiwre was - 
constmcted by repeating the third zone of Fig. 8. 

I I I 
I I I 

Brillouin zone (Fig. 7). Other reciprocal lattice vectors will shift the triangles 
Z6,  2,, 2d to other parts of the first zone, completing the mapping of the second 
zone into the reduced zone scheme. The parts of the Fermi surface falling in 
the second zone are now connected, as shown in Fig. 8. 

A third zone is assembled into a square in Fig. 8, but the parts of the 
Fermi surface still appear disconnected. When we look at it in the periodic 
zone scheme (Fig. 9), the Fermi surface forms a lattice of rosettes. 

Nearly Free Electrons 

How do we go from Fermi surfaces for free electrons to Fermi surfaces 
for nearly free electrons? We can make approximate constructions freehand by 
the use of four facts: 

The interaction of the electron with the periodic potential of the crystal 
creates energy gaps at the zone boundaries. 
Almost always the Fermi surface will intersect zone boundaries perpendicu- 
larly. 
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2nd zone 3rd zone 

Figure 10 Qualitative impression of the effect of a weak periodic crystal potential on the Fermi 
surface of Fig. 8. At one point on each Fermi surface we have shown the vector gradk€. In the sec- 
ond zone the energy increases toward the interior of the figure, and in the third zone the energy 
increases toward the exterior. The shaded regions are filled with electrons and are lower in energy 
than the unshaded regions. We shall see that a Fermi surface like that of the third zone is elec- 
tronlike, whereas one like that of the second zone is holelike. 

Figure 11 Hanison construction of free elec- 
tron Fermi surfaces on the second, third, and 
fourth zones for a square lattice. The Fermi 
surface encloses the entire first zone, which 
therefore is filled with electrons. 

The crystal potential will round out sharp comers in the Fermi surfaces. 
The total volume enclosed by the Fermi surface depends only on the 
electron concentration and is independent of the details of the lattice 
interaction. 

We cannot make quantitative statements without calculation, but qualitatively 
we expect the Fermi surfaces in the second and third zones of Fig. 8 to be 
changed as shown in Fig. 10. 

Freehand impressions of the Fermi surfaces derived from free electron 
surfaces are useful. Fermi surfaces for free electrons are constructed by a pro- 
cedure credited to Harrison, Fig. 11. The reciprocal lattice points are deter- 
mined, and a free electron sphere of radius appropriate to the electron 
concentration is drawn around each point. Any point in k space that lies within 
at least one sphere corresponds to an occupied state in the first zone. Points 
within at least two spheres correspond to occupied states in the second zone, 
and similarly for points in three or more spheres. 

We said earlier that the alkali metals are the simplest metals, with weak in- 
teractions between the conduction electrons and the lattice. Because the 



alkalis have only one valence electron per atom, the first Brillouin zone bound- 
aries are distant from the approximately spherical Fermi surface that fills one- 
half of the volume of the zone. It is known by calculation and experiment that 
the Fermi surface of Na is closely spherical, and that the Fermi surface for Cs 
is deformed by perhaps 10 percent from a sphere. 

The divalent metals Be and Mg also have weak lattice interactions and 
nearly spherical Fermi surfaces. But because they have two valence electrons 
each, the Fermi surface encloses twice the volume in k space as for the alkalis. 
That is, the volume enclosed by the Fermi surface is exactly equal to that of a 
zone, but because the surface is spherical it extends out of the first zone and 
into the second zone. 

ELECTRON ORBITS, HOLE ORBITS, AND OPEN ORBITS 

We saw in Eq. (8.7) that electrons in a static magnetic field move on a 
curve of constant energy on a plane normal to B. An electron on the Fermi 
surface will move in a curve on the Fermi surface, because this is a surface of 
constant energy. Three types of orbits in a magnetic field are shown in Fig. 12. 

The closed orbits of (a) and (b) are traversed in opposite senses. Because 
particles of opposite charge circulate in a magnetic field in opposite senses, we 
say that one orbit is electronlike and the other orbit is holelike. Electrons in 
holelike orbits move in a magnetic field as if endowed with a positive charge. 
This is consistent with the treatment of holes in Chapter 8. 

In (c) the orbit is not closed: the particle on reaching the zone boundary 
at A is instantly folded back to B, where B is equivalent to B' because 

Hole orbit Electron orbit Ooen orbits 

Figure 12 Motion in a magnetic field of the wavevector of an electron on the Fermi surface, in 
(a) and (b) for Fermi surfaces topologically equivalent to those of Fig. 10. In (a) the wavevector 
moves around the orbit in a clockwise direction; in (b) the wavevector moves around the orbit in a 
counter-clockwise direction. The direction in (b) is what we expect for a free electron of charge 
-e; the smaller k values have the lower energy, so that the filled electron states lie inside the 
Fermi surface. We call the orbit in (b) electronlike. The sense of the motion in a magnetic field is 
opposite in (a) to that in (b), so that we refer to the orbit in (a) as holelike. A hole moves as a par- 
ticle of positive charge e .  In (c) for a rectangular zone we show the motion on an open orbit in the 
periodic zone scheme. An open orbit is topologically intermediate between a hole orbit and an 
electron orbit. 
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Figure 13 (a) Vacant states at the comers of 
an almost-filled band, drawn in the reduced 
zone scheme. (b) In the periodic zone scheme 
the various parts of the Fermi surface are con- 
nected. Each circle forms a bolelike orbit. The 
different circles are entirely equivalent to 
each other, and the density of states is that of a 
single circle. (The orbits need not he true cir- 
cles: for the lattice shown it is only required 
that the orbits have fourfold symmetry.) 

Figure 14 Vacant states near the top of an almost filled band in a two- 
dimensional crystal. This figure is equivalent to Fig. 12a. 

Figure I5 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed 
energy band E~ = -a - 2y(cos k,a + cos k,a + cos k,a). (a) Constant energy surface E = -a. 
The filled volume contains one electron per primitive cell. (b) The same surface exhibited in the 
periodic zone scheme. The connectivity of the orbits is clearly shown. Can you find electron, hole, 
and open orbits for motion in a magnetic field BP? (A. Sommerfeld and H. A. Bethe.) 

they are connected by a reciprocal lattice vector. Such an orbit is called an 
open orbit. Open orbits have an important effect on the magnetoresistance. 

Vacant orbitals near the top of an otherwise filled band give rise to hole- 
like orbits, as in Figs. 13 and 14. A view of a possible energy surface in three 
dimensions is given in Fig. 15. 



Orbits that enclose filled states are electron orbits. Orbits that en- 
close empty states are hole orbits. Orbits that move from zone to zone 
without closing are open orbits. 

CALCULATION OF ENERGY BANDS 

\Vigner and Seitz, who in 1933 performed the first serious band calcula- 
tions, refer to afternoons spcnt 011 thc mani~al desk calc~~lators of those days, 
l~sing one afternoon for a trial wavefunction. Here we limit ourselves to three 
introductory methods: the tight-binding method, useful for interpolation; tlie 
Wiper-Seitz method, useful for the visualization and ur~derstar~dirig of the 
alkali metals; and the pseudopoter~tial method, utilizing the general theory 
of Chapter 7, which shuws tlie simplicity of many problems. 

Tight Binding Method for Energy Bands 

Lct 11s start with nei~tral separated atoms and watch the changes in the 
atomic energy levels as the charge distributions of adjacent atoms overlap 
when the atoms are brought together to forrri a crystal. Consider twu hydrogen 
atoms, each wit11 a11 electron in the Is ground state. The wavefunctio~ls $,4, i,bB 
on tlie separated atoms are show~l in Fig. 16a. 

As the atoms are brought together, their wavcfunctions ovcrlap. 14Jc con- 
sider the two combinations clr, ? i,bB. Each cornhination shares an electron 
with thc hvo protons, hut an electron in the state i,bA + $, will have a some- 
what lower energy than in the state J/ ,  - I/J~. 

In I)* + i,bB the electron spends part of the time in the region rriidway 
between the two protons, and in this region it is in the attractive potential of 
both protons at once, thereby increasir~g tlie binding energy. I11 i,bA - i,bB the 

density \,anishes midway between the nuclei; an extra binding docs 
not appear. 

(b? (c! 

Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at largr 
separatio11. (b! G r u u ~ ~ d  state waucfunctiorr at closcr separation. (c) Excited state wavefunction. 
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0 1 2 3 4 5 
Nearest-neighhor distan~x, in Bohr radii 

Figure 17 The Is band of a ring of 20 
hydrogen atoms; the one-electron energies 
are calculated in the tight-binding approxi- 
nlation with the nearest-neighbor overlap 
integral of Ey. (9). 

.4s two atoms arc brought together. two separated energy levels are 
formed for each lcvel of the isolated atom. For N atoms, N orbitals are formed 
for each orhital of the isolated atom (Fig. 17). 

As free atoms are brought together, the coulomb interaction between the 
aton1 cores and the electron splits the energy levcls, spreading them into 
bands. Each state of given quantum number of the free atom is spread in the 
cYstal into a band of energies. The width of the hand is proportional to the 
strength of the overlap interaction between neighboring atoms. 

There will also hc hands formed from p ,  d, . . . states (I = 1, 2, . . .) of the 
lree atoms. States degenerate in the free atom will form different bands. Each 
will not have the same energy as any other band over any substantial range of 
the wavevector. Bands nlay coincide in energy at ccrtain values of k in the 
Brillouin zone. 

The approximation that starts out from the wavefunctions of the free atoms 
is krlown as the tight-binding approximation or the LCAO (linear co~ribi~~ation 
of atomic orbitals) approximation. The approximation is quite good for the inner 
electrons of atoms: hut it is not often a good description of the conduction clec- 
trans themselves. It is used to describe approximately the d bands of the transi- 
tion metals and the valence bands of diamondlike and inert gm crystals. 

Suppose that the ground state of an electron moving in the potential 
U(r) of an isolated atom is p(r), an s state. The treatment of bands arising from 
degenerate (p, d, . . .) atomic levels is more complicated. If the influence of 
one atom on anothcr is small, we obtain an approximate wavefunction for one 
electron in the whole crystal by talang 



where the sum is over all lattice points. We assume the primitive hasis contains 
one atom. This function is of the Bloch form (7 .7 )  if Cki = N-l i2  e , which 
gives, for a crystal of N atoms, 

We prove (5) is of the Bloch form. Consider a translation T connecting 
two lattice points: 

exactly the Bloch condition. 
We find the first-order energy by calculating the diagonal matrix elements 

of the hamiltonian of the crystal: 

where q, - ~ ( r  - r,). Writing p ,  = r,,, - rj, 

We now neglect all integrals in (8) except those on the same atom and 
those between nearest neighbors connected by p. We write 

$ dV cpe(r)Hq(r) = -a ; J" dV p*(r - p)Hq(r)  = - y ; (9) 

and we have the first-order energy, provided (klk) = 1: 

The dependence of the overlap energy y on the interatomic separation p 
can be evaluated explicitly for two hydrogen atoms in Is states. In rydberg 
energy units, Ry = me4/2fi2, we have 

where no= fi2/nlnle? The overlap energy decreases exponentially with the 
separation. 
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For a simple cubic structure the nearest-neighbor atoms are at 

so that (10) becomes 

ck = -a - ~ ~ ( C O S  kp + cos kya + cos kg) . (13) 

Thus the energies are confined to a band of width 127. The weaker the over- 
lap, the narrower is the energy band. A constant energy surface is shown 
in Fig. 15. For ka << 1, ck = -a - 67 + yk2a2. The effective mass is m* = 
fi2/2ya2. When the overlap integral y is small, the band is narrow and the effec- 
tive mass is high. 

We considered one orbital of each free atom and obtained one band EL. 

The number of orbitals in the band that corresponds to a nondegenerate 
atomic level is 2N, for N atoms. We see this directly: values of k within the first 
Brillouin zone define independent wavefunctions. The simple cubic zone has 
-ria < k ,  < via, etc. The zone volume is 8n3/a3. The number of orbitals 
(counting both spin orientations) per unit volume of k space is V / 4 g ,  SO that 
the number of orbitals is 2vla3. Here V is the volume of the crystal, and l /a3 is 
the number of atoms per unit volume. Thus there are 2N orbitals. 

For the fcc structure with eight nearest neighbors, 

For the fcc structure with 12 nearest neighbors, 

ek = -a - ~ ~ ( C O S  i kya cos i k,a + cos $ k,a cos i kp + cos ;kg cos i k,a) . (15) 

A constant energy surface is shown in Fig. 18. 

Figure 18 A constant energy surface of an fcc crystal 
structure, in the nearest-neighbor tight-binding approx- 
imation. The surface shown has E = -a + 21yl. 



Wigner-Seitz Method 

Wigner and Seitz showed that for tlie alkali metals there is no inconsis- 
tency between the electron wa\d'unctions of frcc atoms and the nearly free 
electron model of the band structure of a crystal. Over most of a band the 
energy may depend on the wavevector nearly as for a free electron. However 
the Bloch wavefunction, unlike a plane wave, will pile up charge on the posi- 
tive ion cores as in the atomic wavefunction. 

A Blocli functiori satisfies the wave equation 

With p = -ih grad, we have 

p elk 'uk(r) = Rk e'kruk(r) + elhpuk(r) , 

p2ezhuk(r) = (hk)2e'"uk(r) + efk'(2hk .p)uk(r) + eZhp2uk(r) , 

thus tlie wave equation (16)  Irlay be written as an equation for uk: 

At k = 0 we have go = uo(r ) ,  where u,(r)  has the periodicity of the lattice, see: 
the ion cores, and near them will look like the wavefunction of the free atom. 

It is much easier to find a solution at k = 0 than at a general k, because at 
k = 0 a nondegenerate solution will have the full syrnmetry of Cir(r), that is, ol 
the crystal. We can then use uo(r )  to construct the approximate solution 

This is of the Bloch form, but u,  is not an exact solution of (17): it is a soliltion 
only if we drop the term in k.p. Often this term is treated as a perturbation, a: 
in Problem 8. The k.p perturbation theory developed there is especially useful 
in finding the effective mass m* at a band edge. 

Because it takes account of the ion core potential the function (18) is a 
much better approximation than a plane wave to the correct wavefunction 
The energy of the approximate solution depends on k as (hI~)~/2rn, exactly as 
for the plane wave, even though the modulation represented by uO(r)  may be 
very strong. Because u,  is a solution of 

the function (18) has the e n c r o  expectation valne E,+ (h2k2/27n). The 
function u,,(r) oftcn will give 11s a good picture of the charge distribution 
within a cell. 
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0 1 2 3 4 
r (Bohr units) 

Figure 19 Radial u~avefimctions for the 3y orbital of free sodium atom and for the 3s conduction 
band in sodium metal. The wavefunctions, which are nnt normalized here, are found by integrat- 
iug the Sclirodingcr equation for an electron in the potential urell of an Na' ion core. For the free 
atom the wavefunction i s  integrated subject to the usual Sctlrudinger bou~idary condition + ( r )  + 0 
as r + m; the energy eigenvalue is -5.15 eV. The wa\refunction for wavevector k = 0 in the metal 
is subject to the U'igner-Seitz boundary condition that d+/dr = 0 when r is midway between 
neighboring atoms; the energy of this orhital is 8 . 2  eV, considerably lower t l~an fur the free 
atom. The orbitals at the zone boundaly are not filled in sodium; their energy is +2.7 eV (After 
E. Wigner and F. Seitz.) 

W'igner and Seitz developed a simple and fairly accurate method of calcu- 
lating u,,(r). Figure 19 shows the Wigner-Seitz wavefunction for k = 0 in the 
3s conduction band of metallic sodium. The function is practically constant 
over 0.9 of the atomic volume. To the extent that the solutions for higher k 
may be approximaterl by exp(ik . r)u,(r), the wavefunctions in the conduction 
hand will he similar to plane waves over most of the atomic volume, but in- 
crease markedly and oscillate within the ion core. 

Cohesive Energy. The stability of the simple metals with respect to free 
atoms is caused by the loweri~~g of the energy of the Bloch orbital with k = 0 
in the crystal compared to the ground valence orbital of the free atom. The 
effect is illustrated in Fig. 19 for sodium and in Fig. 20 for a linear periodic - 
potential of attractive square wells. The ground orbital energy is much lower 
(because of lower kinetic energy) at the actual spacing in the metal than for 
isolated atoms. 

A decrease in ground orbikal energy will increase the binding. The decrease 
in ground orbital energy is a consequence of the change in the boundary condi- 
tion on the wavefu~lction: The Schrodinger boundary condition for the free 
atom is $(r) 4 0 as r 4 a. In thr crystal the k = 0 wavefunction u,(r) has the 
symmetry of the lattice and is symmetric about r = 0. To have this, the normal 
derivative of $ must vanish across every plane midway between adjacent atoms. 



.f 

e, 

I I 
w n 1 2 3 

bla + 

Figure 20 Ground orbital (k = 0) energy for an electron in a periodic square well potential of 
depth IUol = 2h21m2. The energy is lowered as the wells come closer together. Here a is held con- 
stant and b is varied. Large bla corresponds to separated atoms. (Courtesy of C. Y. Fong.) 

Figure 21 Cohesive energy of sodium metal is the dif- 
ference between the average energy of an electron in the 
metal (-6.3 eV) and the ground state energy (-5.15 eV) 
of the valence 3s electron in the free atom, referred to an 
Na+ ion plus free electron at infinite separation. 

Metal 
5.15 eV 

Cohesive energy 

---- ------ 4 , 3 e V  

-8.2 eV 
k = 0 state 

In a spherical approximation to the shape of the smallest Wigner-Seitz cell 
we use the Wigner-Seitz boundary condition 

where ro is the radius of a sphere equal in volume to a primitive cell of the lat- 
tice. In sodium, r - 3.95 Bohr units, or 2.08 A; the half distance to a nearest 

O. - 
neighbor is 1.86 A. The spherical approximation is not bad for fcc and bcc 
structures. The boundary condition allows the ground orbital wavefunction to 
have much less curvature than the free atom boundary condition. Much less 
curvature means much less kinetic energy. 

In sodium the other filled orbitals in the conduction band can be repre- 
sented in a rough approximation by wavefunctions of the form (18), with 
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Tlie Fer~ni  energy is 3.1 eV, from Table 6.1. The average kinetic energy per 
electron is 0.6 of the Fermi energy, or 1.9 eV. Bccause co = -8.2 eV at k = 0, 
the average clcctron cncrgy is ( E ~ )  = -8.2 + 1.9 = -6.3 eV, compared with 
-5.15 eV for the valence electron of the free atom, Fig. 21. 

\Ve therefore estimate that sodium metal is stable by about 1.1 eV with 
respect to the free atom. This result agrees well with the experimental value 
1.13 eV. 

Pseudopotential Methods 

Conduction electron wavefimctions are usually smoothly varying in the re- 
gion between the ion cores, but have a complicated nodal structure in the re- 
gion of the cores. This behavior is illustrated by the ground orbital of sodium, 
Fig. 19. It is helpful to view the nodes in the conduction electron wavefunction 
in the core regon as created by the requirement that the function be ortho- 
g o ~ ~ a l  to the wavefunctions of the core electrons. This all comes out of the 
Schrodinger equation, hut we can see that we nced the flexibility of two nodes 
in the 3s conduction orbital of La in order to be orthogonal both to the 1s core 
orbital with no nodes and the 2 7  core orhital with one node. 

Oiitside the core the potential energy that acts on the conduction electron 
is relatively weak: the potential energy is only the coulomb ~otential  of the 
singly-charged positive ion cores and is reduced markedly by the electrostatic 
screer~ing of tlie other conduction electrons, Chapter 14. In this outer region 
the conduction electron wavefunctions are as smoothly varying as plane waves. 

If the conduction orbitals in this outer rcgion arc approximately plane 
wavcs, thc cncrgy must dcpend on the wavevector approximately as 
ek = fi2k2/2m as for free electrons. But how do we treat the conduction orbitals 
in the core region where the orbitals are not at all like plane waves? 

What goes on in the core is largely irrelevant to the dependence of on k. 
Recall that we can calculate tlie energy by applying the liamiltonian operator 
to an orbital at any point in space. Applied in the outer region, this opcration 
will give an energy nearly cqual to thc frcc electron energy. 

This argument leads nati~rally to the idea that we might replace the actual 
potential energy (and filled shells) in the core region by an effective potential 
energy' that gives the same wavefunctions outside the core as are given 
by the actual ion cores. It is startling to find that tlie effective potential or 

'J. C. Phillips and L. Klci~i~nan,  Phys. Rcv. 116, 287 (1959); E. Antoncik, J. Phys. Chem. 
Solids 10, 314 (1959). The ~ene ra l  theory of pseudopotentials is disci~ssed by B. J. Anstin, 
V. Heine, and L. J. Sham, Phys. Rev. 127; 276 (1962); see also Vol. 24 of Solid state physics. The 
utility of the empty cure model has beer1 known fur niany years: it gocs back to E. Fcrmi, Nuovo 
Cimento 2, 157 (1934); H. Hellmann, Acta Physiochimica URSS 1, 91.3 (1935); and H. Hellmann 
a d  TV, K~assatotschkin, J. Chem. Phys. 4, 324 (1936), who wrote "Since the field of the ion 
determined in thls way runs a rather flat course, it is sofficicnt in thc first approximation to set the 
valence electron in the lattice equal to a plane wave." 



pseudopotential that satisfies this requirement is nearly zero. This co~lclusion 
about pseudopotentials is supported by a large amount of empirical experience 
as well as by theoretical arguments. The result is referred to as the cancella- 
tion theorem. 

The pseudopotential for a problem is not unique nor exact, but it may 
be very good. On the Empty Core Model (ECM) we can even take the uxi- 
screened pseudopotential to be zero inside some radius 8,: 

0 , f o r r < R , ;  
U(r) = 

-e2/r , for r > Re . 

This potential should now be screened as described in Chapter 10. Each com- 
ponent U(K) of U(r) is to be divided by the dielectric constant e(K) of the 
electron gas. If, just as an exampIe, we use the Thomas-Fermi dielectric func- 
tion (14.33), we obtain the screened pseudopotential plotted in Fig. 22a. 

Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened 
by thc Thomas-Fermi dielectric function. The calculations were made for an empty core radius 
R, = I.fiha,, where a, is the Bohr radiuu, and for a screening paranictcr k,a, = 0.79. The dashed 
curve shows the assumed unscreened potential, as from (21). The dotted cnrve is the actual 
potential of tlrc ion core; other v-dues of U(r) are -50.4, -11.6, and -4.6, for r = 0.15, 0.4, and 
0.7, respectively. Th~ls the act~ial potential of the ion (chosen to fit the energy Ic\,els o i  the free 
atom) is vely much larger than the pseudopotential, over 200 times larger at r = 0.15. 
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Figure 22b A typical reciprocal space 
pqeodopotential. Values of U(k) tirr warevec- 
tors equal to the reciprocal lattice vectors, 6, 
arc indicated by the dots. For very small k the 
potential apprnaches (-213) times the Fermi 
energy, which is the screened-ion limit for 
111etals. (After M. L. Cohcn.) 

The pseudopotential as drawn is much wcaker than the tnie potential, hut 
the pseudopotential was adjusted so that the wavefunction in the outer region 
is ncarly identical to that for the true potential. In the language of scattering 
theory, we adjust the phase shifts of the pseudopotential to match those of the 
true potential. 

Calculation of the band structure depe~ids only 011 the Fourier compo- 
nents of t l ~ e  pseudopotential at the reciprocal lattice vectors. Usually only a 
few values of the coefficients U(G) are needed to get a good band structure: 
see the L1(G) in Fig. 22b. These coefficients arc sometimes calc~~lated from 
modcl potentials, and sometimes they are obtained from fits of tentative band 
stnicti~res to the results of optical measurements. Good values of U ( 0 )  can be 
estimated from first principles; it is shown in (14.43) that for a screened 
coulornb potential U(0) = -gtF. 

In the re~narkably successful Elnpirical Pseudopotential Method (EPM) 
the band structure is calculated using a few coefficients U(G) deduced from 
theoretical fits to measurements of the optical reflectance and absorption of 
crystals, as discusscd in Chapter 15. Charge density maps can be plotted from 
the wavefimctions generated by the EPM-see Fig. 3.11. The results are in 
excellent agreement with x-ray diffraction determinations; such maps give an 
understanding of the bonding and have great predictive value for proposed 
new structures and conlpounds. 

The EPM values of the coemcients U(G) often are additive in the contri- 
butions of the several types of ions that are prcscnt. Thus it may he possible to 
construct thc C'(G) for entirely new structures, starting from results on known 
structures. Further, the pressure dependence of a band structure may be de- 
ternlined when it is possible to estimate from the form of the U(r) curve the 
dependence of U(G) on srnall variations of G. 



It is often possible to calculate band structures, cohesive energy, lattice 
constants, and bulk moduli from first principles. Tn such ah initio pscudo- 
potential calculations the basic inputs are the crystal structure type and the 
atomic number, along with well-tested theoretical approximations to exchange 
energy terms. This is not the same as calculating from atomic number alone, 
but it is the most reasonable basis for a first-principles calculation. The results 
of Yin and Cohen are compared with experiment in the table that follows. 

Lattice Cohesive Bulk modulus 
constant (A) energy (eV) (Mbar) 

Silicon 
Calculated 5.45 
Experimental 5.43 

Germanium 
Calculated 5.66 
Experimental 5.65 

Diamond 
Calculated 3.60 
Experimental 3.57 

EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES 

Powerful experimental methods have been developed for the determina- 
tion of Fermi surfaces. The methods include magnetoresistance, anomalous 
skin effect, cyclotron resonance, magneto-acoustic geometric effects, the 
Shubnikow-de Haas effect, and the de Haas-van Alphan effect. Further infor- 
mation on the momentum distribution is given by positron annihilation, 
Compton scattering, and thc Kohn cffcct. 

We propose to study one method rather thoronghly. All the methods are 
useful, but need detailed theoretical analysis. \Ve select the de Haas-van 
Alphen effect because it exhibits very well the characteristic periodicity in 1/B 
of the properties of a metal in a uniform magnetic field. 

Quantization of Orbits in a Magnetic Field 

The momentum p of a particle in a magnetic Geld is the sum (Appendix 6) 
of two parts, the kinetic rnomcntum pldn = mv = fik and the potential momcn- 
tnm or field momentum pfield = qA/c, where q is the charge. The vector poten- 
tial is related to the magnetic field by B = curl A. The total momentum is 

In SI the factor c-' is omitted 
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Following the semiclassical approach of Onsager and Lifslutz, we assume 
that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld rclation 

when n is an integer and y is a phase correction that for free electrons has the 
vallle i. Then 

The equation of motion of a particle of charge q in a magnetic field is 

We integrate with respect to time to give 

apart from an additive constant which does not contribute to the final result. 
Thus one of the path integrals in (24) is 

where @ is the magnetic flux contained within the orbit in real space. We have 
used the geometrical result that 

f r X dr = 2 X (area enclosed by the orhit) 

The other path integral in (24) is 

by the Stokes theorem. Here d a i s  the area element in real space. The momen- 
tum path integral is the sum of (25b) and (25c): 

It follows that the orbit of an electron is quantized in such a way that the 
flux through it is 

@, = (n + y)(Z&/e) . (27) 

The flux llnit 2&/e = 4.14 X gauss crnZ or Tm2. 
In the de Haas-van Alphen effect discussed below we need the area of the 

orbit in wavevector space. We obtained in (27) the flux through the orbit in 



real space By (25a) we know that a line element Ar in the plane normal to B is 
rclatcd to Ak by Ar = (fic/~R)Ak, so that thr area S, in k spacr is rclatcd to the 
area A, of the orbit in r ypace by 

A,, = (L/~-.B)~S,, (28) 

It  follow^ that 

from (27), \\,hence the area of an orbit in k space will satisly 

In Ferrni surface experirrients we may be interested in the increment AB 
for which two successive orbits, and n + 1, have the same area in k space on 
the Fermi surlace. The areas are equal when 

from (30). We ha\-e the important result that equal increments of 1/B repro- 
duce similar orbits-this periodcity in 1IB is a striking feature of the magneto- 
oscillatory effects in metals at low temperatures: resistivity, susceptibility heat 
capacity. 

The population of orbits on or near the Fermi surface oscillates as B is var- 
ied, causing a wide variety of eflects. From the period of the oscillation we 
reconstruct thc Fcrmi surf'acc. Thc result ( S O )  is indcpcndcnt of thr galigc of 
the vector potrntial uscd in thc cxprcssion (22) for momcntnm; that is, p is not 
gauge invariant, but S, is. Gauge invariance is discussed further in Chapter 10 
and in Appendix G. 

De Haas-van Alphen Effect 

The de Raas-van Alphen effect is the oscillation of the magnetic moment 
of a metal as a function of the static magnetic field intensity. The effect can be 
observed in pure specimens at low temperatures in strong magnetic fields: we 
do not want the quantizatio~l of the electron orbits to be blurred by collisions, 
and we do not want the population oscillations to be averaged out by thermal 
population of adjacent orbits. 

The analysis of thc dHv.4 cff'cct is givcn tbr absolutc zcro in Fig. 23. The 
electron spin is neglected. The treatment is given for a two-dimensional (2D) 
system; in 3D we need only multiply the 2D wavefunction by plane wave factors 
exp(ik,z), where the magnetic field is parallel to the z axis. The area of an orbit in 
k,, k,, space is quantized as i11 (30). T l ~ e  area between successive orbits is 

AS = S, - = 2veB/fic . (32) 
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(a) (h) (4 (d) (4 
Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimen- 
sions in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are 
shaded in a and d. The energy levels in a magnetic field are shown in b, c, and e.  In b the field has 
a value B, such that the total energy of the electrons is the same as in the absence of a magnetic 
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag- 
netic field B,. When we increase the field to B, the total electron energy is increased, because the 
uppermost electrons have their energy raised. In e for field B, the energy is again equal to that for 
the field B = 0. The total energy is a minimum at points such as B,, B,, B,, . . . , and a maximum 
near points such as B2,  B,, . . . . 

The area in k space occupied by a single orbital is (2rlL)', neglecting spin, 
for a square specimen of side L. Using (32) we find that the number of free 
electron orbitals that coalesce in a single magnetic level is 

where p = e~'/2&, as in Fig. 24. Such a magnetic level is called a Landau 
level. 

The dependence of the Fermi level on B is dramatic. For a system of N 
electrons at absolute zero the Landau levels are entirely filled up to a magnetic 
quantum number we identify by s, where s is a positive integer. Orbitals at the 
next higher levels + 1 will be partly filled to the extent needed to accommo- 
date the electrons. The Fermi level will lie in the Landau level s + 1 if there 
are electrons in this level; as the magnetic field is increased the electrons move 
to lower levels. When s + 1 is vacated, the Fermi level moves down abruptly 
to the next lower levels. 

The electron transfer to lower Landau levels can occur because their 
degeneracy D increases as B is increased, as shown in Fig. 25. As B is 



(a) (b) 
Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetlc field. (b) In a 
magnetic field the points which represent the orbitals of free electrons may he viewed as re- 
stricted to circles in the former kAY plane. The successive circles correspond to successive values 
of the quantum number n in the energy (n - f )ko,. The area between successive circles is 

The angular position of the points has no significance. The number of orbitals on a circle is con- 
stant and is equal to the area between successive circles times the number of orbitals per unit area 
in (a), or (2?reB/fic)(L/2~)~ = L2eB/2dc, neglecting electron spin. 

Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu- 
pied in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded 
area gives the number of particles in levels partially occupied. The value of s denotes the quantum 
number of the highest level whlch is completely filled. Thus at B = 40 we have s = 2; the levels 
n = 1 and n = 2 are filled and there are 10 particles in the level n = 3. At B = 50 the level n = 3 is 
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B. 

increased there occur values of B at which the quantum number of the upper- 
most filled level decreases abruptly by unity. At the critical magnetic fields 
labeled B, no level is partly occupied at absolute zero, so that 
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Figure 26 The upper curve is the total electronic energy versus 1IB. The oscillations in the en- 
ergy U  may be detected by measurement of the magnetic moment, given by - a U l a ~ .  The thermal 
and transport properties of the metal also oscillate as successive orbital levels cut through the 
Fermi level when the field is increased. The shaded region in the figure gives the contribution to 
the energy from levels that are only partly filled. The parameters for the figure are the same as for 
Fig 25, and we have taken the units of B such that B = fiw,. 

The number of filled levels times the degeneracy at B, must equal the number 
of electrons N. 

To show the periodicity of the energy as B is varied, we use the result 
that the energy of the Landau level of magnetic quantum number n is 
E, = ( n  - ;)Tim,, where w, = eBlm*c is the cyclotron frequency. The result for 
E ,  follows from the analogy between the cyclotron resonance orbits and the 
simple harmonic oscillator, but now we have found it convenient to start 
counting at n = 1 instead of at n = 0. 

The total energy of the electrons in levels that are fully occupied is 

where D is the number of electrons in each level. The total energy of the 
electrons in the partly occupied levels + 1 is 

where sD is the number of electrons in the lower filled levels. The total energy 
of the N electrons is the sum of (35)  and (36),  as in Fig. 26. 

The magnetic moment p of a system at absolute zero is given by p = 

-8UIaB. The moment here is an oscillatory function of 1/B,  Fig. 27. This os- " 

cillatory magnetic moment of the Fermi gas at low temperatures is the de 
~aas -van  ~ l p h e n  effect. From (31)  we see that the oscillations occur at equal 
intervals of 1/B such that 



Figure 27 At absolute zero the magnetic moment is given by -BUBB. The energy plotted in 
Fig. 26 leads to the magnetic moment shown here, an oscillatoly function of 1IB. In impure speci- 
mens the oscillations are smudged out in part because the energy levels are no longer sharply defined. 

A' 

Magnetic - 
Figure 28 The orbits in the section AA' are ex- field 
tremal orbits: the cyclotron period is roughly con- 
stant over a reasonable section of the Fermi surface. 
Other sections such as BB' have orbits that vary in 
period along the section. a 

where S is the extremal area (see below) of the Fermi surface normal to the di- 
rection of B. From measurements of A(l/B),  we deduce the corresponding ex- 
tremal areas S: thereby much can be inferred about the shape and size of the 
Fermi surface. 

Extremal Orbits. One point in the interpretation of the dHvA effect is sub- 
tle. For a Fermi surface of general shape the sections at different values of k, 
will have different periods. Here k, is the component of k along the direction 
of the magnetic field. The response will be the sum of contributions from all 
sections or all orbits. But the dominant response of the system comes from or- 
bits whose periods are stationary with respect to small changes in k,. Such 
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orbits are called extremal orbits. Thus, in Fig. 28 the section AA' dominates 
the obsewed cyclotron period. 

The argument can be put in mathematical form, but we do not give the 
proof here (QTS, p. 223). Essentially it is a question of phase cancellation; the 
contributions of different nonextremal orbits cancel, but near the extrema 
thc phase varies only slowly and there is a net signal fronr these orbits. Sharp 
resonances are obtained even from complicated Fermi surfaces because the 
experiment selects the extermal orbits. 

Fermi Surface of Copper. The Fermi surface of copper (Fig. 29) is distinctly 
nonspherical: eight necks make contact with thc hexagonal faces of the first 
Brillouin zone of the fcc lattice. The electron concentration in a monovalent 
metal with an fcc structure is n = 4/a3; there are four electrons in a cube of 
volume a3. Thc radius of a free electron Fermi sphere is 

and the diameter is 9.801~. 
The shortest distance across the Brillouin zone (the distance between 

hexagonal faces) is ( 2 ~ / a ) ( 3 ) ~ ' ~  = 10.88/a, somewlrat larger than the diameter 
of the free electron sphere. The sphere does not touch the zone boundary, but 
we know that the presence of a zone boundary tends to lower the band energy 
near the boundary. Thus it is plausible that the Fermi surface should neck ont 
to meet the closest (hexagonal) faces of the zone (Figs. 18 and 29). 

The square faces of thc zone are more distant, with separation 12.57/a, 
and the Fermi surface does not neck out to meet these faces. 

EXAMPLE: Fermi Surface of Gold. In gold for quite a wide range of field directions 
Shoenberg finds the magnetic moment has a period of 2 x lO-\auss-'. This period 
corresponds to an extremal orbit of area 

From Tahlc 6.1, we have k, = 1.2 X 10' cm-' for a free electron Fermi sphere for 
gold, or an cxtrcmal area of 4.5 X 1016 cm-', in general agreement with the experi- 
mental value. Thc actual periods reported by Shoenberg are 2.05 x lo-' gauss-' and 
1.95 X I()-' gauss-1. In thc [ I l l ]  direction in Au a large period of 6 X lo-@ gauss-' is 
also found; tlir corresponding orbital area is 1.6 X l O I 5  cm-% This is the "neck orbit 
N. Another extrernal orbit, the "dog's bone," is shown in Fig. 30; its area in Au is about 
0.4 of the belly area. Experimental results are shown in Fig. 31. To do the example in 
SI,  drop c from the relation for S and use as the period 2 X tesla-'. 



Figure 29 Fermi surface of copper, after Pippard. The Figure 30 Dog's bone orbit of an electron on 
Brillouin zone of the fcc structure is the truncated octa- the Fermi surface of copper or gold in a mag- 
hedron derived in Chapter 2. The Fermi surface makes netic field. This orbit is classified as holelike be- 
contact with the boundary at the center of the hexagonal cause the energy increases toward the interior of 
faces of the zone, in the [ I l l ]  directions in k space. Two the orbit. 
"belly" extremal orbits are shown, denoted by B; the 
extremal "neck" orbit is denoted by N. 

45.0 kG 45.5 kG 46.0 k~ 

Figure 31 De Haas-van Alphen effect in gold with B 1 1  [110]. The oscillation is from the dog\ 
bone orbit of Fig. 30. The signal is related to the second derivative of the magnetic moment with 
respect to field. The results were obtained by a field modulation technique in a high-homogeneity 
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.) 

The free electron Fermi sphere of aluminum fills the first zone entirely 
and has a large overlap into the second and third zones, Fig. 1. The third zone 
Fermi surface is quite complicated, even though it is just made up of certain 
pieces of the surface of the free electron sphere. The free electron model also 
gives small pockets of holes in the fourth zone, but when the lattice potential is 
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Figure 32 Multiply-connected hole surface of magnesium in 
bands 1 and 2; according to L. M. Falicuv. (Drawing by Marta 
Puebla.) 

High magnetic field Weak magnetic field 

(a) (b) 

Figure 33 Brwakdown of band structure by a strong magnetic field. Brillouin zone boundaries 
are the light lines. The free electron orhits (a) in a strorlg field changc connectitity in a weak field 
(b) to become open orbits in the first hand and electron orbits in the second band. Both bauds are 
mapped together. 

taken into account these empty out, the electrons being added to the third 
zone. The general features of the predicted Fermi surface of aliiminum are 
quite well verified by experiment. Figure 32 shows part of the free electron 
Ferrr~i surface of magnesium. 

Magnetic Breakdown. Electrons in slifficiently high magnetic fields will 
movc in frcc particle orbits, the circular cyclotron orbits of Fig. 33a. Here the 
magnetic forces are dominant, and the lattice is a slight perturbation. 
In this limit the classification of the orbitals into bands may have little impor- 
tance. However, we know that at low magnetic fields the motion is described hy 
(8.7) with the band structure ek that obtains in the abscncc of a magnetic field. 

The eventual breakdown of this description as the magnetic field is in- 
creased is called magnetic hreakdown. The passage to strong magnetic fields 
may drastically change the connectivity of the orbits, as in the figure. The 
onset of magnetic breakdown will be revealed by physical properties such as 



magnetoresistance that depend sensitively on the connectivity. The condition 
for magnetic breakdown is that hw,~ ,  > Ei ,  approximately. Here e, is the free 
electron Fermi energy and E,  is the energy gap. This condition is much milder, 
especially in metals with small gaps, than the nalve condition that the mag- 
netic splitting Rw, exceed the gap. 

Small gaps may be found in hcp metals where the gap acrvss the hexagonal 
face of the zone would be zero except for a small splitting introduced by the 
spin-orbit interaction. In  Mg the splitting is of the order of eV; for this gap 
and E~ - 10 eV the breakdown condition is hw, > 1 0 5  eV, or B > 1000 C,. 

SUMMARY 

A Fermi surface is the surface in k space of constant energy equal to E, .  The 
F e r ~ n i  surface separates filled states from empty states at absolute zero. 
The form of the Fermi surface is usually exhibited best in the reduced zone 
scheme, but the connectivity of the surfaces is clearest in the periodic zone 
scheme. 

An energy band is a single branch of the GI, versus k surface 

The cohesion of simple metals is accounted for by the lowering of energy of 
the k = 0 conduction band orbital when the boundary conditions on the 
wavefunction are changed from Schrodinger to Wigncr-Seitz. 

The periodicity in the de Haas-van Alphen effect measures thc rxtremal 
cross-section area S in k space of the Fermi silrface, the cross section being 
taken perpendicular to B: 

Problems 

1. Brillouin zones of rectangular lattice. Make a plot of the first two Brillouin 
zones of a primitive rectangular two-dimensional lattice with axes a, b = 3a. 

2. Brillouin zone, rectangular lattice. A two-dimensional metal has one atom of 
vdency one in a simple rectangular primitive cell a = 2 6; b = 4 A. (a) Draw the 
first Brillouin zone. Give its dimensions, in cm-'. (b) Calculate the radius of the 
free electron Fermi sphere, in cm-'. (c) Draw this sphere to scalc on a drawing of 
the first Brillouin zone. Make another sketch to show thc first fcw periods of thc 
free electron band in the periodic zonc schcmc, for both the Grst and sccond cn- 
ergy bands. Assume there is a small energy gap at thc zone boundaly. 

3. Hexagonal close-packed structure. Consider the Grst Brillnuin zone of a crystal 
with a simple hexagonal lattice in three dimensions with lattice constants a and c. 

Let G, denote the shortest reciprocal lattice vector parallel to the c axis of the 
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crystal lattice. (a) Show that for a hexagonal-close-packed crystal stn~ctllre the 
Fourier corrrponent UiG,) of the crystal potential U[r) is zero. (b) Is U(2G,) also 
zero? (c) \%'Ililly is it possihle in principle to obtain an insulator made up of divalent 
atoms at the lattice points or a simple hexagonal lattice? (d) Why is it not possihle 
to obtain an irrsulator made up of monovalent atoms in a hexagonal-close-packed 
structure? 

4 .  Brillouin zones of two-dimensional divalent metal. A two-dimensional metal 
in the form of a square lattice has two conduction electrons per atom. In the d- 
most free electron approxirriation. sketch carefully the electron and hole energy 
surfaces. For the electror~s chnosr a zonc scheme such that the Fermi surface is 
shown as closed. 

5.  Open orbits. An open orbit in a monovalent tetragonal metal connects 
opposite faces of the boundary of a Brillonin zonc. The faces are separated by G 
= 2 X 10%m '. A magnetic field B = 10'' ganss = lo-' tesla is normal to the 
plane of the open orbit. (a) What is the order of magnitude of the period of the 
motion in k space? Take c = 10' cm/sec. (b) Descrihc in real space the motion of 
an electron on this orbit in the presence of tlie magnetic field. 

6. Cohesive energy for a square well potentiul. (a) Find an expression for the 
hinrling energy of an electron in one dimension in a single square well of depth U, 
and width a. (This is the standard first problem in elerrlerltary quantum mechan- 
ics.) Assume that the solution is symmetric about the rrridpoint of the wcl. (b) 
Find a nirmcrical result for the binding energy in terms of Uo for the special case 
IUo1 = 2K4nm%nd conlpare with the appropriate limit of Fig. 20. In this limit of 
widely separated \vclls the band width goes to zero, so the energy fork = 0 is the 
same as the enrrm for any other k in the lowest energy band. Other bands are 
formed frorr~ tlir excited states of the well, in this limit. 

7 .  De Hans-van Alphen period of potassium. (a) Calculate the period A(1IB) ex- 
pected for potassium or1 d1c frce electron model. (b) What is the area in real 
space of the extrslrral orhit, for B = 10 kG = 1 T? The same period applies to os- 
cillations in the electrical resistiviky, )sown as the Shubnikow-de Haas effect. 

'8. Band edge structure on k - p perturbation theory. Consider a nondegrrrerate 
orbital $nk at k = 0 111 the band n of a cubic crystal. Use second-order perturba- 
t ~ o n  theory to find the re~ul t  

where the surrl is over a11 othcr orbitals ICrJk at k = 0. The effective mass at this 
point is 

'This problem is surrlewhat difficult. 



The mass at the conduction band edge in a narrow gap semicond~~ctor is often 
dominated by the effect of the valence band edge, whcnce 

where the sum is over the valcnce hands; Eg is the energy gap. For given matrix 
elements, small gaps lead to small masses. 

9. Wannier functions. Thc Wannier functions of a band are defined in terms of 
the Bloch functions of thc same band hy 

~ ( r  - r,,) = N- In Z e x p -  ik . r,) $k(r) ; 
k 

( 4 2 )  

where r, is a lattice point. (a) Prove that Wannier functions about different lattice 
points n,m are orthogonal: 

This orthogonality property makes the functions often of greater use than atomic 
orbitals centered on different lattice sites, because the latter are not generally or- 
thogonal. (b) The Wannier functions are peaked around the lattice sites. Show 
that for $k = N-'" elkx U&X) the W7annier {unction is 

sin v(x - x,)/a 
w(x - x") = u0(x) 

r ( x  - x,J\a 

for N atoins on a line of lattice constant a 

10. Open orbits and magnetoresistance. We considered the transverse magncto- 
resistance of free electrons in Problem 6.9 and of electrons and holes in Problcm 
8.5. In some crystals the magnetoresistance saturates except in spccial crystal nri- 

entations. An open orbit carries current only in a single direction in the plane 
normal to the magnetic field; such carriers are not deflected by thc ficld. In the 
arrangement of Fig. 6.14, let the open orbits be parallel to k,; in real space these 
orbits carry current parallel to the y axis. Let a?,, = su0 bc the cond~lctivity of the 
open orbits; this defines the constant s. The magnetncond~~ctivity tensor iri the 
high field limit w,r B 1 is 

Q-2 -0-1 0 

uo(Qil ; :) 
with Q = w,r. (a) Show that the Hall field is E, = -EJsQ. (b) Show that the ef- 
fectivc rcsistivity in the x directiorr is p = (Q2/uo)(s/s + l ) ,  so that the resistivity 
does not saturate, bnt increases as BZ. 

11. Landau leoeln. The vector potential of a uniform magnetic field Bi is A = 

-By% in the Landau gauge. The hamiltonian of a free electron without spin is 
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We will look for an eigenfilnction of the wave equation H$ = E(J irr tlra form 

$ = x(y) exp[i(k~ + k,z)l 

(a) Sho\v that ~ ( y )  satisfies the equation 

where o, = eBlmc and yo = cfik,/eB. (b) Show that this is the wave equation of a 
harmonic oscillator with frequency o, , where 

6, = (n + $)fro, + fizk:/2rn . 
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NOTATION: 111 this chapter B, denotes the applied magnetic field. 111 the 
CGS system the critical value B,, of the applied field will he denoted by the 
syn~bol H ,  in accordance with the custom of workers in superconductivity 
Valucs of B,, are given in gauss in CGS units and in teslas in ST units, with 
1 T = lo4 G. In SI we have B,,, = p a r .  
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Figure 1 Resistance in ohms of a specimen of rnerculyversus absolute temperature. This plot by 
Kamerlingh Onnes marked the discover). of superconductivity. 



CIIAPTER 10: SUPERCONDUCTIVITY 

The electrical resistivity of many metals and alloys drops suddenly to zero 
when the speci~neri is cooled to a sufficiently low temperature, often a temper- 
ature in tlle liquid helium range. This phenomenon, called superconductivity, 
was observed first by Kamerlingh Onnes in Leideli in 1911, three years after 
he first liquificd helium. At a critical temperature T,  the spccimen undergoes 
a phase transition from a state of nur~nal electrical resistivity to a supercon- 
ducting state, Fig. I. 

Superconductivity is now very well understood. It is a field with many 
practical and theoretical aspects. Thc length of this chapter and the relevant 
appendices reflect the richness and silhtleties of the field. 

EXPERIMENTAL SURVEY 

In the superconducting state the dc electrical resistivity is zero, or so close 
to zero that persistent clectrical currents have been observed to flow without 
attenuation in supcrcondi~cting rings for more than a year, until at last the ex- 
perinlentalist wearied of the experiment. 

Thc decay of supercurrents in a solenoid was studied hy File and Mills 
using precision nuclear magnetic resonance methods to measure the magnetic 
field associated with the supercurrent. They concluded that the decay t i~ne  of 
the supercurrent is not less than 100.000 years. We estimate the decay time 
below. In some superconducting materials, particularly those used for super- 
corlducting magnets, finite decay times are observed because of an irrevcrsihle 
redistribution of magnetic flux in the material. 

The magnetic properties exhibited by superconductors are as dramatic as 
their clectrical properties. The magnetic propertics cannot be accounted for 
hy the assumption that a superconductor is a normal conductor with zero elec- 
trical resistivity. 

It is an experimental fact that a hulk superconductor in a weak magnetic 
field will act as a perlect diamagnet, with zero magnetic induction in the inte- 
rior. When a specimen is placed in a magnetic field and is then cooled through 
the transition temperature for superconductivity, the magnctic flnx originally 
prcscnt is ejected from the specimen. This is called thc Meissner effect. The 
sequence of events is shown in Fig. 2. The unique magnetic properties of su- 
perconductors are central to the characterization of the superconducting state. 

The supercvnducti~lg state is an ordered state of the conduction electrons 
of the ~netal. The order is in the formation of loosely associated pairs of elec- 
trons. The electrons are ordered at temperatures below the transition temper- 
ature, and they are disordered above the transition temperature. 



Figure 2 Meissner effect in a superconducting sphere cooled in a constant applied magnetic field; 
on passing below the transition temperature the lines of induction B are ejected from the sphere. 

The nature and origin of the ordering was explained by Bardeen, Cooper, 
and Schrieffer.' In the present chapter we develop as far as we can in an ele- 
mentary way the physics of the superconducting state. We shall also discuss 
the basic physics of the materials used for superconducting magnets, but not 
their technology. Appendices H and I give deeper treatments of the super- 
conducting state. 

Occurrence of Superconductivity 

Superconductivity occurs in many metallic elements of the periodic system 
and also in alloys, intermetallic compounds, and doped semiconductors. The 
range of transition temperatures best confirmed at present extends from 90.0 K 
for the compound YBa2Cu,0, to below 0.001 K for the element Rh. Several 
f-band superconductors, also known as "exotic superconductors," are listed in 
Chapter 6. Several materials become superconducting only under high pres- 
sure; for example, Si has a superconducting form at 165 kbar, with T, = 8.3 K. 
The elements known to be superconducting are displayed in Table 1, for zero 
pressure. 

Will every nonmagnetic metallic element become a superconductor at 
sufficiently low temperatures? We do not know. In experimental searches for 
superconductors with ultralow transition temperatures it is important to 
eliminate from the specimen even trace quantities of foreign paramagnetic 
elements, because they can lower the transition temperature severely. One 
part of Fe in lo4 will destroy the superconductivity of Mo, which when pure 
has T, = 0.92 K; and 1 at. percent of gadolinium lowers the transition temper- 
ature of lanthanum from 5.6 K to 0.6 K. Nonmagnetic impurities have no very 
marked effect on the transition temperature. The transition temperatures of 
a number of interesting superconducting compounds are listed in Table 2. 
Several organic compounds show superconductivity at fairly low temperatures. 

'J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,162 (1957); 108,1175 (1957). 





Table 2 Superconductivity of selected compounds 

Compo~~nd T,, in K Compound T,, in K 

Nb,Sn 
Nb,Ge 
Nb,AI 
NbN 
C60 

Figure 3 Experimental threshold 
curves of the critical field H,(T) 
versus temperature for sc\reral su- 
perconductors. .%specimen is super- 
conducting bclow the curve and 
normal above the C I I ~ V .  Temperature, in K 

Destruction of Superconductivity b y  Magnetic Fields 

A sufficiently strong magnetic field will destroy superconductivity. The 
tt~reshold or critical value of the applied magnetic field for the destruction of 
supercondl~ctivity is denoted by H,(T) and is a function of the temperaturc. At 
the critical temperature the critical field is zero: H,(T,) = 0. The variation of 
the critical field with temperature for several superconducting elements is 
shown in Fig. 3. 

The threshold curves separate the superconducting state in the lower left 
of the figure from the normal state in the upper right. Note: We should denote 
the critical value of the applied magnetic field as B,,, hut this is not common 
practice among workers in superconductivity. In the CGS system we shall al- 
ways understand that H ,  - B,,, and in thc SI we have H,. - B,Jpo The s p h o l  
B ,  denotes the applied rrlagnetic field. 

Meissner Effect 

Meissner and Ochsenfeld (1933) found that if a superconductor is cooled 
in a rr~agnetic field to helow the transition temperature, then at the transition 
the lines of induction B are pushed out (Fig. 2). The Meissner effect sho~vs 
that a bulk superconductor behaves as if B = 0 inside the specimen. 
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We obtain a particularly useful form of this result if we limit ourselves to 
long thin specimens with long axes parallel to R,: now the demagnet~zing field 
contrihution (see Chapter 16) to B will bc negligible, whence:" 

The resillt B = 0 cannot be derived from the characterization of a super- 
condr~ctor as a medium of zero resistivity. From Ohm's law, E = pj, we see that 
if the resistivity p goes to zero while j is held finite, then E must be zero. By a 
Maxwell equation clBldi is proportional to curl E, so that zero resistivity im- 
plies dB/& = 0, but not B = 0. This argument is not entirely transparent, but 
the result predicts that the flux through the metal cannot changc on cooling 
through the transition. The Meissner effect suggests that perfect diamagnet- 
ism is an essential property of the supercondi~cting state. 

\'ire expect another differe~~ce between a superconductor and a perfect 
condirctor, defined as a cor~ductor in which the electrons have an infinite srrean 
free path. W e n  the problem is solved in detail, it turns out that a perfect 
conductor when placed in a magnetic field cannot produce a perrrlarlent eddy 
current screen: the field will penetrate about 1 cm in an hour.:' 

The ~nag~letization curve expected for a supercorlductor under the condi- 
tions or  the Mcissner-Ochsenfeld experiment is sketched in Fjg. 4a. This ap- 
plies quantitatively to a specimen in the forrn of a long solid cylinder placed in 
a longitudinal magnetic field. Pure speci~nens of many materials exhibit this 
behavior; they are called type I superconductors or, formerly, soft super- 
conductors. The values of H, are always too low for type I supercunductors to 
have application i11 coils for supcrcond~~cting magnets. 

Other materials exhibit a magnetization curve of the form of Fig. 4b and 
are known as type 11 superconductors. They terid to be alloys (as in Fig. 5a) 
or transition metals with high values of the electrical resistivity in the normal state: 
that is, thc electronic mean free path in the normal state is short. We shall see later 
why the mean free path is involved in the "magnctiwtion" of superconductors. 

Tjye I1 superconductors have supercondi~cting electrical properties up to 
a field denoted by H,,. Behveen the lower critical field H,, and the upper criti- 
cal field H,,  the flux density R # 0 and the Meissner effect is said to be incom- 
plete. The value of H,, may be 100 times or more higher (Fig. Sb) than 

'Diarrragnctism, the magnetization LU, and the magnetic susceptibility are defined in 
Chapter 14. The magnitude of the apparent diamagnetic susceptibility of hulk s~lpercur~ductors is 
vely much larger than in typiral diamagnetic substa~lces. In (I), M is the magnetization eql~ivalent 
to the superco~~ductirig currents in the specimen. 

3A. B. Pippard. Dynamics of condvclion electrons, Gordon and Breach, 1965. 
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Applicd mapctic field B,  + 

(a! 

41 H, 4 2  
Applied rnag~etic field B,  - 

Figure 4 (a) Magnetization versus applied magnetic field for a bulk snpercooductor exhibiting a 
complete Meissner effect (perfect diamagnetism). A superconductor with this behavior is callcd a 
type I ruperconductor. Above the critical field H ,  the specimen is a normal condl~ctor and the mag- 
netization is too small to be seen on this scale. Xote that minus 4vBf is plotted on the vertical scale: 
the negative value o lM corresponds to damagnclism. (b) Supcrconducti~~g lrlagnetizatio~l cuwe of- 
a type I1 superconductor The flnx starts to penetrate the specimen at a field H,, lower than the 
thermodynamic critical field ff'. The specimen is in a vortex state behveen H,, and H,,; and it has 
superconducting electrical propcrtics up to H,,. Ahovc H,, the speci~rren is a nor~~la l  conductor ill 
every respect, except for possible sllrfacr effects. For given H, the area under the magnetization 
curve is the same for a type I1 superconductor as for a type 1. (CGS units in all parts of this figure.) 

the value of the critical field H,, calculated from the thermodynamics of the 
transition. In the region benveen HC1 and H , 2  the superconductor is threaded 
by flux lines and is said to be in the vortex state. A field H,, of 410 k c  (41 tes- 
las) has been attained in an alloy of Nb, Al, and Ge at the boiling point of he- 
lium, and 540 kG (54 tcslas) has been reported for PbMo6S8. 

Commercial solenoids wonnd with a hard superconductor producc high 
steady fields over 100 kG. A "hard supercondi~ctor" is a type I1 snperconduc- 
tor with a large magnetic hysteresis, usually induced by mechanical treatment. 
Such rnaterials have an important medical application in magnetic resonance 
imaging (MKI). 

Heat Capacity 

In all superconductors the entropy decreases markedly on cooling below 
the critical temperature T,. Measurements for aluminum are plotted in Fig. 6. 
The decrease in entropy between the ~lorrnal state and the superconducting 
statc tclls us that the superconducting state is more ordered than the normal 
state, for the entropy is a mcasurc of thc disorder of a system. Some or all of the 
electrons thermally excited in the normal state are ordered in the snpercon- 
ducting state. The change in entropy is small, in aluminum of the order of lo-" 
kg per atom. The small entropy change must mean that only a small fraction (of 
the order of of the conductiorl electrons participate in the transition to 
the ordered superconducting state. The free energies of normal and supercon- 
ducting states are compared in Fig. 7. 
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Applied magnetic field B,  in gauss 

Figure 5a S~~perconductimg ~~ragnctization curves of annealed polycrystalline lead and lead- 
indium alloys at 4.2 K. (A) lead; ( R )  lead-2.08 u*. percent indium; (C) lead-8.23 wt. percent 
indinm; ( D )  lad-20.4 wl, percent indium. (After Livingston.) 

Temperature, K 

Figure 5b Strong magnetic fields are within thc capability of certain Type I1 materials. 



Temperature, K 

Figure 6 E~~t ropy  S of aluminnm in the l~nrrnal and superconducting states as a function of the 
temperature. The entropy is lower in the superconducting state because thc clcctrons are murc ur- 
dered here than in the normal statc. At any tenlyerature below the critical temperature Tc the speci- 
men car1 be put in the normal state hy application of a magnetic field stronger than the critical field. 

The heat capacity of gallium is plotted in Fig. 8: (a) compares the normal 
and superconducting states; (b) shows that the electronic contribution to the 
heat capacity in the superconducting state is an exponential form with an argn- 
ment proportiond to - 1/T, suggestive of excitation of electrons across an en- 
ergy gap. An energy gap (Fig. 9) is a characteristic, but not universal, feature of 
the supcrconducting state. The gap is accou~lted for by the Bardeen- 
Cooper-Schrieffer (RCS) thcory of superconductivity (see Appe~ldix H). 

Energy Gap 

The energy gap of superconductors is of entirely different origin and na- 
ture than the energy gap of insulators. In an insulator the energy gap is caused 
by the electron-lattice interaction, Chapter 7. This interaction ties the electrons 
to the lattice. In a superconductor the i~nportarlt interaction is the electron- 
electron interaction which orders the electrons in k space with respect to t l ~ e  
Fermi gas of electrons. 

The argument of the exponential factor in the clcctronic heat capacity of a 
superconductor is found to be -E&2kBT and not -Edk ,T .  This has been 
learnt from corriparison with optical and electron tunneling determinations of 
the gap E,. Values of the gap in several superconductors are given in Table 3. 

The transition in zero magnetic field f ro~n the superconducting state to 
the normal statc is observed to be a second-order phase transition. At a 
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Figure 7 Experilllcntal values of the fiec energy as a fimction of temperatnre fur alurninum in 
the ~u~crconducting state and in the normal state. Bclow the transition tc~nperature T, = 1.180 K 
the free energy is lower in the silperconducting state. The two curves merge at thc transition tem- 
perature, so that the phase transition is second order (there is 11" latent heat of transition at T,). 
The curve F, is measured in zero magnetic field, and F> is measured in a magnetic field snfiicient 
to put the specirncn in the normal state. (Courtesy of U. E. Phillips.) 
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Figure 8 (a) The heat capacity of gallium in the norrnal and snpercondlcti~~g states. The normal 
state (which is restored by a 200 G field) has electronic, lattice, and (at low tempenrturcs) nuclear 
rluddrupole contrihntions. In (b) the electronic part C,, of the heat capacitj' in the soper~vnduct- 
ing state is plotted on a log scale versus T,fl: the cxpo~~ential dependence on 1IT is evident. Here 
y = 0.60 mJ mol-I deg-'. (After N. E. PlliUips.) 
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Figure 9 (a) Conduction band in the normal state: (h) enerby gap at the Fermi level in the super- 
conducting state. Electrons in excited states ahove the gap hehave as  normal electrons in rf Fields: 
they cause resistance; at dc they are shorted out hy the superconducting electrons. The gap Ez is 
exaggerated in the figure: tn~ically l$ - lo-' E,;. 

Table 3 Energy gaps in superconductors, at T = 0 

second-order transition there is no latent heat, but there is a discontinuity in 
the heat capacity, evident in Fig. 8a. Further, the energy gap decreases contin- 
uously to zero as the temperature is increased to the transition temperature T,,  
as in Fig. 10. A first-order transition would be characterized by a latent heat 
and by a discontinuity in the energy gap. 

Microwave and Infrared Properties 

The existence of an energy gap means that photons of energy less than the 
gap energy are not absorbed. Nearly all the photons incident are reflected as 
for any metal because of the impedance mismatch at the boundary between 
vacuum and metal, but for a very thin (-20 A) film more photons are transrnit- 
ted in the superconducting state than in the normal state. 



Figure 10 Reduced values of the observed 
energy gap E,(T)/E,(O) as a functioil of the 
reduced temperature T/T,, after Tomsend and 
Sutton. The solid curve is drawn for the BCS 
theory 

For photon energies less than the encrgy gap, the resistivity of a supercon- 
ductor va~~islles at absolute zero. At T 4 T,  the resistance in the superconduct- 
ing state has a sharp threshold at the gap energy. Photons of lower energy see a 
resistanceless sl~rface. Photons of higher energy than t l ~ e  energy gap see a re- 
sistancc that approaches that of the normal state because such photons causc 
transitions to unoccupied normal energy levels above the gap. 

As the temperature is increased not only does thc gap decrease in energy, 
but the resistivity for photons with energy bclow the gap energy no longer van- 
ishes, except at zero frequency. At zcro frequency the superconducting elec- 
trons short-circuit any normal electrons that have been ther~irally excited 
above the gap. At finite frequencies the inertia of t l ~ e  superco~lducting elec- 
trons prevents them from completely screerlirlg the electric field, so that ther- 
mally excited normal electrons now can absorb energy (Problem 3). 

Isotope Effect 

It ha5 been observed that the critical temperature of supcrcondi~ctors 
varies with isotopic mass. I11 mercury T,  varies from 4.185 K to 4.146 K as the 
average atomic mass A4 varies from 199.5 to 203.4 atomic mass units. The tran- 
sition terr~perature changes smoothly when we mix different isotopes of the 
same element. The experimental resillts within each series of isotopes may be 
fitted by a relation of the form 

MOT, = constant . (2) 

Observed values of cu are given in Table 4 



Tahle 4 Tsutope effect in superconductors 

Esperirnental values of w in MaT, = constant, where A4 is the isotopic mass. 

Substance Substance 

From the dependence of T,  on the isotopic mass we learn that lattice 
vibrations and hence electron-lattice interactions arc deeply involved in super- 
conductivity This was a fundamental discovery: there is no other rcason for 
the superconductirlg transition temperature to depend on the number of new 
trons in the nucleus. 

Thc orignal BCS model gave the result ?: eDebvr a M-'I2 , so that cu = 

in (2), bnt the inclusion of coulomb interactions between the electrons 
changes the relation. Nothing is sacrcd about a = i. The absence of an isotope 
effect in Ru and Zr has been accounted for in tcrms of the electron band struc- 
ture of these metals. 

THEORETICAL SURVEY 

A theoretical understandir~g of the phenomena associated with supercon- 
dnctivity has been reached in several ways. Certain results follow directly from 
thermodynamics. Many important results can be described by p~~enomenolog- 
ical equations: the London eqnations and the Landau-Ginzburg equations 
(Appendix 1). A successful quantum theory of s~iperconductivity was given by 
Bardeen, Cooper, and Schrieffer, and has provided the basis for snhscqucnt 
work. Josepl~son and Anderson discovered the importance of the phase of the 
superconducting wavefunction. 

Thermodynamics of the Superconducting Transition 

The transition between the normal and superconducting states is thermo- 
dynamically reversible, just as tlie transition between liquid and vapor phases 
of a substance is reversible. Tbus we may apply therrnody~~arnics to the transi- 
tion, and we thereby obtain an expression for the entropy difference between 
normal and supercond~~cting states in tcrms of the critical field curve H ,  ver- 
sus T. This is analogous to the vapor pressnre eq~iation for thc liquid-gas 
coexistence cunTe (TP, Chapter 10). 
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We treat a type I superconductor with a complete Meissner effect. so that 
B = 0 inside the superconductor. We shall see that the critical field H,  is a quan- 
titative measure of the free energy difference between the superconducting and 
normal states at constant temperature. The symbol H,  will always refer to a bulk 
specimen, never to a thin film. For type I1 superconductors, H,  is understood to 
be the thermodynamic critical field related to the stabilization free energy. 

The stabilization free energy of the superconducting state with respect to 
the normal state can be determined by calorimetric or magnetic measure- 
ments. In the calorimetric method the heat capacity is measured as a function 
of temperature for the superconductor and for the normal conductor, which 
means the superconductor in a magnetic field larger than H,. From the differ- 
ence of the heat capacities we can compute the free energy difference, which 
is the stabilization free energy of the superconducting state. 

In the magnetic method the stabilization free energy is found from the 
value of the applied magnetic field that will destroy the superconducting 
state, at constant temperature. The argument follows. Consider the work done 
(Fig. 11) on a superconductor when it is brought reversibly at constant tem- 
perature from a position at infinity (where the applied field is zero) to a posi- 
tion r in the field of a permanent magnet: 

M-dBo , (3) 

_=aJ 
Superconductor phase 

jm = H, -\~ormal phase 
(coexisting in 
equilibrium) 

Figure 11 (a) A superconductor in which the Meissner effect is complete has B = 0, as if the 
magnetization were M = -B,14~, in CGS units. (h) When the applied field reaches the value B.,, 
the normal state can coexist in equilibrium with the superconducting state. In coexistence the free 
energy densities are equal: F,(T, B,,) = F,(T B,). 



per unit volume of specimen. This work appears in the energy of the magnetic 
field. The thermodynamic identity for the process is 

dF = -M .dB, , ( 4 )  

as in TP, Chapter 8. 
For a superconductor with M related to B, by ( 1 )  we have 

The increase in the free energy density of the superconductor is 

on being brought from a position where the applied field is zero to a position 
where the applied field is B,. 

Now consider a normal nonmagnetic metal. If we neglect the small 
susceptibility4 of a metal in the normal state, then M = 0 and the energy of the 
normal metal is independent of field. At the critical field we have 

FN(B,) = FN(O) . (7)  
The results ( 6 )  and (7) are all we need to determine the stabilization 

energy of the superconducting state at absolute zero. At the critical value B,, 
of the applied magnetic field the energies are equal in the normal and super- 
conducting states: 

In SI units H ,  = B,,/p, ,  whereas in CGS units H,  = B,,. 
The specimen is stable in either state when the applied field is equal to 

the critical field. Now by (7)  it follows that 

4This is an adequate assumption for type I superconductors. In type I1 superconductors in 
high fields the change in spin paramagnetism of the conduction electrons lowers the energy of the 
normal phase significantly In some, hut not all, type I1 superconductors the upper critical field is 
limited by this effect. Clogston has suggested that H,,(max) = 18,400 T,, where H,, is in gauss and 
T, in K. 
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-8 Figure 12 Tlrc frce energy density F, of a nonmag- 

p netic normal metal is approximately independent of tlrc 

c 
intensity of the applied magnetic field B,. At a temper- 
ature T : T, the nlctal is a superconductor in zero mag- 

a, 
e, netic field, so that FJT, 0) is Iowver than F,(T, 0). AII 
Lr, applied magnetic field increases Ii, by A ~ X T ,  in CGS 

~mits, so that Fs(T, B,) = FF(T, 0)  + B;/Xv. If B, is larger 
than the critical field R,, the free energy density is 
lowcr in the normal state than in the superconducting 

I 
state, and now the rror~~ral state is the stable state. The 

B, origin of the vertical scale in the drawing is at Fs(T, 0). 
Applied magnetic field B, -+ The figurc cqually applies to Us and U, at ?' = 0. 

where AF is the stabilization free e n e r a  density of the superconducting state. 
For alu~ninum, B,, at absolute zcro is 105 gauss, so that at absolute zero 
AF = ( 105 )~ /8n  = 439 erg cm 3,  in excellent agreement with the result of 
thermal measurcments, 430 erg ~ m - ~ .  

At a finite temperature the normal and superconducting phases 
are in equilibrium when the magnetic field is such that their free encrgies 
F = U - TS are equal. The free energies of the two phases are sketched 
in Fig. 12 as a furiction of the magnetic field. Experimental curves of the 
free energes of the two phases for aluminiim are shown in Fig. 7. Because 
the slopes dF/dT are equal at the transition temperature, there is no latent 
heat at T,. 

London Equation 

We saw that the Meissner effect implies a magnetic susceptibility X = - 1 / 4 ~  
in CGS in the superconducting state or, in SI, X = - 1. Can we modify a consti- 
tutive equation of electrodyna~nics (such as Ohm's law) in some way to obtain 
the Meissr~er effect? We do not want to modify the Maxwell equations them- 
selves. Electrical conduction in the normal state of a metal is described by 
Ohm's law j = uE. We need to modify this drastically to describe conduction 
and thc hleissner effect in the superconducting state. Let us make a postulate 
and see what happens. 

\Ve postulate that in the superconducting state the current density is di- 
rectly proportiorial to the vector potential A of the local magnetic field, where 
B = curl A. The gauge of A will bc specified. In CGS units we write the 
constant of proportionality as -c/4d; for reasons that will become clear. 



Here c is the speed of light and A, is a constant with the dimensions of length. 
In SI units we write -Up,+!. Thus 

C (CGS) j = --A ; 
4TrA; 

This is the London equation. We express it another way by taking the curl of 
both sides to obtain 

C 
(CGS) curl j = - -B ; 

4 5 ~ ~ :  

- a  - 
1 (SI) curl j = -- B (11 )  

g,+: 

The London equation (10) is understood to be written with the vector po- 
tential in the London gauge in which div A = 0, and A, = 0 on any external 
surface through which no external current is fed. The subscript n denotes the 
component normal to the surface. Thus div j = 0 and j, = 0, the actual physi- 
cal boundary conditions. The form (10) applies to a simply connected super- 
conductor; additional terms may be present in a ring or cylinder, but (11) 
holds true independent of geometry. 

First we show that the London equation leads to the Meissner effect. By a 
Maxwell equation we know that 

45T (CGS) curl B = j ; 

under static conditions. We take the curl of both sides to obtain 

(CGS) curl curl B = -V'B = curl j ; 

air1 curl B = - V'B = k, curl j ; 

which may be combined with the London equation (11) to give for a super- 
conductor 

This equation is seen to account for the Meissner effect because it does 
not allow a solution uniform in space, so that a uniform magnetic field cannot 
exist in a superconductor. That is, B(r) = Bo = constant is not a solution of 
(13) unless the constant field Bo is identically zero. The result follows because 
V2B, is always zero, but B,/A; is not zero unless Bo is zero. Note further that 
(12) ensures that j = 0 in a region where B = 0. 

In the pure superconducting state the only field allowed is exponentially 
damped as we go in from an external surface. Let a semi-infinite superconductor 



10 Superconductivity 275 

Figure 13 Penetration of an applied magnetic 
field into a semi-infinite superconductor. The 
penetration depth A is defined as the distance in 
which the field decreases by the factor eCL. Typi- 
cally, A - 500 A in a pure superconductor. 

occupy the space on the positive side of the x axis, as in Fig. 13. If B(0) is the 
field at the plane boundary, then the field inside is 

for this is a solution of (13). In this example the magnetic field is assumed to 
be parallel to the boundary. Thus we see hL measures the depth of penetration 
of the magnetic field; it is known as the London penetration depth. Actual 
penetration depths are not described precisely by hL alone, for the London 
equation is now known to be somewhat oversimplified. It  is shown by compari- 
son of (22)  with (11)  that 

(CGS) hL = (m2/4mq2)u2  ; 

for particles of charge q and mass m in concentration n. Values are p e n  in 
Table 5. 

An applied magnetic field B ,  will penetrate a thin film fairly uniformly if 
the thickness is much less than hL; thus in a thin film the Meissner effect is not 
complete. In a thin film the induced field is much less than B,, and there is 
little effect of B, on the energy density of the superconducting state, so that 
(6) does not apply. I t  follows that the critical field H, of thin films in parallel - - .  
magnetic fields will be very high 

Table 5 Calculated intrinsic coherence length and 
London penetration depth, at absolute zero 

Intlins~c Pippard London 
coherence penetration 
length 50, depth A,, 

Metal in cm in 10-%m A ~ / 5 0  

Sn 23. 3.4 0.16 
A1 160. 1.6 0.010 
Pb 8.3 3.7 0.45 
Cd 76. 11.0 0.14 
Nb 3.8 3.9 1.02 

After R. Meservey and B. B. Schwartz. 



Coherence Length 

The London penetration depth A, is a fundamental lerlgth that character- 
izes a superconductor. An indcpcndent length is the coherence length 5. The 
coherence length is a measure of the distance within which the supercouduct- 
i r~g  electron concentration cannot change drastically in a spatially-varying 
magnetic field. 

The London equation is a locul equation: it relates the current density at a 
point r to the vector potential at the same point. So long as j ( r )  is given as a 
constant time A(r) ,  thc current is required to follow exactly any variation in 
the vector potential. B i~ t  the cohcrcncc lcngth 5 is a measure of the range over 
which we should average A to ohtain j .  It is also a mcasure of the minimum spa- 
tial extent of a transition layer between normal and superconductor. Thc coher- 
ence lerlgtll is best introduced into the theory through the Landau-Ginzhllrg 
equations, Appendix 1. Now we give a plausibility argument for the energy re- 
q~iircd to modulate the superconducting alectron concentration. 

Any spatial variation in the state or  an electronic syste111 requires extra 
kinetic energy. A modillation of an cigcnfunction increases the kinetic energy 
because the modulation will increase the integral of d'p/dx2. It is reasonable to 
restrict the spatial variation of j ( r )  in such a way that thc cxtra energy is less 
than the stabilizatiori energy of the superconducting state. 

We compare the plane wave $(x) = dkX with the strongly modulated 
wavcfunction: 

,(,) = 2-112 (e:(kiq)r + &) , (15a) 

The probability dcnsity associated with the plane wave is u~iiforrrl in space: 
$*$ = e-"' eik = 1 ,  whereas q * q  is modulated with the wavevector q :  

p*q = ; ( , - N k + q ) x  + ,-ik~)(~iik+ql' + & I )  

= i ( 2  + eiQX + e-qX) = 1 + cos qx . (15b) 

The kinetic energy of the wave $ ( x )  is 6 = fi2k2/2m; thc kinctic energy of 
the rrlodulated density distribution is higher, for 

where we neglcct q' for q < k. 
The increase of energy requircd to modulate is R?kq/2nx. If this increase 

exceeds the energy gap E,, s~spercondnctivity will be destroyed. The critical 
value q ,  of the modulation wavevector is given by 
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We define an intrinsic coherence length 5, related to the critical modu- 
lation by 5, = lly,. W7e frave 

where cF is the electron vclocity at the Fermi surface. On the BCS theory a 
similar result is found: 

to = z l i o d ~ E ,  . u (17) 

Calculated values of 5, from (17) are p e n  in Table 5. The intrinsic coherence 
length to is characteristic of a pure superconductor. 

In impure materials and in alloys the coherence length 5 is shorter than 6". 
This may be understood qualitatively: in impure material the electron eigen- 
functions already have wiggles in them: wc can construct a given localized 
variation of current density with less cncrgy from wavefunctions with wiggles 
than from s~nooth wavefunctions. 

The cohcrcnce length first appeared in the Landau-Ginzburg equations: 
these equations also follow from the BCS theory. They describe the structure 
of the transition layer between normal and superconducting phases in contact. 
The coherence length and the actual penetration depth A depend on the mean 
free path C of the electrons measured in the normal state; the relationships are 
indicated in Fig. 14. When the superconductor is very impure, with a very 
srr~all C, then 5 = (Eoe)lr%nd A = A, (t0/t)"" so that A15 = A,/[. This is the 
"dirty superconductor" limit. The ratio A/< is denoted by K .  

BCS Theory of Superconductivity 

The basis of a quantum theory of superconductivity was laid by the classic 
1957 papers of Bardeen, Cooper, and Schriefler. There is a "BCS theory of 
superconductivity" with a very wide range of applicability, from He3 atoms in 
their conderlsed $lase, to type I and type I1 metallic superconductors, and to 
high-temperature supercondnctors hased on planes of cuprate ions. Further, 

Figure 14 Penetration depth A and the coherence 
length 6 as fi~nctinns of the mean free path 8 of the 0.2 
conduction electrons in the normal state. All 

I 

0.1 lenbehma in units of $, the intrinsic coherence 
length. The mNpS are sketched for $ = 10AP For 

0 1 I short mean free ~ a t h s  the coherence length be- 
0 1 2 comles sl~orter and thc penetration depth becomes 

- [ - .  longer The increase in the ratio dl[ favors type I1 
50 superconductivity. 



there is a "BCS wavefunction" cornposed of particle pairs kl' and -k&, which, 
when treated hy the BCS theory, gives the lamiliar electronic superconducti\r- 
ity observed in metals and exhihits the cncrgy gaps of Table 3. This pairing is 
known as s-wave pairing. There are other forms of particlc pairing possible 
with the BCS theory, but we do not have to consider other than the RCS wavc- 
function here. In this chapter we treat the specific accomplishments of BCS 
theory with a BCS wavefunction, which include: 

1. An attractive interaction between electrons can lead to a ground state 
separated from excited states by an energy gap. The critical field, the thermal 
properties, and most of the electrorriagnetic properties are consequences of 
the energy gap. 

2. The electron-lattice-electron interaction leads to an energy gap of the 
observed magnitude. The indirect interaction proceeds wlien one electron in- 
teracts with the lattice and deforms it; a second clcctron sees the deformed 
lattice and adjusts itself to take advantage of the deformation to lower its cn- 
ergy. Thus the second electron interacts with the first electron via the lattice 
deformation. 

3. The penetration depth and the coherence length emerge as natural 
consequences of thc BCS theory. The London equation is obtained for mag- 
netic fields that vary slowly in space. Thus the central phenomenon in super- 
conductivity, the Meissner effect, is ohtained in a natural way. 

4. The criterion for the transition temperatilre of an elcmcnt or alloy in- 
volves the electron density of orbitals D(eli) of one spin at the Fermi level and 
the electron-lattice interaction U ,  which can be estimated from the electrical 
resistivity because the resistivity at roorn temperature is a measure of the 
electron-phonon interaction. For UD(c,) 4 1 the BCS theory predicts 

where 19 is the Debye temperature and U is an attractive interaction. Thc rc- 
sult for T, is satisfied at least qualitatively by the experimental data. There is 
an interesting apparent paradox: the higher the resistivity at room temperature 
thc higher is U, and thus the ntore likely it is that the metal will be a super- 
condnctor when cooled. 

5. Magnetic f lnx  through a superconducting ring is quantized and the ef- 
fective unit of charge is 2e rather than e. The RCS ground state involves pairs 
of electrons; thus flux quantization in terms of the pair charge 2e is a conse- 
quence of the theory. 

BCS Ground State 

The filled Fermi sea is the ground state of a Ferrr~i gas of noninteract- 
ing electrons. This state allows arbitrarily small excitations-we can forrr~ an 
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Figure 15 (a) Probability P that an or- 
bital of kinetic energy E is occupied in the 
ground state of the noninteracting Fermi 
gas; (b) the BCS ground state differs 
from the Fermi state in a region of width 
of the order of the energy gap Ep. Both 
curves are for absolute zero. 

excited state by taking an electron from the Fermi surface and raising it just 
above the Fermi surface. The BCS theory shows that with an appropriate at- 
tractive interaction between electrons the new ground state is superconduct- 
ing and is separated by a finite energy Eg from its lowest excited state. 

The formation of the BCS ground state is suggested by Fig. 15. The BCS 
state in (b) contains admixtures of one-electron orbitals from above the Fermi 
energy E ~ .  At first sight the BCS state appears to have a higher energy than the 
Fermi state: the comparison of (b) with (a) shows that the kinetic energy of the 
BCS state is higher than that of the Fermi state. But the attractive potential 
energy of the BCS state, although not represented in the figure, acts to lower 
the total energy of the BCS state with respect to the Fermi state. 

When the BCS ground state of a many-electron system is described in 
terms of the occupancy of one-particle orbitals, those near eF are filled some- 
what like a Fermi-Dirac distribution for some finite temperature. 

The central feature of the BCS state is that the one-particle orbitals are 
occupied in pairs: if an orbital with wavevector k and spin up is occupied, then 
the orbital with wavevector -k and spin down is also occupied. 1f k'f' is vacant, 
then -kJ is also vacant. The pairs are called Cooper pairs, treated in 
Appendix H. They have spin zero and have many attributes of bosons. 

Flux Quantization in a Superconducting Ring 

We prove that the total magnetic flux that passes through a superconduct- 
ing ring may assume only quantized values, integral multiples of the flux quan- 
tum 2 d c / q ,  where by experiment q = 2e, the charge of an electron pair. Flux 
quantization is a beautiful example of a long-range quantum effect in which 
the coherence of the superconducting state extends over a ring or solenoid. 

Let us first consider the electromagnetic field as an example of a similar 
boson field. The electric field intensity E(r) acts qualitatively as a probability 
field amplitude. When the total number of photons is large, the energy density 
may be written as 

E* ( r ) E ( r ) / 4 ~  n(r)h.w , 



where n(r) is the number density of photons of frequency o. Then we Inay 
write the electric field in a semiclassical approximation as 

where O ( r )  is the phase of thc ficld. A similar probability amplitude describes 
Cooper pairs. 

The arguments that follow apply to a hoson gas with a large number of 
boso~is i11 tlie same orbital. We then can treat the boson probability amplitude 
as a classical quantity, just as the electromagnetic field is used for photons. Both 
amplitude and phase are then rneani~igful and observable. The arguments do 
not apply to a metal in the normal state because an alectrorl in the normal state 
acts as a single nnpaircd fcrmion that cannot be treated classically. 

We first show that a charged boson gas obeys the London equation. 
Let $(r) be the particle probability ampliti~de. Wc suppose that the pair 
conceritratior~ n = $*$ = constant. At absolute zero n is one-half of thc con- 
centration of electrons in tlie co~~duction band, for n refers to pairs. Then we 
may write 

The phase B ( r )  is important for what follows. I11 SI units, set c = 1 irl the equa- 
tions that follo\i7. 

The velocity of a particle is, from the Hamilton cquations of mechanics, 

The particlc flux is given by 

so that the electric current density is 

\t'e  nay take the curl of both sides to obtain the London equation: 

nq2 curl j = --B , rrx 

with use of the fact that the curl of thc gradirnt of a scalar is identically zero. 
The constant that multiplies B agrees with (14a). Wc rccall that the Meissner 
effect is a consequence of the London equation, which \i~e have hcrc 
derived. 

Quantization of the magnetic flux through a ring is a dramatic conse- 
quencc of Eq. (21). Let us take a closed path C througl~ tlle interior of the 
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Flux lines 

Figure 16 Path of integration C through the interior of a 
superconducting ring. The flux through the ring is the sum 
of the flux @., from external sources and the flux a,, from 
the superconducting currents which flow in the surface of 
the ring; @ - a,,, + @,,. The flux a is quantized. There is 
normally no quantization condition on the flux from exter- 
nal sources, so that a,, must adjust itself appropriately in 
order that @ assume a quantized value. 

superconducting material, well away from the surface (Fig. 16). The Meissner 
effect tells us that B and j are zero in the interior. Now (21) is zero if 

ficV8 = qA . (23) 

We form 

for the change of phase on going once around the ring. 
The probability amplitude cl, is measurable in the classical approximation, 

so that cl, must be single-valued and 

Oz - 81 = 23rs , (24) 

where s is an integer. By the Stokes theorem, 

where du is an element of area on a surface bounded by the curve C, and @ is 
the magnetic flux through C. From (23), (24), and (25) we have 2&s = q@, or 

@ = (&&/q)s . (26) 

Thus the flux through the ring is quantized in integral multiples of 2&/q. 
By experiment q = -2e as appropriate for electron pairs, so that the quan- 

tum of flux in a superconductor is 

(CGS) @, = 2 d c / %  -- 2.0678 X lo-' gauss cm2 ; 

This flux quantum is called a fluxoid or fluxon. 
The flux through the ring is the sum of the flux @,,, from external sources 

and the flux @,, from the persistent superconducting currents which flow in 



the surface of the ring: @ = a,, + Q,,. The flux cP is quantized. There is nor- 
mally no quantization condition on the flux from external sources, so that @,, 
must adjust itself appropriately in order that @ assume a qiiantizcd value. 

Duration of Persistent Currents 

Consider a persistcnt current that flows in a ring of a type I superconduc- 
tor of wire of length L and cross-sectional area A.  The persistent current main- 
tains a flux through the ring of some integral number offluxoids (27). A fluxoid 
ca~lnot leak out of the ring and thereby reduce the persistcnt current unless by 
a thermal fluctuatio~~ a minimum volume of the supercondi~cting ring is mo- 
mentarily in the normal state. 

The probability per unit time that a fluxoid will leak out is the product 

P = (attempt frequency)(activation harrier factor) . (28) 

The activation harrier factor is exp(-AF/kBT), where t l ~ e  free energy of the 
barrier is 

AF = (minimum volume)(excess free energy density of normal state) . 

The minimu111 volume of the ring that must turn normal to allow a fluxoid to 
escape is of the order of RS2, where 6 is the coherence length of the snpcr- 
cond~ictor and R the wire thickness. The excess free energy density of the nor- 
mal state is H ; / ~ P ,  whence the barrier free energy is 

Let the wire thickness he em, thc coherence length = lo-'' cm, and 
H ,  = lo3 6; then AF - erg. As we approach the transition temperature 
from below, AF will decrease toward zero, but the vali~e given is a fair cstimate 
between absolute zero and 0.8 T,. Thus the activation barrier factor is 

Thc characteristic frequency with which t l ~ e  minimum volume can attempt 
to change its state must be of the order of Eg/ f i .  If Eg = erg, the attempt 
frequency is =10-15/10-27 = 1012 s-'. The leakage probability (28) beco~rles 

The reciprocal of this is a measure of the time required for a fluxoid to leak 
out, T = 1/P = 1 0 ~ . ~ ~ ~ ~ ~ ~ s .  

The age of the universe is only loL8 s, so that a fluxoid will not leak out in 
the age of the universe, under our assumed conditions. Accordingly, the cur- 
rent is maintained. 

There are two circumstances in which the activation energy is much lower 
and a fluxoid can be observed to lcak out of a ring-either very close to tlle 
critical temperature, where H ,  is ver)i small, or whcn the material o l  the ring is 



a type I1 superconductor and already has fluxoids embedded in it. These spe- 
cial situations are discussed in the literature under the subject of fluctuatio~is 
in s~iperconductors. 

Type I1 Superconductors 

There is no difference in the mechanism of superconductivity in type I 
and type I1 superconductors. Both types have similar thermal properties at the 
superconductor-normd tra~isition in zero magnetic field. But the Meissner 
effect is eritiraly different (Fig. 5 ) .  

A good type I superconductor cxclildes a magnetic field until super- 
conductivity is destroycd siiddenly, and then the field penetrates completely. A 
good type I1 supercond~ictor excludes the field completely up to a field H,, .  
Above HC1 the field is partially excluded, but the speci~rieri re~riains electrically 
snperconducting. At a much higher field, H,,, the flux penetrates completely 
and superconductivity vanishes. (An outer surface layer of the spccimcn may 
remain supercor~ductirlg up to a still higher field Hc3.)  

A I ~  i~riportant difference in a type I and a type I1 s~iperconductor is in the 
rnean free path of the conduction electrons in the normal state. If the coher- 
ence length 5 is longer than the penetration depth A ,  the superconductor will 
be typc I. Most pilre metals are type I, with A/[ < 1 (see Table 5 on p. 275). 

Biit, when the mean free path is short, the coherence length is short and 
the penetration depth is great (Fig. 14). This is the situation when A/( > 1, 
and the superconductor will be type 11. 

We can clia~ige some ~netals from type I to type I1 by a modest addition 
of an alloyi~ig element. In Figure 5 the addition of 2 u7t. percent of indium 
changes lead from typc I to type IT, although the transition temperature is 
scarcely changcd at all. Nothing fundamental has been done to the electronic 
struetiire of lead by this amount of alloying, hut the magnetic behavior as a 
s~iperconductor has changed drastically. 

The theory of type I1 superconductors was developed by Ginzbiirg, 
Landau, Abrikosov, and Gorkov. Later Kunzler and co-workers observed that 
NbnSrl wires can carry large supercurrcnts in fields approaching 100 k c ;  this 
led to the commercial development of strong-field superconducting magnets. 

Consider thr interface between a region in the superconducting state and 
a region in the normal state. The interface has a surface eriergy that nray be 
positive or negative and that decreases as the applied magnetic field is in- 
creased. A superconductor is type 1 if the surface energy is always positive as 
the niagrietic field is increased, and type I1 if the surface cncrgy becomes 
negative as the niagnetic field is increased. Thc sign of'the snrface energy has 
no importance lor the transition temperature. 

The frcc energy of a hrilk superconductor is increased when the magnetic 
field is expelled. IIowever, a parallel field can penetrate a very thin film nearly 
uniformly (Fig. 171, only a part of the flux is expelled, and the energy of the 



(a)  ( b )  
Figure 17 (a) Magnetic field penetration into a thin film of thickness equal to the penetration 
depth A. The arrows indicate the intensity of the magnetic field. (b) Magnetic field penetration in 
a homogeneous hulk structure in the mixed or vortex state, with alternate layers in normal and su- 
perconducting states. The superconducting layers are thin in comparison with A. The laminar 
structure is shown for convenience; the actual structure consists of rods of the normal state sur- 
rounded by the supercondncting state. (The N regions in the vortex state are not exactly normal, 
hut are described by low values of the stabilization energy density.) 

superconducting film will increase only slowly as the external magnetic field is 
increased. This causes a large increase in the field intensity required for the 
destruction of superconductivity. The film has the usual energy gap and will be 
resistanceless. A thin film is not a type I1 superconductor, but the film results 
show that under suitable conditions superconductivity can exist in high mag- 
netic fields. 

Vortex State. The results for thin films suggest the question: Are there sta- 
ble configurations of a superconductor in a magnetic field with regions (in the 
form of thin rods or plates) in the normal state, each normal region sur- 
rounded by a superconducting region? In such a mixed state, called the vortex 
state, the external magnetic field will penetrate the thin normal regions uni- 
formly, and the field will also penetrate somewhat into the surrounhng super- 
conducting material, as in Fig. 18. 

The term vortex state describes the circulation of superconducting 
currents in vortices throughout the bulk specimen, as in Fig. 19. There is no 
chemical or crystallographic difference between the normal and the supercon- 
ducting regions in the vortex state. The vortex state is stable when the penetra- 
tion of the applied field into the superconducting material causes the surface 
energy to become negative. A type 11 superconductor is characterized by a 
vortex state stable over a certain range of magnetic field strength; namely, 
between HC1 and H,,. 

Estimation of H,, and H,,. What is the condition for the onset of the 
vortex state as the applied magnetic field is increased? We estimate H,, from 
the penetration depth A .  The field in the normal core of the fluxoid will be H,, 
when the applied field is H,,. 
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Type I1 superconductor 

0 

Figure 18 Variation of the magnetic field and en- 
ergy gap parameter A(x)  at the interface of super- 
conducting and normal regions, for type I and 
type I1 superconductors. The energy gap parameter 
is a measure of the stabilization energy density of 
the soperconducting state. 

The field will extend out from the normal core a distance h into the super- 
conducting environment. The flux thus associated with a single core is d2 HC1, 
and this must be equal to the flux quantum a,, defined by (27). Thus 

HC1 = @&rh2 . (30) 

This is the field for nucleation of a single fluxoid. 
At H,, the fluxoids are packed together as tightly as possible, consistent 

with the preservation of the superconducting state. This means as densely as 
the coherence length 5 will allow. The external field penetrates the specimen 
almost uniformly, with small ripples on the scale of the fluxoid lattice. Each 
core is responsible for carrying a flux of the order of ?rt2 H,, which also is 
quantized to @,. Thus 

gives the upper critical field. The larger the ratio All, the larger is the ratio of 

H,, to Hcl. 



Figure 19 Flux lattice in NbSe, at 1,000 gauss at 0 2 K ,  as ~iewed wit11 a scanning tunneling 
microscope. The photo shows the density of states at the Fermi level, as in Figure 23. The vortex 
cores have a high density of states and are shaded white; the superconducting regions are dark, 
with no states at the Fermi level. The amplitude and spatial extent of these states is determined by 
a potential well formed by A(x) as in Fig. 18 for a Type I1 superconductor. The potential well 
confines the core state wavefunctions in the image here. The star shape is a finer feature, a result 
special to NbSe, of the sixfold disturbance of the charge density at the Fermi surface. Photo cour- 
tesy of H. F. Hess. 

It remains to find a relation between these critical fields and the thermo- 
dynamic critical field H, that measures the stabilization energy density of the 
superconducting state, which is known by (9) to be H;/8n-. In a type I1 super- 
conductor we can determine H,  only indirectly by calorimetric measurement 
of the stabilization energy. To estimate H,, in terms of H,, we consider the 
stability of the vortex state at absolute zero in the impure limit 6 < A; here 
K > 1 and the coherence length is short in comparison with the penetration 
depth. 

We estimate in the vortex state the stabilization energy of a fluxoid core 
viewed as a normal metal cylinder which carries an average magnetic field B,. 
The radius is of the order of the coherence length, the thickness of the bound- 
ary between N and S phases. The energy of the normal core referred to the 
energy of a pure superconductor is given by the product of the stabilization 
energy times the area of the core: 
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per unit length. But there is also a decrease in magnetic energy because of the 
penetration of the applied field B, into the superconducting material around 
the core: 

For a single fluxoid we add these two contributions to obtain 

(CGS) f =fmre + fm,=f (HY - BY) . (34) 

The core is stable iff < 0. The threshold field for a stable fluxoid is at f = 0, 
or, with H,, written for B,, 

H,,IH, = .$/A . (35) 

The threshold field divides the region of positive surface energy from the re- 
gion of negative surface energy. 

We can combine (30) and (35) to obtain a relation for H,: 

We can combine (30),  (31), and (35) to obtain 

( H , ~ H , ~ ) ~ =  H,  , 

and 

H,, = (Al()H, = KH, . 

Single Particle Tunneling 

Consider two metals separated by an insulator, as in Fig. 20. The insulator 
normally acts as a barrier to the flow of conduction electrons from one metal 
to the other. If the barrier is sufficiently thin (less than 10 or 20 A) there is a 
significant probability that an electron which impinges on the barrier will pass 
from one metal to the other: this is called tunneling. In many experiments the 
insulating layer is simply a thin oxide layer formed on one of two evaporated 
metal films, as in Fig. 21. 

When both metals are normal conductors, the current-voltage relation of 
the sandwich or tunneling junction is ohmic at low voltages, with the current 
directly proportional to the applied voltage. Giaever (1960) discovered that if 
one of the metals becomes superconducting the current-voltage characteristic 
changes from the straight line of Fig. 22a to the curve shown in Fig. 22b. 

Figure 20 Two metals, A and B, separated by a thin layer of an 
insulator C. 



(a) ib) (c)  id) 

Figure 21 Preparation of an AVAl,OdSn sandwich. (a) Glass slide with indium contacts. (b) An 
aluminum strip 1 mm wide and 1000 to 3000 A thick has been deposited across the contacts. 
(c) The aluminum strip has been oxidized to form an A1,0, layer 10 to 20 A in thickness. (d) A tin 
film has been deposited across the aluminum film, forming an AlIA1,OdSn sandwich. The external 
leads are connected to the indium contacts; two contacts are used for the current measurement 
and two for the voltage measurement. (After Giaever and Megerle.) 

Figure 22 (a) Linear current-voltage 
relation for junction of normal metals 
separated by oxide layer; (b) current- 
voltage relation with one metal normal 
and the other metal superconducting. 

Voltage 
ia) 

l Current 

(a) (b)  
Figure 23 The density of orbitals and the current-voltage characteristic for a tunneling junction. 
In (a) the energy is plotted on the vertical scale and the density of orbitals on the horizontal scale. 
One metal is in the normal state and one in the superconducting state. (b) 1 versus V; the dashes 
indicate the expected break at T = 0. (After Giaever and Megerle.) 

Figure 23a contrasts the electron density of orbitals in the superconductor 
with that in the normal metal. In the superconductor there is an energy gap 
centered at the Fermi level. At absolute zero no current can flow until the 
applied voltage is V = Eg/2e = A/e. 

The gap Eg corresponds to the break-up of a pair of electrons in the 
superconducting state, with the formation of two electrons, or an electron and 
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a holc, in the normal state. The current starts whell eV = A. At finite 
temperatures there is a small current flow even at low voltages, because 
of electrons in the superconductor that are thermally excited across the 
energy gap. 

Josephson Superconductor Tunneling 

Under suitable conditions we observe remarkable effects associated with 
the tunneling of supercollducting electron pairs from a superconductor 
througll a layer of an insulator into another siiperconductor. Such a junction is 
called a weak link. The effects of pair tiinneling include: 

Dc Josephson effect. A dc current flows across the junction in the ab- 
sence of any clcctric or magnetic field. 

Ac Josephson effect. A dc voltage applied across the junction causes 
rf current oscillations across the junction. This effect has been utilized in a 
precision determination of the value of file. Further, an rf voltage applied with 
the dc voltage can then cause a dc current across thc junction. 

Macroscopic long-range quantum intcrference. A dc magnetic field 
applied through a superconducting circiiit containing two junctions causes the 
maximum supcrcurrcnt to show interference effects as a function of magnetic 
field intcnsity. This effect can be utilized in sensitive magnetometers. 

Dc Josephson Effect. Our discussion of Josephson ju~lction phenomena 
follows the discussion of flux quantization. Let +, be the probability amplitude 
of electron pairs on one side of a ju~lction, and let +, be the amplitudr on the 
other side. For sin~plicit~, let both superconductors bc identical. For the pres- 
erit we suppose that they are both at zero potential. 

The time-dependent Schrodinger eqnation ifia+/at = X+ applied to the 
two amplitudes gives 

Here fiT represents the effect of the electron-pair coupling or transfer interac- 
tion across the insulator; T has the dimensions of a rate or frequency. It is a 
measure or the leakagc of into the region 2, and of +, into the region 1. If 
the insulator is very- thick, T is zero and there is no pair tunneling. 

~~t +, = n;/2e'h +2 = nl" , e ' 0  '.Then 

a*, 1 - -- 
an, 80, 

at - , n , m e ' O 1 - + i + l - =  at at -iT& ; 



We multiply (39) by nye- '6  to obtain, with S = 0, - el, 

We multiply (40) by rtin e-'82 to obtain 

Now equate the real and imagi~~ary parts of (41) and similarly of (42): 

an, 
-- - 2 ~ ( n ~  TL,)'!~ sill S ; - an' - - - 2 ~ ( n , n ~ ) ~ s i n  8 ; 
at at (43) 

1/2 
-- T a s .  

at (44) 

If n, n, as for identical superconductors 1 and 2. we haw from (44) that 

a8, - ae, a 
- (0, - 0,) = 0 at at . at 

From (43) we sec that 

The current flow fiom (1) to (2) is proportional to an,lat or, the saIrie 
thing, -an,lat. We therefore conclude from (43) that the current] of super- 
conductor pairs across the ji~nction depends on thc phase diffcrencr 6 as 

where 1, is proportional to the transfer iriteractior~ T. The current J, is the 
maximum zero-voltage current that can be passed by the ju~iction. With 11o 
applied voltage a dc current will flow across the junction (Fig. 24), with a value 
between J ,  and -J, according to thc value of thc phase difference 0, - 8,. 
This is the dc Josephson effect. 

Ac Josephson Effect. Let a dc voltage V be applied across the jiinction. We 
can do this because the junction is an insulator. An electron pair experiences a 
potential energy difference yV on passing across the junction, where q = -2c. 
We can say that a pair on one side is at pote~itial energy -eV and a pair on the 
other side is at eV. The equations olnlotion that replace (38) are 

We proceed as above to find in place of (41) the equation 
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This equation breaks up into the real part 

an,/at = 2T(n1 n2)ln sin 6 , (50) 

/ 
/ 
/ 

/ 
/ 

/ 
/ 

/ 

exactly as without the voltage V ,  and the imaginary part 

ae,/at = (eV/fi) - ~ ( n ~ h , ) ~ ' '  cos 6 , (51) 

which differs from (44) by the term eV/h. 
Further, by extension of (42) ,  

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

X7oItage 
vc 

Figure 24 Current-voltage characteristic of a Josephson 

whence 

an2/& = -2~ (n ,n , ) "~  sin S ; (53)  

ae2/at = -(eV/h) - T(n,/nJm cos 6 . (54) 

junction. Dc currents flow under zero applied voltage op 
to a critical current i,: this is the dc Josephson effect. At 
voltages above V, the junction has a finite resistance, but 
the current has an oscillatory component of frequency 
w = 2eVlh: this is the ac Josepllson cffcct. 

From (51)  and (54)  with n ,  n2, we have 

a(e, - e,)iat = auat = -2etr1h 

We see by integration of (55)  that with a dc voltage across the junction the 
relative phase of the probability amplitudes varies as 

6( t )  = S(0) - (2eVtlh) . (56)  

] =lo sin [6(0) - (2eVtIfi)l . 

The superconducting current is given by (47) with (56) for the phase: 

(57)  



The current oscillates with frequency 

This is the ac Josephson effect. A dc voltage of 1 PV produces a frequency 
of 483.6 MHz. The relation (58)  says that a photon of energy fiw = 2eV is 
emitted or absorbed when an electron pair crosses the barrier. By measuring 
the voltage and the frequency it is possible to obtain a very precise value 
of e/fi. 

Macroscopic Quantum Interference. We saw in (24)  and (26)  that the 
phase difference 0, - 0, around a closed circuit which encompasses a total 
magnetic flux CJ is given by 

The flux is the sum of that due to external fields and that due to currents in the 
circuit itself. 

We consider two Josephson junctions in parallel, as in Fig. 25. No voltage 
is applied. Let the phase difference between points 1 and 2 taken on a path 
through junction a be 6,. When taken on a path through junction b, the phase 
difference is ab. In the absence of a magnetic field these two phases must be 
equal. 

Now let the flux CJ pass through the interior of the circuit. We do this 
with a straight solenoid normal to the plane of the paper and lying inside the 
circuit. By (59) ,  ab - 6, = (Ze/fic)CJ, or 

e e Sb=i30+-CJ ; 6,=60--CJ 
fic fic 

The total current is the sum of Ja and Jb. The current through each junc- 
tion is of the form (47), so that 

e@ 
= 2(Jo sin 6,) cos - 

fic 

Insulator a 

Figure 25 The arrangement for experiment on 
macroscopic quantum interference. A magnetic 
flux passes through the interior of the loop. 
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Figure 26 Experimental trace of J,, versus magnetic field showing interference and diffraction 
effccts for hvo junctions A and B. The field periodicity is 39.5 and 16 mG h r  A and B, respcc- 
titsely. Approximate ~rlaxi~rruln cnrrcnts are 1  mA (A) and 0.5 mA (B). The junction separation is 
3 mm and junction width 0.5 mm for hoth cases. The zero offset of A is due to a background mag- 
netic ficld. (hftcr R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A.  H. Silver.) 

The current varies with and has maxima when 

eQl/fic = ST , s = integer . (61) 

The periodicity of the current is shown in Fig. 26. The short period varia- 
tion is produced by interference from the two junctions, as predicted by (61). 
The longer period variation is a diffraction effect and arises from the finite 
dimensions of each junction-this causes to depend on the particular path 
of integration (Problem 6). 

HIGH-TEMPERATURE SUPERCONDUCTORS 

High T,  or IITS denotes superconductivity in materials, chiefly copper 
oxides, with high transition temperatures, accompanied by high critical cnr- 
rents and magnetic fields. By 1988 the long-standmg 23 K ceiling of T, in 
intermetallic comipounds had been elevated to 125 K in bulk superconducting 
oxides; these passed the standard tests for snperconductivity-the Meissner 
effect, ac Josephson effcct, persistent currents of long duration, and substan- 
tially zero dc resistivity. Memorable steps in the advance include: 

BaPb, 75Bi, T, = 12 K [BPBO] 

La, ,5B% 15CuO4 T, = 36 K [LBCO] 
YBaZCu307 T, = 90 K [YBCO] 
T1,Ba2Ca2Cu10,, T,  = 120 K [TBCO] 
Hgo sT1, 2Ba2Ca,Cu,0,, T, = 138 K 



SUMMARY 
(In CGS Units) 

A superconductor exhibits infinite conductivity. 

A bulk specimen of metal in the superconducting state exhibits pcrfect dia- 
magnetism, with the rnagnetic induction B = 0. This is the Meissner effcct. 
The external magnetic field will penetrate the surface of the specimen over 
a distancc determined by the penetration depth A. 

There arc hvo types of superconductors, I and 11. In a bulk specimen of type I 
superconductor the superconducting state is destroyed and the ~ronr~lil state is 
restored by application of an external magnetic field in excess of a critical value 
H,. A type I1 superconductor has two critical fields, HC1 < H, < H,,; a vortex 
state exists in the range between I&, and H,,. The stabilization cncrgy density of 
the pure superconducting state is H?/S.rr in both type I and I1 snpercond~~ctors. 

In the superconducting state an energy gap, E,  = 4kBTc, separates supcrcon- 
ducting electrons below from normal electrons above the gap. The gap is de- 
tected in experiments on heat capacity, infrared absorption, and tunneling. 

Three important lengths enter the theory of superconductivity; the London 
penetration depth A,: the intrinsic coherence length 5,; and the normal 
electron mean free path t. 

The London equation 

leads to the Meissner effect through the penetration equation V% ==/At ,  
where AL = ( m ~ ~ / 4 ~ r n e ~ ) ~ ' ~  is the London penetration depth. 

In thc London equation A or B should be a weighted werage over the co- 
herence length t. The intrinsic coherence length 5, = ~ K C ~ J T ~ E ~  

The BCS theory accounts for a supercouducting state forrnad frorrl pairs of 
electrons k'? and -kJ. Thcse pairs act as bosons. 

Tyye I1 snperconductors have t < A. The critical fields are related by 
H,, = (&/A)H,  and H,, = (A/E)H,. The Ginzburg-Landau parameter K is de- 
fined as A/& 

Problems 

1.  Magnetic field penetration in a plate. The penetration equation rnay be written 
as h2V% = B ,  where A is thc penetratinn depth. (a) Slrow that B(x) inside a super- 
conducting plate perpendicular to the x axis and of thickness 6 is given by 

cosh (x/A) 
B(x' = "' cosh (6/W) 
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where B, is the field outside the plate and parallel to it; here x = 0 is at the center 
of the plate. (b) The effective magnetization M(x) in the plate is defined by 
B(x) - B, = 47rM(x). Show that, in CGS, 47rM(x) = -B,(1/8A2)(S2 - 4x2), for S 4 
A .  In SI we replace the 47r by p,. 

2. Criticalfield of thinfilms. (a) Using the result of Problem lb ,  show that the free 
energy density at T = 0 K within a superconducting film of thickness S in an exter- 
nal magnetic field B, is given by, for 6 4 A ,  

(CGS) F,(x, B,) = Us(0) + (S2 - 4 ~ ~ ) ~ 2 6 4 7 r ~ ~  

In SI the factor 7r is replaced by p,. We neglect a kinetic energy contribution to 
the problem. (b) Show that the magnetic contribution to Fs when averaged over 
the thickness of the film is ~ : (6 /~)~/967r .  (c) Show that the critical field of the thin 
film is proportional to (A/S)H,, where H, is the bulk critical field, if we consider 
only the magnetic contribution to Us. 

Two-fluid model of a superconductor. On the two-fluid model of a supercon- 
ductor we assume that at temperatures 0 < T < T,  the current density may be 
written as the sum of the contributions of normal and superconducting electrons: 
j = j, + j,, where j, = unE and js is given by the London equation. Here uo is an 
ordinary normal conductivity, decreased by the reduction in the number of normal 
electrons at temperature T as compared to the normal state. Neglect inertial ef- 
fects on bothy, andj,. (a) Show from the Maxwell equations that the dispersion re- 
lation connecting wavevector k and frequency w for electromagnetic waves in the 
superconductor is 

where A; is given by (148) with n replaced by ns. Recall that curl curl B = -V2B. 
(b) If T is the relaxation time of the normal electrons and n, i s  their concentration, 
show by use of the expression a, = nNe2r/m that at frequencies w 4 117 the disper- 
sion relation does not involve the normal electrons in an important way, so that the 
motion of the electrons is described by the London equation alone. The super- 
current short-circuits the normal electrons. The London equation itself only holds 
true if h w  is small in comparison with the energy gap. Note: The frequencies of 
intorest are such that w 4 wp, where wp is the plasma frequency. 

'4. Structure of a vortex. (a) Find a solution to the London equation that has cylin- 
drical symmetry and applies outside a line core. In cylindrical polar coordinates, we 
want a solution of 

'This problem is somewhat difficult. 



that is singular at thc origin and for wlriclr the total flux is the flux quantum: 

The equation is in fact valid only outside the mornla1 core of radius 6. (b)  Sho\i~ that 
the solution has the limits 

5.  London penetration depth. (a) Take the time derivative of the London equation 
(10) to show that aj/dt = (c2/4vA;)E. ( b )  I f  mdvldt = q E ,  as for free carriers of 
charge y and mass rn, show that A 2  = d / 4 m q 2 .  

6.  Diffraction effect of Josephson junction. Consider a junction of rectangular cross 
sectiorr with a magnetic field B applied in the plane of the junction, normal to an 
edge of width w .  Let the thickness of the junction be T. Assume for convenicncc 
that the phase difference of the two superconductors is d 2  when B = 0. Show that 
the dc current in the presence of the magnetic field is 

7 .  Meissner effect in sphere. Consider a sphere of a typc 1 s ~ i ~ z r c o n d ~ ~ c t o r  with crit- 
ical field H,.. (a) Show that in the Meissner rcgimc the effective magiretieatiur~ M 
within the sphere is given by -8vMl3 = B,, the 1111iform applied lr~agrietic field. 
(h) Show that the magnetic field at the surfacc nT the sphere in the equatorial plane 
is 3B,/2. (It follows that the applicd ficld at which the hleissner affect starts to break 
down is 2HJ3.)  Rernindcr: The demagnetization field of a ur~iformly magnetized 
sphere is -4vhfI3. 

Reference 

An excellent superconductor re\.iew is the website supcrconductors.org. 
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Figure 1 Charactelistic magnetic susceptibilities of diamagnetic and paramagnetic substtances. 



CHAPTER 11: DIAMAGNETISM AND PARAMAGNETISM 

Magnetism is inseparable from quantum mechanics, for a strictly classical 
system in thermal equilibrium can display no magnetic moment, even in a 
magnetic field. The magnetic moment of a free atom has three principal 
sources: the spin with which electrons are endowed; their orbital angular mo- 
mentum about the nucleus; and the change in the orbital moment induced by 
an applied magnetic field. 

The first two effects give paramagnetic contributions to the magnetiza- 
tion, and the third gives a diamagnetic contribution. In the ground Is state of 
the hydrogen atom the orbital moment is zero, and the magnetic moment is 
that of the electron spin along with a small induced diamagnetic moment. In 
the ls2 state of helium the spin and orbital moments are both zero, and there is 
only an induced moment. Atoms with all filled electron shells have zero spin 
and zero orbital moment: finite moments are associated with unfilled shells. 

The magnetization M is defined as the magnetic moment per unit volume. 
The magnetic susceptibility per unit volume is defined as 

M (CGS) ,y = - ; B 

where B is the macroscopic magnetic field intensity. In both systems of units ,y 
is dimensionless. We shall sometimes for convenience refer to M/B as the sus- 
ceptibility without specifying the system of units. 

Quite frequently a susceptibility is defined referred to unit mass or to a 
mole of the substance. The molar susceptibility is written as ,yM; the magnetic 
moment per gram is sometimes written as u. Substances with a negative mag- 
netic susceptibility are called diamagnetic. Substances with a positive suscep- 
tibility are called paramagnetic, as in Fig. 1. 

Ordered arrays of magnetic moments are discussed in Chapter 12; the ar- 
rays may be ferromagnetic, ferrimagnetic, antiferromagnetic, helical, or more 
complex in form. Nuclear magnetic moments give rise to nuclear paramag- 
netism. Magnetic moments of nuclei are of the order of times smaller 
than the magnetic moment of the electron. 

LANGEVIN DIAMAGNETISM EQUATION 

Diamagnetism is associated with the tendency of electrical charges par- 
tially to shield the interior of a body from an applied magnetic field. In 
electromagnetism we are familiar with Lenz's law: when the flux through an 
electrical circuit is changed, an induced (diamagnetic) current is set up in such 
a direction as to oppose the flux change. 



In a superconductor or in an electron orbit within an atom, the induced 
current persists as long as the field is present. The magnetic field of the in- 
duced current is opposite to the applied field, and the magnetic moment asso- 
ciated with the current is a diamagnetic moment. Even in a normal metal 
there is a diamagnetic contribution from the conduction electrons, and this 
diamagnetism is not destroyed by collisions of the electrons. 

The usual treatment of the diamagnetism of atoms and ions employs the 
Larmor theorem: In a magnetic field the motion of the electrons around a 
central nucleus is, to the first order in B, the same as a possible motion in the 
absence of B except for the superposition of a precession of the electrons with 
angular frequency 

(CGS) w = eB/2mc ; 

If the field is applied slowly, the motion in the rotating reference system will 
be the same as the original motion in the rest system before the application of 
the field. 

If the average electron current around the nucleus is zero initially, the 
application of the magnetic field will cause a finite current around the nucleus. 
The current is equivalent to a magnetic moment opposite to the applied field. 
It is assumed that the Larmor frequency (2) is much lower than the frequency 
of the original motion in the central field. This condition is not satisfied in free 
carrier cyclotron resonance, and the cyclotron frequency of the carriers is 
twice the frequency (2). 

The Larmor precession of Z electrons is equivalent to an electric 
current 

. . ) ! ,  . v .  ,, ..- ,. "? .*.. v .  i . . . , ;  . ... ' . .  . . .  - 

(SI) 1 = (charge)(revolutio~~s per unit time! - (-71.) 

The magnetic moment p of a current loop is given by the product (cur- 
rent) X (area of the loop). The area of the loop of radius p  is rP2. We have 

Z e 2 ~  (CGS) p = - - (p2)  . ( 4 )  
4mc2 

Here (p2)  = (x2) + ( y 2 )  is the mean square of the perpendicular distance of the 
electron from the field axis through the nucleus. The mean square distance of 
the electrons from the nucleus is (2) = (x2) + ( y 2 )  + (2). For a spherically 
symmetrical distribution of charge we have (x2) = ( y 2 )  = ( z2) ,  SO that 

(2) = 3 p 2 ) .  
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From (4) the diamagnetic susceptibility per unit volume is, if N is the 
number of atoms per unit volume, 

This is the classical Langevin result. 
The problem of calculating the diamagnetic susceptibility of an isolated 

atom is reduced to the calculation of (2) for the electron distribution within 
the atom. The distribution can be calculated by quantum mechanics. 

Experimental values for neutral atoms are most easily obtained for the 
inert gases. Typical experimental values of the molar susceptibilities are the 
following: 

He Ne Ar Kr Xe 

,yM in CGS in crn3/mole: -1.9 -7.2 -19.4 -28.0 -43.0 

In dielectric solids the diamagnetic contribution of the ion cores is de- 
scribed roughly by the Langevin result. The contribution of conduction elec- 
trons in metals is more complicated, as is evident from the de Haas-van 
Alphen effect discussed in Chapter 9. 

QUANTUM THEORY OF DIAMAGNETISM OF MONONUCLEAR SYSTEMS 

We give the quantum treatment of the classical Langevin result. From 
Appendix (G.18) the effect of a magnetic field is to add to the Hamiltonian 
the terms 

iefi e2 x = - ( v - A + A . v ) + - A ~  ; 
2mc 2mc2 

for an atomic electron these terms may usually be treated as a small perturba- 
tion. If the magnetic field is uniform and in the z direction, we may write 

A  =-' B  z~ . A , = & B ,  A , = o ,  (7 )  

and (6) becomes 

The first term on the right is proportional to the orbital angular momen- 
tum component L, if r is measured from the nucleus. In mononuclear systems 



this term gives rise only to paramagnetism. The second term gives for a spheri- 
cally symmetric system a contribution 

by first-order pertnrbation thcory. The associated magnetic moment is 
diamagnetic: 

aE1 e2V)  
p = - = = - s  > (10) 

in agreement with the classical result (5). 

PARAMAGNETISM 

Electronic paramagnetism (positive contribution to X) is found in: 

1. Atoms, molecules, and lattice defects possessing an odd number of 
electrons, as here the total spin of the system cannot bc zcro. Examples: free 
sodium atoms; gaseous nitric oxide (NO); organic free radicals s i~ch as tri- 
phenylmethyl, C(C,H,),; F centers in alkali halides. 

2. Free ato~ns and ions with a partly filled inner shell: transition ele- 
ments; ions isoelectronic with transition elements; rare earth and actinide ele- 
ments. Examples: Mn2', Gd3+, U4+. Paramagnetism is exhibited by many of 
these ions even when incorporated into solids, but not invariably. 

3. A few compo~~nds with an even number of electrons, including molec- 
ular oxygen and organic biradicals. 

4. Metals. 

QUANTUM THEORY OF PARAMAGNETISM 

The magnetic moment of an atom or ion in free space is given by 

where the total angular rriorrleriturn h.J is the surn of the orbital h.L and spin fiS 
angular momenta. 

The constant y is the ratio of the magnetic moment to the angular mo- 
mentum; y is called the gyromagnetic ratio or magnetogyric ratio. For 
electronic systems a quantity g called the g factor or the spectroscopic splitting 
factor is defined by 

~ P B = - $  . (12) 

For an clcctron spin g = 2.0023, us~~ally taken as 2.00. For a Gee atom the 
g factor is given by the Land6 equation 

2J(J + 1) 
(13) 
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Figure 2 Energy level splitti~ig for one elec- 
tron in a magnetic field B directed along the 
positivc z axis. For an electron the magnetic 
moment p is oppo~ite irr sign to thc spin S, so 
that p = -gp,S. In the low-energy state the 
rnagnetic moment is parallel to the magnetic 
field. 

7 n 75 

\upper state 

Figure 3 Fracho~ral pupulat~ons of a hyo-level 
system in thermal equilibrium at temperature T 
in a magnetic field B. The magnetic moment is 
proportional to the differe~~cc bctwcen the two 
curves 

The Bohr magneton p,  is defined as efi/2m in CGS and efiflm in SI. It is 
closely equal to the spin magnetic moment of a free electron. 

The energy levels of the system in a magnetic field are 

where ml is the azimuthal quantum number and has the values J ,  J - 1, . . . , 
-1. For a single spin with no orbital moment we have VL] = 2; and g = 2, 
whence U = ?pBB. This splitting is shown in Fig. 2. 

If a system has only two levels the equilibrium populations are, with 
7 ' kgT, 

here N,, Nz are the populations of the lower and upper levels, and N = N, + 
NP is the total number of atoms. The fractional populations are plotted in 
Fig. 3. 

The projcction of the magnetic moment of the upper state along the field 
direction is - p  and of the lower state is p.  The resultant magnetization for N 
atoms per unit volume is, with x = pB/k,T, 

F r - e - r  - Np tanhx . M = (N ,  - N2)p  = Np . - - 
eX + eKX 

For x < 1, tanh x = x, and we have 

In a magnetic field an atom wit11 angular momentum quantum niimher] 
has 2J + 1 equally spaced energy levels. The magnetization (Fig. 4) is given by 



Figure 4 Plot of magnetic moment versus B/T for spherical samples of (I)  potassiulll chro~niurn 
alum, (11) ferric arnmoniunl alum, and (111) gadolirliuni sulfate octahydrate. Over 99.5% magnetic 
saturation is achieved at 1.3 K and about 50,000 gauss (5T). After W E. Henry. 

where the Brillouin function B, is defined by 

2 ] +  1 
BJ(x) = - (2j  + l?x 1 

21 
ctnh ( 21 ) - %ctnh ($) 

Equation (17) is a special case of (20)  for] = i. 
For x = pB/kBT < 1, we have 

and the susceptibility is 

Here p is the effective number of Bohr magnetons, defined as 

p = g[]iJ + 1)11" . (23)  
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Figure 5 Plot of 1/x vs T for a gadoli~liu~n salt, Gd(C,H,SO,), . YH,O. The straight line is the 
Curie law (After L. C. Jackson and H. Kamrrlingh Onnes.) 

The constant C is know1 as the Curie constant. The form (19) is known as 
the Curie-Brillouin law, and (22) is known as the Curie law. Results for the 
paramagnetic ions in a gadolinium salt are shown in Fig. 5. 

Rare Earth Ions 

The ions of the rare earth elements (Table 1) have closcly similar chemical 
properties, and their chemical separation in tolerably pure form was accom- 
plished only long after their discovev. Their magnetic properties are fascinating: 
The ions exhibit a systematic variety and intelligible complexity The chemical 
properties of thc trivalent ions are similar because the outerrnost electron 
shells are identically in the 5~%~%onfiguration, like neutral xenon. In lan- 
thanum, just before the rare eartli group begins, the 4f shell is empty; at 
cerium there is one 4f electron, and the number of 4f electrons increases 
steadily through the group until we have 4f13 at yttcrbium and the filled shell 
4fL4 at lutetium. The radii of the trivalent ions contract fairly smoothly as we 
go through the group from 1.11 A at cerium to 0.94 A at ytterbium. This is 
known as the "lanthanide contraction." What distinguishes t l ~ e  magnetic be- 
havior of one ion species from another is the riurnber of 4f electrons com- 
pacted in the inner shell with a rahus of perhaps 0.3 A. Even in thc metals the 



Tablc 1 Effective magneton numbers p for trivalent lanthanide group ions 

(Near room tcmucrature) 

p(ca1c) = pkxp), 
Ion Cunfiguratiun Basic level d l ( l  + 1)11'2 approximate 

4f core retains its integrity and its atomic properties: no other group of clc- 
lnents in the periodic table is as interesting. 

The preceding discussion of paramagnetism applies to atoms that have a 
(21 + 1)-fold degenerate ground state, the degeneracy being lifted by a mag- 
nctic field. The influence of all higher energy states of the system is neglected. 
These assllmptions appcar to be satisfied by a number of rare-earth ions, 
Table 1. The calc~llated magneton numbers are obtained with g values from 
the Land6 result (13) and the ground-state lcvcl assignment predicted below 
by the Hund theory of spectral terms. The discrepancy hetween the experi- 
nlental rnagrieton numbers and those calculated on these assumptions is quite 
marked for ~ u "  aud Sm" ions. For these ions it is necessary to consider the 
influence of the high states of the L - S multiplet, as the intervals between 
successive states of the multiplet are not large conlpared to k,T at room tem- 
peratilre. A multiplet is the set of levels or different J values arising out of a 
given L and S. The levels of a mnltiplet arc split by the spin-orbit interaction. 

Hund Rules 

The Hiind rules as applied to electrons in a given shell of an atom affirm 
that electrons will occupy orbitals in such a way that the ground state is char- 
acterized by the following: 

1. The maxi~nurn value of the total spin S allowed by the exclusion principle; 
2. The maximum value of the orbital angular momentum L consistent 

with this value of S; 
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3. The value of the total angular ~rlo~nentum] is equal to IL - SI when the 
shell is less than half full and to L + S when the shell is more than half full. When 
the shell is just half full: the application of thc first rille gives L = 0, so that! = S. 

The first Hund rule has its origin in the exclusion principle and the coulomb 
repulsio~l between electrons. The exclusion principle prevents two electrons of 
the same spin from being at the same place at the same time. Thus electrons of 
the same spin are kept apart, further apart t h a  electrons of opposite spin. Be- 
cause of the coulomb interaction the energy of electrons of the same spin is 
lower-the average potential energy is less positive for parallel spin than for 
antiparallel spin. A good example is the ion Mn2+. This ion has five electrons in 
the 3d shell, which is therefore half-filled. The spins can all be parallel if each 
electron enters a different orbital, and there are exactly five different orbitals 
available, characterized by the orbital quantum numbers r n ~  = 2, 1, 0, -1, -2. 
These will b r  occnpied by one electron each. We expect S = 9, and because 
Em, = 0 the only possible value of L is 0, as observed. 

The second Hund rule is best approached by model calc~llations. Pauling 
and Wilson,' for example, give a calculation of thc spectral terms that arise 
from the configuration p! The third Hund rule is a consequence of the sign of 
the spin-orbit interaction: For a singlc clectron the energy is lowest when the 
spin is antiparallel to the orbital angular momentum. But the low-energy pairs 
TTLL,  mS are progressively used up as we add electrons to the shell; by the exclu- 
sion principlc when the shell is more than half full the state of lowest energy 
ncccssarily has the spin parallel to the orbit. 

Consider two examples of the Hund rules: The ion cc3+  has a single f 
electron; an f electron has E = 3 and s = i. Becausc the f shell is less than half 

1 - full, theJ value by the preceding rule is IL - SI = L - , = i. The ion Pr3+ has 
two f electrons; one of the rules tells us that the spins add to give S = 1. Both f 
electrons cannot have = 3 without violating the Pauli exclusion principle, so 
that the maximum L consistent with the Pauli is not 6, hut 5.  The J 
valuc is IL - S = 5 - 1 = 4. 

Iron Group Ions 

Table 2 shows that the experimental magneton numbers for salts of the 
iron transition group of tbe periodic tahle are in poor agreement with (23). 
The values often agrcc quite well with magneton numbers p = 2[S(S + l)]'" 
calculatcd as if the orbital moment were not there at all. 

Crystal Field Splitting 

The difference in behavior of the rare earth and thc iron group salts is that 
the 4f shell respo~lsible fur paramagnetism in the rare earth ions lies deep 

'L. Pau l i~~g  and E. B. \T7ilron; Introduction t o  quantum mechanics, McGraw-Hill, 1935, 
pp. 239-248. See also Dover Reptint. 



Table 2 Effective magneton numbers for iron group ions 

Basic p[calcj = p(m1c) = 
Ion Cnnfiguration level e[/(/ + 1)1112 2[S(S + l)]lA p(cxp)X 

"Representative values. 

inside the ions, within the 5s and 5p  shells, whereas in the iron group ions the 
3d shcll responsible lor paramagnetisni is the outermost shell. The 3d shell er- 
periences the intense inhomogeneous electric field produced. by neighboring 
ions. This inhomogeneous electric field is called the crystal field. The inter- 
action of the paramagnetic ions with the crystal field has two major effects: 
The coupling of L and S vectors is largely hroken up, so that the states are no 
longer specified by their J values; further, the 2L + 1 s~~hlevels belonging to a 
given L which are degenerate in the free ion may now be split by the crystal 
field, as in Fig. 6. This splitting dirni~iishes the contribution of the orbital mo- 
tion to the magnetic moment. 

Quenching ofthe Orbital Angular Momentum 

In an electric field directed toward a fixed nucleus, the plane of a classical 
orbit is fixed in space, so that all the orbital angular momentum components 
L,, Ly, Lz are constant. In quantum theory one angular momentum compo- 
nent, usually taken as L,, and the square of the total orbital angular momen- 
tum L' are constant in a central field. In a noncentral field the plane of the 
orbit will move about; the angular momentum co~riponents are no longer con- 
stant and may average to zero. In a crystal L; will no longer be a constant of 
the motion, although to a good approximation  nay continue to be constant. 
When L, averages to zero, the orbital angnlar momentum is said to he 
cluenched. The magnetic moment of a state is given hy the avrragc value of the 
magnetic moment operator pB(L + 25).  In a magnetic field along the z direc- 
tion the orbital contribution to the magnetic moment is proportional to the 
quantum expectation value of L,; the orbital magnetic moment is quenched if 
the mechanical moment L, is quenched. 
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Figure 6 Consider an atom with orbital angular momentum L = 1 placed in the uniaxial crys- 
tallme electric field of the two positive ions along the z axis. In the free atom the states m, = f 1, 0 
have identical energies-they are degenerate. In the crystal the atom has a lower energy when the 
electron cloud is close to positive ions as in (a) than when it is oriented midway between them, as 
in (b) and (c). The wavefunctions that give rise to these charge densities are of the form zfjr), xf(r) 
and yfjr) and are called the p,, p,, p,  orbitals, respectively In an axially symmetric field, as shown, 
the p, andp, orbitals are degenerate. The energy levels referred to the free atom (dotted line) are 
shown in (d). If the electric field does not have axial symmetry, all three states wi l l  have different 
energies. 

As an example, consider a single electron with orbital quantum number 
L = 1 moving about a nucleus, the whole being placed in an inhomogeneous 
crystalline electric field. We omit electron spin. 

In a crystal of orthorhombic symmetry the charges on neighboring ions 
will produce an electrostatic potential cp about the nucleus of the form 

where A and B are constants. This expression is the lowest degree polynomial 
in x, y, z which is a solution of the Laplace equation V2cp = 0 and compatible 
with the symmetry of the crystal. 

In free space the ground state is three-fold degenerate, with magnetic 
quantum numbers m, = 1, 0, -1. In a magnetic field these levels are split by 
energies proportional to the field B, and it is this field-proportional splitting 
which is responsible for the normal paramagnetic susceptibility of the ion. In 
the crystal the picture may be different. We take as the three wavefunctions 
associated with the unperturbed ground state of the ion 



These wavefunctions are orthogonal, and we assume that they are normalized. 
Each of the U's can he shown to have the property 

where Y2 is the operator for the square of the orbital angular momentum, in 
units of fi. The result (26) confirms that the selected wavefunctions are in fact 
p functions, having L = 1. 

We observe now that the US are diagonal with respect to the perturbation, 
as by symmetry the nondiagonal elements vanish: 

(L'z!,lecplUy) = (U,lecplR) = (uy!,lecplUz) = 0 . (27) 

Consider for example, 

(U,lecplU,) = J xyl f(r)I2(Ax2 + By2 - (A + B)z2] dx dy dz ; (28) 

the integrand is an odd function of x (and also of y) and therefore the integral 
must be zero. The energy levels are then given by the diagonal matrix 
elements: 

(U,lecplU,) = J Ifir) I2{kx4 + By2x2 - (A + B)Z%*] dx dy dz 

z A({, - 12)  , (29) 

where 

I1 = J lfir) I2x4 dx dy dz ; I2 = J 1 f(r) I2x2zj2 dx dy c2z . 

In addition, 

(UylecplUy) = B(It - 12)  ; (LrZlecpluz) = -(A + B)(I, - 1%) . 

The three cigcnstates in the crystal field are p functions with their angular 
lobes directed along each of the x, y, z axes, respectively. 

The orbital moment of each of the levels is zero, hecause 

The level still has a definite total angular momentum, since 2' is diagonal and 
gives L = 1, but the spatial components of the angular momentum are not 
constants of the motion and their time average is zero in the first approxima- 
tion. Therefore the components of the orbital magnetic moment also vanish in 
the same approximation. The role of the crystal field in the quenching process 
is to split the originally degenerate levels into nonmagnetic levels separated by 
energies % pH, SO that the magnetic field is a small perturbation in compari- 
son with the crystal field. 

At a lattice site of cubic symmetry there is no term in the potential of the 
form (24), that is, quadratic in the electron coordinates. Now the ground state 
of an ion with one p electron (or with one hole in a p shell) will be triply 
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degenerate. However, thc energy of the ion will be lowered if the ion displaces 
itself with respect to the surroundings, thereby creating a noncubic ~otent ia l  
such as (24). Silch a spontaneous displace~rle~~t is k~lown as a Jahn-Teller 
effect and is often large and important, particularly with the ~ n ~ +  and Cu2+ 
ions and with holes in alkali and silver halides. 

Spectroscopic Splitting Factor 

We suppose for convenicnce that the crystal field constants, A, B are such 
that U, = xfjr) is the orbital wave function of the ground state o l  the atom in 
the crystal. For a spin S = : there are twv possible spin states S, = -ti repre- 
sented by the spin functions a ,  P ,  which in the absence of a magnetic field are 
degenerate in the zeroth approximation. The problem is to take into account 
the spin-orbit interactior~ energy AL . S. 

If the ground state function is $, = UXa = ~f (r )a  in the zeroth approxima- 
tion, the11 in the first approximation, considering the AL . S interaction by 
standard perturbation theory, we have 

where A1 is thc cnergy difference between the U, and U, states, and Az is the 
difference between the U, and Uz states. The term in U,P actually has only a 
second-order effect on the result and may be discardcd. The expectation value 
of the orbital angular momentum to the first order is given directly by 

and the magnetic moment of the statc as measured in the z direction is 

pB($ILZ + 2SZI+) = [-(A/Al) + lIpcL, . 

As the separation between the levels S: = ?$in a field H is 

AE = gpBH = 2[1- (A/Al)jpBH , 

the g value or spectroscopic splitting factor (12) in the z dircction is 

g = 2[1 - (AlA,)] . (31) 

Van Vleck Temperature-Independent Paramagnetism 

We consider an atomic or molccl~lar system which has no magnetic Ino- 
ment in the ground statc, by which we mean that the diagonal matrix element 
of the magnetic moment operator p, is zero. 

Suppose that there is a nondiagonal matrix element (sI,azI0) of thr mag- 
netic moment operator, connecting the ground state 0 with the cxcited state s 
of energy A = E, - E ,  above the ground state. Then by standard perturbation 
theory the wavefunction of the ground statc in a weak field (pZB * 4) becon~es 



and the wavefunction of the excited state becomes 

t//l = GS - (~/A)(OIP~IS)$~ 

The perturbed ground state now has a moment 

(O'lpIO1) = ~ B ~ ( S ~ ~ ~ I O ) ~ ~ / A  , (34) 

and the upper state has a inoinent 

There are two interesting cases to consider: 

Case (a). A < k,T. The surplus population in the ground state over the 
excited state is approximately equal to NA/W,T, so that the resultant magneti- 
zation is 

which gives for the siisceptihility 

x = NI (sI Pz 10) I2/kn~ 

Here N is the number of molecules per unit volume. This contrib~ition is of 
the usual Curie form, although the mechanism of magnetization here is hypo- 
larization of the states of the system, whereas with free spins the mechanism of 
magnetization is the redistribution of ions ariiong the spin states. We note that 
the splitting A does not enter in (37) .  

Case (b). A B k,T. Here the population is nearly all in the ground state, 
so that 

The susceptibility is 

~ N I ( ~ ~ P ~ I O ) ~ ~  x =  A 

independent of temperature. This type of contribution is kriow~~ as Van \'leek 
pararnagnctism. 

COOLING BY ISENTROPIC DEMAGNETIZATION 

The first method for attaining temperatures much below 1 K was that of 
isentropic, or adiabatic, demagnetization of a paramagnetic salt. By its use, 
temperatures of lo-" and lower have been reached. The method rests on the 
fact that at a fixed temperature the entropy of a system of magnetic moments 
is lowcrcd by the application of a magnetic field. 
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Figure 7 During isentropic demagnetization the total entropy of the speci~ncn is constant. For 
effective cooling the ir~itial arrtropy of the lattice should he small in comparison \vith the entropy 
of the spin system. 

The entropy is a measure of the disorder of a system: the greater the dis- 
order, the higher is the entropy. In the magnetic field the moments will be 
partly lined up (partly ordered), so that the entropy is lowered by the field. 
The entropy is also lowered if the temperati~re is lowered, as more of the mo- 
rrlents line up. 

I l  the lnagnctic field can then be removed without changing the entropy 
of thc spin system, the order of the spin syste~ri will look like a lower tempera- 
ture than the same degree of order in the presence of the field. When the 
specimen is demagnetized at constant entropy, entropy can flow into the spin 
system only from the system of lattice vibrations, as in Fig. 7. At the tempera- 
tures of interest the entropy of the lattice vibrations is usually negligible, thus 
the entropy o l  the spin system will be essentially constant during isentropic 
demagnetization of the specimen. Magnetic cooling is a one-shot operation, 
not cyclic. 

We first find an expression for the spin entropy o l a  system of N ions, each 
of spin S, at a temperature sufficiently high that the spin system is entirely dis- 
ordered. That is, T is supposed to be much higher than some temperature A 
wl~ich characterizes the energy of the interactions (E,, - kBA) tending to 
orient the spins prcfcrcntially. Some of these interactions are discussed in 
Chapter 12. Thc definition of the entropy u of a system of G accessible states 
is u = kg In 6. At a temperature so high that all of the 2 s  + 1 states of each 
ion are nearly equally populated, G is the number orways of arranging N spins 
in 25 + 1 states. Thus G = (2s + I ) ~ ,  whence thc spin entropy us is: 



Figure 8 Entropy for a spin system as a function of temperature, assuming an internal random 
magnetic field BA of 100 gauss. The specimen is magnetized isothermally along ab, and is then 
insulated thermally The external magnetic field is turned off along bc. In order to keep the figure 
on a reasonable scale the initial temperature TI is lower than would be used in practice, and so is 
the external magnetic field. 

This spin entropy is reduced by a magnetic field if the lower levels gain in 
population when the field separates the 2s + 1 states in energy. 

The steps carried out in the cooling process are shown in Fig. 8. The field 
is applied at temperature T ,  with the specimen in good thermal contact with 
the surroundings, giving the isothermal path ab. The specimen is then insu- 
lated (Au = 0) and the field removed, the specimen follows the constant en- 
tropy path bc, ending up at temperature T2. The thermal contact at T ,  is pro- 
vided by helium gas, and the thermal contact is broken by removing the gas 
with a pump. 

The population of a magnetic sublevel is a function only of pB/kBT, hence 
of B/T. The spin-system entropy is a function only of the population distribu- 
tion; hence the spin entropy is a function only of BIT. If B, is the effective 
field that corresponds to the local interactions, the final temperature T2 
reached in an isentropic demagnetization experiment is 

where B is the initial field and T I  the initial temperature. 

Nuclear Demagnetization 

Because nuclear magnetic moments are weak, nuclear magnetic interac- 
tions are much weaker than similar electronic interactions. We expect to reach 
a temperature 100 times lower with a nuclear paramagnet than with an elec- 
tron paramagnet. The initial temperature T ,  of the nuclear stage in a nuclear 
spin-cooling experiment must be lower than in an electron spin-cooling 
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Initial magnetic field in kG 

I ~ t i a l  BIT in 10%/~ 

Figure 9 Nuclear dcrnaglletizations of copper nuclei in the metal, starting frottr 0.012 K and 
various fields. (After M. V. Hobden and N. Kurti.) 

experiment. If we start at B = 50 kG and T ,  = 0.01 K, then pB/kBT1 = 0.5, 
and the entropy decrease on magnetization is over 10 percent of the maximum 
spin entropy. This is sufficient to overwhelln the lattice and from (41) we esti- 
mate a final temperature T2 = K. The first nuclear cooling experiment 
was carried out on Cu nuclei in the metal, starting from a first stage at about 
0.02 K as attained by electronic cooling. The lowest temperature reached was 
1.2 X lo-". 

The results in Fig. 9 fit a line of the form of (41): TZ = T1(3.1/B) with B in 
gauss, so that BA = 3.1 gauss. This is the effective interaction field of the 
magnetic moments of the Cti nuclei. The motivation for using nuclei in a metal 
is that conduction electrons help ensure rapid thermal contact of lattice and 
nuclei at the temperature of the first stage. 

PARAMAGNETIC SUSCEPTIBILITY OF CONDUCTION ELECTRONS 

\Ve are going to try to show how on the hasia of these statistics the fact that 
many metals arc diamagnetic, or only weakly paramagnetic, can be brought into 
agreement with tllr existence of a magnetic moment of the electrons. 

W. Pauli. 1927 

Classical free clcctron theory gives an unsatisfactory account of the para- 
magnetic ~usceptihi l i t~ of the conduction electrons. An electron has aqsociated 
with it a magnetic moment of one Bohr magneton, pB. One might expect that 



the conduction electrons would make a Curie-type paramagnetic contribution 
(22) to the magnetization of the metal: M = N & B / k B ~ .  Instead it is observed 
that the magnetization of most normal nonferromagnetic metals is indepen- 
dent of temperature. 

Pauli showed that the application of the Fermi-Dirac distribution (Chapter 6) 
would correct the theory as required. We first give a qualitative explanation. 
The result (18) tells us that the probability an atom will be lined up parallel to 
the field B exceeds the probability of the antiparallel orientation by roughly 
pBIkBT. For N atoms per unit volume, this gives a net magnetization 
=Np2BIkBT, the standard result. 

Most conduction electrons in a metal, however, have no possibility of turning 
over when a field is applied, because most orbitals in the Fermi sea with parallel 
spin are already occupied. Only the electrons within a range kBT of the top of the 
Fermi distribution have a chance to turn over in the field; thus only the fraction 
TITF of the total number of electrons contribute to the susceptibility. Hence 

which is independent of temperature and of the observed order of 
magnitude. 

We now calculate the expression for the paramagnetic susceptibility of a 
free electron gas at T < T,. We follow the method of calculation suggested by 
Fig. 10. An alternate derivation is the subject of Problem 5. 

Total energy, Idnetic + 
magnetic, of electrons 

I 

- Fermi level 

- Density of 
orbitals 

Figure 10 Pauli paramagnetism at absolute zero; the orbitals in the shaded regions in (a) are 
occupied. The numbers of electrons in the "up" and "down" band will adjust to make the energies 
equal at the Fermi level. The chemical potential (Fermi level) of the moment up electrons is equal 
to that of the moment down electrons. In (b) we show the excess of moment up electrons in the 
magnetic field. 
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The concentration of electrons with magnetic nlonrents parallel to the 
magnetic ficld is 

written for absolute zero. Here ~ D ( E  + pB) is the density of orbitals of one 
spin orientation, with allowance for the downward shift of energy by -pB. 
The approximation is written for kgT 4 eF. 

The concentration of electrons with magnetic moments antiparallel to the 
magnetic field is 

The magnetization is given by 12.1 = p(N+ - I"), SO that 

with D ( e F )  = 3 N / 2 ~ ~  = 3N/2ksTF from Chapter 6. The result (45) gives the 
Pauli spin magnetization or the conduction electrons, for k,T 4 e,. 

In deriving the paramagnetic snsceptihility, we have supposed that 
the spatial motion of thc electrons is not affected by the magnetic field. But 
the wavefunctions are modified by the magnetic field; Landau has shown that 
for free electrons this causes a diamagnetic 1rlome11t equal to -$ of the para- 
magnetic moment. Thus the total magrletization of a free electron gas is 

Before comparing (46) with the experiment we must take account of the 
diamagnetism of the ionic cores, of band effects, and of electron-electron in- 
teractions. In sodiiim the interaction effects increase the spin susceptibility by 
perhaps 75 percent. 

The magnetic susceptibility is considerably higher for most transition 
metals (with unfilled inner electron shells) than for the alkali metals. The high 
values suggest that the density of orbitals is linusually high for transition met- 
als, in agreement with measurements of the electronic heat capacity. We saw 
in Chapter 9 how this arises from hand theory. 

SUMMARY 
(In CGS Units) 

The diamagnetic s~isceptihility of N atoms of atornic number Z is ,y = 

-Ze2N(?)/6rnc" where (r2) is the mean square atomic radius. (Lange*?n) 

Atoms with a permanent magnetic moment p have a paramagnetic susccpti- 
bility x = N / ~ , ~ l 3 k ~ T ,  for pB <. kRT. (Curie-Langevin) 



For  a system of spins S = $, the exact rnag~letizatiorl is M = 

N p  tanh(pA/kBT), where p = agpB. (Brillouin) 

The grolind state of clectrons in the same shell have the  maximum value of 
S allowed by the Pauli principle and the maximum I, consistent with this S. 
The J value is L + S if the shell is more than half fill1 and IL - SI if thc shcll 
is less than half full. 

A cooling process operates by demagnetization of a paramagnetic salt at 
constant entropy. The final temperature reached is of the  order of 
(B,/B)T,,,,,,,. where B, is the effective local field and B is the  initial applied 
magnetic field. 

The para~nagnetic susceptibility of a F e r ~ n i  gas of corlductiorl electrons is 
,y = 3Np2/2eF, independent of temperature for kgT 4 eF. (Pauli) 

Problems 

1. Diamagnetic susceptibility of atomic hydrogen. The wave function of the 
hydrogen atom in its ground state (Is) is $=  (.rra~)-'/'exp(-r/a,,), where 
a, = fi2/m" 0.529 X 10-'cm. The charge density is p(x, y, z )  = -el$12, accordmg 
to the statistical interpretation of the wave function. Show that for this state 
(?) = 3ai, and calculate the molar diamagnetic susceptibility of atomic hydrogen 
(-2.36 X 10 cm3/mole). 

2. Hund rules. Apply the Hund rules to find the ground state (the basic level in the 
notation of Table 1) of (a) Eu++, in the configuration 4f7 5sZp6; (b) Yb3+; (c) Tb3+. 
The results for (b) and (c) are in Table I, but you should give the separate stcps in 
applying the rules. 

3.  Triplet excited states. Solnc organic lnolecules have a triplet (S = 1) excited state 
at an energy k,A above a singlct (S = 0) ground state. (a) Find an expression fnr the 
magnetic momcnt (p) in a ficld B. (b) Show that the susceptibility fnr T % A is ap- 
proximately independent of A. (c) With thc hclp of a diagram of energy levels versus 
ficld and a rongh sketch of entropy verslls field, explain how this system might be 
cooled by isentropic magnetixation (not den~agneti~ation). 

4 .  Heat capacity from internal degrees of freedom. (a) Corlsider a two-level systerrl 
with an energy splitting kgA between upper and lower states; the splittirrg rnay arise 
h r n  a magnetic field or in other ways. Show that the heat capacity per systern is 

The function is plotted in Fig. 11. Peaks of this type in the heat capacity are often 
known as Schottky anomalies. The maximum heat capacity is quite high, but for 
T < A and for T % A the heat capacity is low. (b) Show that for T * A we have 
C - kB(A/2T)' + . . . . The hyperfine interaction between nuclear and electronic mag- 
netic moments in paramagnetic salts (and in systems hating electron spin order) causes 
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Figure 11 Heat capacity of a two-level system as a function of TlA, where A is the level splitti~~g. 
The Schottky anorllaly in the heat capacity is a very useful tool for determining e n e r g  level split- 
tings of ions in rare-earth and transition-grnnp metals, com~pounds, and alloys. 

Figure 12 The normal-statc heat capacity of gallium 
at 1' < 0.21 K. The nnclear q ~ ~ a d r n ~ o l e  (C cc T-') and 
conduction electron (C T) contributions dominate 
the heat capacity at very low te~nperatures. (After 
N. E. Phillips.) 

splittings mlth A = 1 to 100 mK. These splittings are often detected experimentally by 
the presence of a ten11 in 1/P in the heat capacity in the region T * A. Nuclear electric 
quadrupole interactions wit11 crystal fields also cause splittings, as in Fig. 12. 

5.  Pauli spin susceptibility.  Tlre spin s~wceptibility of a conduction electron gas at 
alsolute zero may be approacl~ed hy another mcthod. Let 



be the corrcentrations of spin-up and spin-down electrons. (a)  Show that in a mag- 
netic field B the total energy of the spin-up band in a frcc clcctron gas is 

where E,  = $A's,, in terms of the Ferini energy eF in zero magnetic field. Find a 
similar cxprcssion for E-.  (b)  hlinimize = E+ + E-  with respect to [ and solve 
for the equilibrium valuc of 5 in thc approximation 5 < 1. Go on to show that the 
magnetization is M = 3NpEB12sF, in agreement with Eq. (45). 

6. Conduction electron ferromagnetism. We approximate the effect of exchange 
interactions among the condnction clcctrons if we assurnc that electrons with paral- 
lel spins interact with each other with energy -V, and V is positive, while electrons 
wit11 aritiparallel spins do not interact with each other. (a) Show with the help of 
Problerrr 5 that the total energy of the spin-up hand is 

find a similar expression for E-. (b)  Minimize the total energy and solve for 5 in the 
limit [ + 1. Show that the magnetization is 

so that the exchange interaction enhances the susccptihility. (c) Show that with 
B = 0 the total energy is unstalde at [ = 0 when V > 4sF/3N. If this is satisfied, a 
ferrorrragrretic state (i # 0) will have a lower energy than the paramagnctic statc. 
Because of the assn~rrptio~i 5 < 1, this is a s~~fficient condition for ferromagnctism, 
but it may not be a necessary co~~dit ion.  I t  is known as tlie Stoner condition. 

7 .  Two-level system. The result of Problerrl4 is often seen in another form. (a) If the 
two energy levels are at A  and A ,  show that the energy arid heat ca~~acity are 

(b)  If the systerrl has a random composition sr~ch that all values of A  arc cqually 
likely up to some limit A,, show tlvat the heat capacity is linearly proportional to thc 
temperature, provided k,T 4 A,. This result was applied to the heat capacity of di- 
lute magnetic alloys by JV. Marshall, Phys. Rev. 118, 1519 (1960). It is also used in 
the theory of glasses. 

8. Paramagnetism of S = 1 system. (a) Find the ~nagneti~,atiorr as a function of 
magnetic field and temperature for a system of spins with S - 1, rnoment fi2 and 
concentration n. (b)  Show that in the limit pB 4 kT the result is M - (2r~p"~3kT)R. 



Ferromagnetism and Antiferrornagnetism 

FERROMAGNETIC ORDER 
Curie point and the exchange integral 
Temperature dependence of the saturation magnetization 
Saturation magnetization at  absolute zero 

MAGNONS 
Quantization of spin waves 
Thermal excitation of magnons 

NEUTRON MAGNETIC SCATTERING 
FERRIMAGNETIC ORDER 

Curie temperature and susceptibility of ferrimagnets 
Iron garnets 

ANTIFERROMAGNETIC ORDER 
Susceptibility below the NBel temperature 
Antiferromagnetic magnons 
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Anisotropy energy 
Transition region between domains 
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Coercivity and hysteresis 

SINGLE-DOMAIN PARTICLES 
Geomagnetism and biomagnetism 
Magnetic force microscopy 

NOTATION: ( C G S )  B = H + 4 v M ;  ( S I )  B = *"(H + M).  We call B, the applied 
magnetic field i11 both systems of units: in CGS we have B, = Ha and in SI we 
have B, = pa,. The susceptibility is ,.y = MIB, in CGS and ,y = MIH, = p&f lB ,  
in SI. One tesla = lo4 gauss. 



SUMMARY 

PROBLEMS 

1. Magnon dispersion relation 
2. Heat capacity of magnons 
3. N6el temperature 
4. Magnetoelastic coupling 
5. Coercive force of a small particle 
6. Saturation magnetization near T. 
7. NBel wall 
8. Giant magnetoresistance 

t t t t t t  t l t l t  t + t + t +  
Simple ferromagnet Simple anlifenomagnet Ferrimagnet 

Canted antiferromagnet Helical spin array Ferromagnetic energy band 

Figure 1 Ordered arrangements of electron spins. 



CHAPTER 12: FERROMAGNETISM AND ANTIFERROMACNETISM 

FERROMAGNETIC ORDER 

A ferromagnet has a spontaneous rr~agr~etic moment-a magnetic momcnt 
even in zero applied magnetic field. The existence of a spontaneous moment 
suggests that electron spins and magnetic moments are arranged in a regular 
manner. The order need not be simple: all of the spin arrangements sketched 
in Fig. 1 except the simple antiferromagnet have a spontaneous magnetic 
moment, called the saturation moment. 

Curie Point and the Exchange lntegral 

Consider a paramagnet with a concentration of M ions of spin S. Givcn an 
internal interaction tending to line up the magnetic momcnts parallel to each 
other, we shall have a ferromagnet. Let us postuIate such an interaction and call 
it the exchange field.' The orienting effect of the exchange field is opposed by 
thermal agitation, and at elcvatcd temperatures the spin order is destroyed. 

We treat the exchange field as equivalent to a magnetic field BE. The mag- 
nitude of the exchange field may be as high as 10' gauss (lo3 tesla). \Ve assume 
that BE is proportional to the magnetization M. 

The magnetization is defined as the magnetic moment per unit volume; 
unless otherwise specified it is understood to be the value in thermal cquilih- 
riuni at the temperature T. If domains (regions magnrtizcd in different direc- 
tions) are present, the magnetization refers to the value withn a domain. 

In the mean-field approximation we assume each magnetic atom expe- 
riences a field proportional to the magnetization: 

where A is a constant, independent of temperature. According to (I), each spin 
sees the average magnetization of all the other spins. In truth, it may scc only 
near neighbors, but our sirnplification is good for a first look at the problem. 

The Curie temperature T, is the tempcraturc above which the sponta- 
neous magnetization vanishes; it separates the disordered paramagnetic phase 
at T > T, from the ordcrcd ferromagnetic phase at T < T,. \Ve can find T,. in 
terms of the constant A in (1). 

'Also called the molecular field or the Weiss field, after Pierre \'i'ciss who was the first to 
imagine such a field. The exchangc ficld B E  silnulates a real magnetic field in the expressions for 
the energy -p . RE and the torque p X BE on a rrlag~etic I I I U I D B I ~ ~  p. But BE is not really a 
magnetic field and therefore does not enter into the Maxwell eqnatinns; for example, there is no 
current density j related to BE by curl H = 4wjIc. The magnitude of H E  is typically lo4 larger than 
the average magnetic field of the magnetic dipole> of the ferro~nagnct. 



Consider the paramagnetic phase: an applied field B, will cause a finite 
magnetization and this in turn will cause a finite exchange field BE. If xP is the 
paramagnetic susceptibility, 

The magnetization is equal to a constant susceptibility times a field only if the 
fractional alignment is small: this is where the assumption enters that the spec- 
imen is in the paramagnetic phase. 

The paramagnetic susceptibility (Chapt. 11) is given by the Curie law 
xp = CIT, where C is the Curie constant. Substitute (1) in (2); we find 
MT = C(B, + AM) and 

M C 
x = B ,  = (T-CA) 

The susceptibility (3) has a singularity at T = CA. At this temperature (and 
below) there exists a spontaneous magnetization, because if x is infinite we 
can have a finite M for zero B,. From (3) we have the Curie-Weiss law 

This expression describes fairly well the observed susceptibility variation in 
the paramagnetic region above the Curie point. The reciprocal susceptibility 
of nickel is plotted in Fig. 2. 

350 400 450 500 
Temperature in O C  

Figure 2 Reciprocal of the susceptibility per gram of nickel in the neighborhood of the Curie 
temperature (358°C). The density is p. The dashed line is a linear extrapolation from high 
temperatures. (After P. Weiss and R. Forrer.) 
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From (4) and the definition (11.22) of the Curie constant C we may deter- 
mine the value of the mean field constant h in (1): 

For iron T, = 1000 K, g = 2, and S = 1; from (5) wc have h = 5000. With 
hf, = 1700 we have B E  = AM = (5000)(1700) = lo7 CJ = lo3 T. The exchange 
field in iron is very much stronger than the real magnetic field due to the other 
magnetic ions in thc crystal: a magnetic ion produces a field = ~ , / a ~  or about 
lo3 G = 0.1 T at a neighboring lattice point. 

The exchange field gives an approxirrlate representation of the quantum- 
mechanical exchange interaction. On certain assumptions it is shown in texts 
on quantum theory that the energy of interaction of atoms i, j bcaring electron 
spins Si, S, coritai~ls a term 

U = -2JS,. S1 , (6) 

where] is the exchange integral and is rclated to the overlap of the charge dis- 
tributions of the atolns i, j .  Equation (6) is called the Heisenberg model. 

The charge distribution of a system of two spins depends on whether the 
spins are parallel or antiparallel2 for the Pauli principle excludes two electrons 
of the same spin from being at the same place at the same time. It does not ex- 
clude two electrons of opposite spin. Thus the electrostatic energy of a system 
will depend on the relative orientation of the spins: the difference in energy 
defines the exchange energy. 

The exchange energy of two electrons may bc writtcn in the form -2Jsl . s, 
as in (6), just as if there were a direct coiipling hehveen the directions of the 
two spins. For many purposes in ferromagnetism it is a good approximation to 

- - 

trcat the spins as classical angular momentum vectors. 
We can establish an approximate connection between the exchange inte- 

gral J and the Curie temperature T,. Suppose that the atom under considera- 
tion has z nearest neighbors, each connected with the central atom by the 
interaction 1. For more distant neighbors we take J as zero. The mean field 
theorv result is 

Better statistical approximations give somewhat different results. For 
thc sc. hcc, and fcc structures with S = i, Rushbrooke arid Wood give 

'1itwo spins arc antiparallel, the wavefunctions of the tu-o electrons must be symmetric, as in 
the combination u(r,)o(r,j + u(r,)o(r,). If the two spills arc parallcl, the Pauli principle requires 
that the orbital part of the wavefunction be antisymmetric, as in u(r,)o(r,j - u(r,)v(r,), for here if 
we i ~ ~ t e r c h a ~ ~ g c  thc coordinales r,, r, the wavefunction changes s i p .  If we set the positions equal 
so that r, = r, then the antisymmetric fu11ctio11 vanishes: for parallel spins there is zero probability 
of finding the two electrons at the same position. 



kBT,/z. = 0.28; 0.325; and 0.346, respectively, as compared with 0.500 from (7) 
for all three structures. II iron is represcntcd by the Heisenherg model with 
S = 1, then the obsenrcd Ci~rie temperature corresponds toJ = 11.9 meV 

Temperature Dependence ofthe Saturation Magnetization 

We can also use the mean field approxirrratio~l below the Curie tempera- 
ture to find the m~agnetizatiori as a function of temperature. We proceed as 
before, but instead of the Curie law we use the complete Brillouin expression 
for the magnetization. For spin $ this is A4 = N p  tanh(pB/kBT). 

If we omit thc applied magnetic field and replace B by the molecular field 
BE = AM, then 

M = Np.  tanh(pAA4/kBT) . (8) 

We shall see that solutions of this equation with nonzero M exist in the tem- 
perature range between 0 and T.. 

To solve (8) we write it in terms of the reduced magnetization m = M/Np 
and the reduced temperature t = k B ~ / ~ p 2 A ,  whence 

We then plot the right and left sides of this equation separately as functions of 
m, as in Fig. 3. The intercept of the two curves gives the value of 7 r ~  at the tem- 
perature of interest. The critical temperature is t = 1, or 2:: = ~'p.~Alk,. 

tanhidt)  
fort = 0.5 

furt = 1 

fort = 2 

0 0.2 0.4 0.6 0.8 1.0 1.2 

Figure 3 Graphical solution of Eq. (9) for the reduced magnetization m as a function of tempera- 
ture. The rednced magnetization is defined as m = MlA'p. Thc Icft-hand side of Eq. (9) is plotted 
as a straight line m with unit slope. The right-hand side i s  tanh(m/t) and is plotted vs, rn for three 
dffercnt values of the reduced temperature t = k,T/Np2h= 1771. The three curves correspond to 
the temperatnres 2T,, T,, and 0.5T,. The curve for t = 2 i~~tersccts thc straight line m only at 
m = 0,  as appropriate for the paramagnetic region (there i s  no external applied magnetic field). 
The curve fo r t  = 1 (or T = T,) is tangent to the straight line m at the origin; this temperature 
marks the onset of ferromagnetism. The curve for t  = 0.5 is in the ferromagnetic region and inter- 
sects the straight line m at about m = 0.94%. As t + 0 the intercept moves I I ~  to m = 1, so that 
all magnetic rnolnerrts arc lincd up at absolute zero. 
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Figure 4 Saturation magnetization of nickel a7 a function of temperature, together with the 
theoretical curvc for S = on the mean field theory Experimental values hy P. Weiss and R. Forrer. 

The curves of 1M versus T obtained in this way reproduce roughly the fea- 
tures of the experimental results, as shown in Fig. 4 for nickel. As T increases, 
the magnetization decreases smoothly to zero at T = T,.  This behavior 
classifies the usual ferromagneti~/~aramagnetic transition as a second-order 
transition. 

The mean-field theory does not give a good description of the variation of 
M at low temperatures. For T + T ,  the argument of tanh in (9) is large, and 

tanh 5 - 1 - %-g. 

To lowest order the magnetization deviation AM = M(0)  - M(T)  is 

The argument of the exponential is equal to -2TJT. For T = 0.1TC we have 
AMINp 4 x 

The experimental results show a much more rapid dependence of AM on 
temperature at low temperatures. At T = 0.1TC we have AM/A4 2 X loF3 
from the data of Fig. 5. The leading term in AM is observed from experiment 
to have the form 

where the constant A has the experimental value (7.5 t 0 .2 )  X deg3I2 for 
Ni and (3.4 ? 0 .2 )  X 10-%eg-"~ for Fe. The result ( 1 1 )  finds a natural expla- 
nation in terms of spin wave theory. 



ITpprr 
Middle 
h r  1 kG .. 

Figure 5 Decrease in magnetization of nickel with trmperatnre. after Arple,  Charap. 
In the plot AM = 0 at 4.2 K .  

Saturation Magnetization at Absolute Zero 

Table 1 gives representative vali~es of the saturation magnetization M,,  the 
ferromagnetic Curie temperature, and the effective magneton number de- 
fined by M,(O) = n,Np,, where N is the number of formula units per unit 
volume. Do not confuse n, with the paramagnetic effective magneton r~urrlber 
p defined by (11.23). 

Tahle 1 Ferromagnetic cryslals 

Magnetization M,, in gauss 
Curie 

Room temperatllre, 

Fe 1707 1740 2.22 1043 
Co 1400 1446 1.72 1388 
Ni 385 510 0.606 627 
Gd - 2060 7.fi3 292 
Dy - 2920 10.2 88 
MnAs 670 870 3.4 318 
MnBi 620 680 3.52 630 
MnSh 710 - 3.5 587 
CrO, 515 - 2.03 386 
MnOFe,O, 410 - 5.0 573 
FeOFe,O,, 480 - 4.1 858 
NiOFe,O, 270 - 2.4 (858) 
CuOFc,O, 135 - 1.3 728 
MgOFr,O, 1 1 0  - 1.1 713 
EuO - 1920 6.8 69 
Y:3FesOls 130 200 5.0 560 
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Observed values of n, are often nonintegral. There are several possible 
causes. One is the spin-orbit interaction which adds or subtracts some orbital 
magnetic moment. Another cause in ferromagnetic metals is the conduction 
electron magnetization induced locally about a paramagnetic ion core. A third 
cause is suggested by the drawing in Fig. 1 of the spin arrangement in a ferri- 
magnet: if there is one atom of spin projection -S for every two atoms +S, the 
average spin is $9. 

Are there in fact any simple ferromagnetic insulators, with all ionic spins 
parallel in the ground state? The few simple ferromagnets known at present 
include CrBr,, EuO, and EuS. 

A band or itinerant electron model accounts for the ferromagnetism of 
the transition metals Fe, Co, Ni. The approach is indicated in Figs. 6 and 7. 
The relationship of 4s and 3d bands is shown in Fig. 6 for copper, which is 
not ferromagnetic. If we remove one electron from copper, we obtain nickel 
which has the possibility of a hole in the 3d band. In the band structure 
of nickel shown in Fig. 7a for T > T,  we have taken 2 X 0.27 = 0.54 of an 
electron away from the 3d band and 0.46 away from the 4s band, as compared 
with copper. 

The band structure of nickel at absolute zero is shown in Fig. 7b. Nickel is 
ferromagnetic, and at absolute zero nB = 0.60 Bohr magnetons per atom. After 
allowance for the magnetic moment contribution of orbital electronic motion, 

D 

nickel has an excess of 0.54 electron per atom having spin preferentially ori- 
ented in one direction. The exchange enhancement of the susceptibility of 
metals was the subject of Problem 11.6. 

4s 3d 
Filled-10 electrons 

(4 

3dt 3d.1 
5 electrons 5 electrons 

(b)  

Figure 6a Schematic relationship of 4s and 3d hands in metallic copper. The 3d band holds 10 
electrons per atom and is filled. The 4s hand can hold two electrons per atom; it is shown half- 
filled, as copper has one valence electron outside the filled 3d shell. 

Figure 6b The filled 3d band of copper shown as two separate sub-hands of opposite electron 
spin orientation, each band holding five electrons. With both sub-hands filled as shown, the net 
spin (and hence the net magnetization) of the d hand is zero. 



Fermi Fermi - - 
surface surface 

4.73 electrons 

Figure 7a Band relationships in nickel above the Curie temperature. The net magnetic moment 
is zero, as there are equal numbers of holes in the 3d and 3d f bands. 

Figure 7b Schematic relationship of bands in nickel at absolute zero. The energies of the 3d f 
and 3d L sub-bands are separated by an exchange interaction. The 3d T band is filled; the 3d .1 
band contains 4.46 electrons and 0.54 hole. The 4s band is usually thought to contain approxi- 
mately equal numbers of electrons in both spin directions, and so we have not troubled to divide it 
into sub-bands. The net magnetic moment of 0.54 pB per atom arises from the excess population 
of the 3d f band over the 3d .1 band. It is often convenient to speak of the magnetization as arising 
from the 0.54 hole in the 3d .1 band. 

MAGNONS 

A magnon is a quantized spin wave. We use a classical argument, just as we 
did for phonons, to find the magnon dispersion relation for w versus k. We 
then quantize the magnon energy and interpret the quantization in terms of 
spin reversal. 

The ground state of a simple ferromagnet has all spins parallel, as in Fig. 8a. 
Consider N spins each of magnitude S on a line or a ring, with nearest-neighbor 
spins coupled by the Heisenberg interaction: 

t t t t t t  t t l t t t  88V88V 
+ o r  + a t +  + a r  

Figure 8 (a) Classical picture of the ground state of a simple ferromagnet: all spins are parallel. 
(b) A possible excitation: one spin is reversed. (c) The low-lying elementary excitations are spin 
waves. The ends of the spin vectors precess on the surfaces of cones, with successive spins ad- 
vanced in phase by a constant angle. 
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Figurc 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed 
from ahow, showing U I I ~  wavclcngth. The wave is drawn through the ends of the spin vectors. 

Here J is the exchange integral and hSp is the angular ~no~nentum of the 
spin at sitc p .  If we treat the spins Sp as classical vectors, then in the ground 
statc Sp . Spt = SP and the exchange energy of the system is Uo = -2NJS2. 

What is the energy of the first excited state? Consider an excited state with 
one particular spin reversed, as in Fig. 8b. We see from ( 1 2 )  that this increases 
the energy by ~JS', so that U 1  = Uo + 8]s2. Rut we can form an excitation of 
mudl lower energy- i1 we let all the spins share the reversal, as in Fig. 8c. The 
elementary excitations of a spin system have a wavelike form and are called 
maglions (Fig. 9). These are analogous to lattice vibrations or phonons. Spin 
waves are oscillations in the relative orientations of spins on a lattice; lattice vi- 
brations are oscillations in the relative positions of atoms on a lattice. 

We now give a classical derivation of the magnon dispersion relation. The 
terms in ( 1 2 )  which involve the pth spin are 

117e write magnetic mornent at site p as /+ = -gpBSp Then (13) becomes 

which is of the form -pp . Bp, where the effective magnetic field or exchange 
field that acts on the pth spin is 

Fro111 ~llechanics the rate of change of the angular momerltu~n fiSp is equal 
to the torquc pp X Bp which acts on the spin: fi dS,ldt = ~ c ,  X B,,, or 

In Cartesian components 

arid si~~lilarly for dSzMt and dS;ldt. These equations involve products of spin 
components and are nonlinear. 



If the amplitude of the cxcitation is small (if S;, S; S), we may obtain an 
approximate set of linear equations by taking all S; = S and by neglecting 
terms in the product of ST and SY which appear in the equation for dSz/dt. The 
linearized equatio~is are 

By analogy with pho~ion yroble~~is  we look for traveling wave solutions of 
(18) of the form 

where u,  a are constants, p is an integer, and a is the lattice constant. On sub- 
stitution into (18) we have 

-iwu = (2JS/fi)(2 - e-lk" - e"") z. = (4]S/fi)(l - cos kak  ; 

-im = -(2]SIfi)(2 - e-ik" - eika)u = -(4JS/&)(l - cos ka)u . 

These equations have a solution for 11 and u if the determinant of the corf- 
ficients is equal to zero: 

(ajs/fi)(l- cos ku) 
~ s f i ) ( l -  cos ,a) io = 0 ,  (21) 

whence 

fro = 4jS(1 - cos ka) . (22) 

This result is plotted in Fig. 10. With this solution we find that o = -iu, corre- 
sponding to circular precession of each spin about the z axis. \Ve see this on 
taking real parts of (20), with v set equal to -iu. Then 

S; = u cos(pka - wt) ; S: = u sin(pka - ot) . 

Equation (22) is the dispersion relation for spin waves in one dimension 
with nearest-neighbor i~iteractions. Precisely the sarrle result is obtained froni 
the quantum-mechanical solution; see QTS, Clrapter 4. At long wavelengtlis 
ka < 1, so that (1 - cos ka) = : ( k ~ ) ~  and 

The frequency is proportional to k2; in the same limit the frequency of a 
phonon is dlrectly proportional to k. 
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Figure 10 Dispersion relation for magnons in 
0- a ferromagnet in one dimension with nearest- 
0 '77 - neighbor interactions. 

k- 

The dispersion relation for a ferromagnetic cubic lattice with nearest- 
neighbor interactions 

where the summation is over the z vectors denoted by 8 which join the central 
atom to its nearest neighbors. For ka < 1, 

for all three cubic lattices, where u is the lattice constant. 
The coefficient of k2 often may be determined accurately by neutron scat- 

tering or by spin wave resonance in thin films, Chapter 13. By neutron scatter- 
ing G. Shirane and coworkers find, in the equation ?io = Dk2, the values 281, 
500, and 364 meV AVor D at 295 K in Fe, Co, and Ni, respectively. 

Quantization of Spin Waues. The quantization of spin waves proceeds as for 
photons and phonons. The energy of a mode of frequency wk with nk magnons 
is given by 

The excitation of a magrlon corresponds to the reversal of one spin i. 



Thermal Excitation of Magnons 

In thermal equilibrium the werage value of the number of magnons ex- 
cited in the niode k is giver1 by the Planck distribution" 

The total nnmhrr of magnons cxcitcd at a tcmpcraturr T is 

where D(w) is the number of magnon modes per unit frequency range. The 
integral is taken over the allowed range of k, which is the first Brillouin zone. 
At sufficiently low temperatures we niay evaluate the integral between 0 arld 

because (n (w) )  + 0 exponentially as w + cc. 

Magnons havc a singlc polarization for each value of k. In three dimen- 
sions the niimher of modes of wavevector less than !i is ( 1 / 2 ~ ) ~ ( 4 ? r k ~ / 3 )  per 
unit volume, whence the nunlber of magnons D(w)dw with frequency in dw at 
w is (1/25~)~(4?rk~)(dk/clw) dw. In the approximation (25) ,  

Thus the density of modes for magnons is 

so that the total number of magnons is, from (28) ,  

The definite integral is found in tables and has the value (0.0587)(44) .  
The ~lurnber N of atorrls per unit volume is Q/u" where Q = 1, 2 , 4  for sc, 

bcc, fcc lattices, respectively. Now (C.nk)/hTS is equal to the fractional change 
of magnctixation AiM/A4(0), whrnce 

3The argument is exactly as lor phonons or photons. The Planck dislribution lollows for any 
problem where the enerby levels are identical mith those of a harmonic oscillator or collection of 
harmonic oscillators. 
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This result is the Bloch T3/' law and has been confirmed experimentally. In 
neutron scattering experiments spin waves have been observed up to tempera- 
tures near the Curie temperature and even above the Curie temperature. 

NEUTRON MAGNETIC SCATTERING 

An x-ray photon sees the spatial distribution of electronic charge, whether 
the charge density is magnetized or unmagnetized. A neutron sees two aspects 
of a crystal: the distribution of nuclei and the distribution of electronic magne- 
tization. The neutron diffraction pattern for iron is sliown in Fig. 11. 

The magnetic moment of the neutron interacts with the magnetic moment 
of the electron. The cross section for the neutron-electron interaction is of the 
same order of magnitude as for the neutron-nuclear interaction. Diffraction of 
neutrons by a magnetic crystal allows the determination of the distribution, 
direction, and order of thc magnetic moments. 

A neutron can he inelastically scattered by the ~nagnetic structure, with 
the creation or annihilation of a magnon (Fig. 12); such events make possible 
thc experimental determination of magnon spectra. If the incident neutron 
has wavevector k,, and is scattered to k; with the creation of a magnon of 
wavevector k, then by corlservation of crystal momentum k, = kk + k + G, 
where G is a reciprocal lattice vector. By conservation of energy 

Scdttering auglc 

Figure 11 Neutron diffraction pattern for iron. (After C. C.. Shidl, E. 0. WuUa~l, and W. C. Koehler.) 



Figure 12 Scattering of a neutron by an ordered 
magnetic structure, with creation of a magnon. 

Figure 13 Magnon energy as a function of the square of the wavevector, for the ferromagnet 
MnPt,. (After R. Antonini and V. J. Minkiewicz.) 

where huk is the energy of the magnon created in the process. The observed 
magnon spectriim for MnPt3 is shown in Fig. 13. 

FERRIMAGNETIC ORDER 

In many ferromagnetic cxystals the saturation magnetization at T = 0 K 
does not correspond to parallel alignment of the magnetic monie~lts of the 
constituent paramagnetic ions, even in crystals for which the individual para- 
magnetic ions have their normal magnetic moments. 

The most familiar example is magnetite, Fe,O, or FeO . Fe,03. From 
Table 11.2 we see that ferric (Fe3+) ions are in a state with spin S = and 
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8Fe3+ 

Figure 14 Spin arrallgc~llcnts in magnetite, FeO . Ye20,, showing how the moments uf the Fc3+ 
ions cancel out, leaving only the moments of the Fez+ ions. 

zero orbital moment. Thus each ion should contribute 5pCLB to the saturation 
moment. The ferrous (Fez+) ions have a spin of 2 and should contribute 4p,, 
apart from any residual orbital ~nornent contribution. Thus the effective num- 
ber of Bohr m a p e t o ~ ~ s  per Fe,O, fornlula unit should be about 2 x 5 + 4 = 14 
if all spins were parallel. 

The observed value (Table 1) is 4.1. The discrepancy is accounted for if 
the ~nolnents of the ~ e ~ +  ions are antiparallel to each other: then the observed 
moment arises only from the Fez+ ion, as in Fig. 14. Neutron diffraction 
results agree with this model. 

A systematic discussion of the consequences of this type of spin order was 
given by L. NBel with reference to an important class of magnetic oxides 
known as ferrites. The usual chemical formnla of a ferrite is MO . Fe,O,, 
where M is a divalent cation, often Zn, Cd, Fe, Xi, Cu, Co, or Mg. The term 
ferrimagnetic was coined originally to describe the ferrite-type ferromag- 
netic spin order sllch as Fig. 14, and by extension the term covers almost any 
compound in which some ions have a rnornent antiparallel to other ions. Many 
fcrrimagnets are poor conductors of electricity, a quality exploited in applica- 
tions such as rf transformer cores. 

The cubic ferrites have the spinel crystal structure shown in Fig. 15. 
There are eight occupied tetrahedral (or A)  sites and 16 occupied octahedral 
(or B) sites in a unit cuhc. The lattice constant is about 8 k. A remarkable fea- 
ture of the spinels is that all exchange integrals JM, J.41.4R, and JBR are negative 
and favor antiparallel alignment of the spins connected by the interaction. Rut 
the AB interaction is the strongest, so that the A spins are parallel to each 
other and the B spins are parallel to each other, just in order that the A spins 
may he antiparallel to the B spins. If] in U = -2JSi . Sj  is positive, we say that 
the exchange integral is ferromagnetic; if J is negative, the exchange integral is 
antiferromagnetic. 



Figure 15 C~ystal structure of the mineral spinel MgAlZ0,; the Mg2+ ions occupy tetrahedral 
sites, each surrounded by four oxygen ions; the A13+ occupy octahedral sites, each surrounded by 
six oxygen ions. This is a normal spinel arrangement: the divalent metal ions occupy the tetrahe- 
dral sites. In the inverse spinel arrangment the tetrahedral sites are occupied by trivalent metal 
ions, while the octahedral sites are occupied half by divalent and half by trivalent metal ions. 

We now prove that three antiferromagnetic interactions can result in ferri- 
magnetism. The mean exchange fields acting on the A and B spin lattices may 
be written 

taking all mean field constants A ,  p, v to be positive. The minus sign then cor- 
responds to an antiparallel interaction. The interaction energy density is 

this is lower when M A  is antiparallel to MB than when M A  is parallel to M B .  
The energy when antiparallel should be compared with zero, because a possi- 
ble solution is MA = MB = 0. Thus when 

the ground state will have MA directed oppositely to M,. (Under certain condi- 
tions there may be noncollinear spin arrays of still lower energy.) 

Curie Temperature and Susceptibility of Ferrimagnets 

We define separate Curie constants C A  and C B  for the ions on the A and B 
sites. For simplicity, let all interactions be zero except for an antiparallel interac- 
tion between the A and B sites: BA = - p M B ;  BB = - p M A ,  where p  is positive. 
The same constant p is involved in both expressions because of the form of (33). 
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We have in the mean field approximation 

where B,  is the applied field. These equations have a nonzero solution for MA 
and M, in zero applied field if 

so that the ferrimagnetic Curie temperature is given by T,  = ~ . ( c ~ C ~ ) ' " .  
We solve (35) for M A  and M, to obtain the susceptibility at T > T,: 

a result more complicated than (4). Experimental values for Fe,O, are plotted 
in Fig. 16. The curvature of the plot of 1/x versus T is a characteristic feature 
of a ferrimagnet. We consider below the antiferromagnetic limit CA = CB. 

Iron Garnets. The iron garnets are cubic ferrimagnetic insulators with the 
general formula MJFe,0,2, where M is a trivalent metal ion and the Fe is the 
trivalent ferric ion (S = %, L = 0). An example is yttrium iron garnet Y3Fe,01,, 
h o w n  as YIG. Here Y'+ is diamagnetic. 

The net magnetization of YIG is due to the resultant of two oppositely 
magnetized lattices of Fe3+ ions. At absolute zero each ferric ion contributes 
25pB to the magnetization, hut in each formula unit the three ~ e ~ +  ions 
on sites denoted as d sites are magnetized in one sense and the two Fe3* ions 
on a sites are magnetized in the opposite sense, giving a resultant of 5pB per 
formula unit in good agreement with the measurements of Geller et al. 

Temperature PC) 

Figure 16 Reciprocal s~isceptihility of magnetite, FeO . Fe,O, 



The mean field at an a site due to the ions on thc d sitcs is R,  = 

-(1.5 x 104)M,,. The observed Curie temperature 5.59 K of YIG is due to the 
a-d interaction. The o11ly rrlagnetic ions in YIG are the ferric ions. Because 
these are in an L = 0 state with a spherical charge distribution, their interac- 
tion with latticc deformations and phonons is weak. As a result YIG is charac- 
terized by very narrow linewidths in fcrromapetic resonance experinlents. 

ANTIFERROMAGNETIC ORDER 

A classical example of magnetic structure deter~nination by rleutroris is 
shown in Fig. 17 for MnO, which has the NaCl structure. At SO K there are 
extra neutron reflections not present at 293 K. Thc rcflcctions at 80 K may be 
classified in terms of a cubic unit cell of lattice constant 8.85 A .  4 t  293 K thc 
reflections correspond to an fcc unit cell of lattice constant 4.43 A. 

But the lattice cor~stant determined by x-ray reflection is 4.43 A at both 
temperatures, 80 K and 293 K. We conclude t2vat the chemical unit cell has the 
4.43 latticc parameter, but that at 80 K the electronic magnetic r~~o~rlerits of 

Figure 17 Neutron diffraction patterns for MnO below, and above the spin-ordering temperature 
of 120 K, after C. 6. Shnll, \\'. A. Strauser. and E. 0. U'ollan. Thc rcflcctio~r indicas arc based on 
an 8.85 A cell at 80 K and on a 4.43 A cell at 293 K. .kt the higher t ~ m p e r a t ~ ~ r e  the bIn2' ions are 
still magnetic, but they are no longer ordered. 
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Figure 18 
determined 

Ordered arrangements of splns of the MnZ+ Ions m manganese 
by neutron d~ffraction The 02+ Ions are not shown 

oxide. MnO, as 

Figure 19 Spin ordering in ferromagnets (J > 0) and antiferromagnets ( J  < 0). 

the ~ n ' +  ions are ordered in some nonferromagnetic arrangement. If the 
ordering were ferromagnetic, the chemical and magnetic cells would give the 
same reflections. 

The spin arrangement shown in Fig. 18 is consistent with the neutron dif- 
fraction results and with magnetic measurements. The spins in a single [ I l l ]  
plane are parallel, but spins in adjacent [ I l l ]  planes are antiparallel. Thus 
MnO is an antiferromagnet, as in Fig. 19. 

In an antiferromagnet the spins are ordered in an antiparallel 
arrangement with zero net moment at temperatures below the ordering or 
NBel temperature (Table 2). The susceptibility of an antiferromagnet is not 
infinite at T = T,, but has a weak cusp, as in Fig. 20. 

An antiferromagnet is a special case of a ferrimagnet for which both sub- 
lattices A and B have equal saturation magnetizations. Thus CA = CB in (37), 
and the NBel temperature in the mean field approximation is given by 



Table 2 Antiferromagnetic crystals 

Transition 
Paramagnetic temperature, Curie-Weiss - e ~ ( 0 )  

Substance ion lattice T,, in K 0, in K TN x(TN) 

MnO 
MnS 
MnTe 
MnF, 
FeF, 
FeC1, 
FeO 
CoC1, 
c o o  
NiC1, 
NiO 
Cr 

fcc 
fcc 
hex. layer 
bc tetr. 
bc tetr. 
hex. layer 
fcc 
hex. layer 
fcc 
hex. layer 
fcc 
bcc 

Paramagnetism Ferromagnetism Antiferrornagnetism 

x =  C x =  - C 
T T-T, 

Curie law Curie-Weiss law 
(T > T,) 

Figure 20 Temperature dependence of the magnetic susceptibility in paramagnets, ferromag- 
nets, and antiferromagnets. Below the NBel temperature of an autiferromagnet the spins have an- 
tiparallel orientations; the susceptibility attains its maximum value at T, where there is a weU- 
defined kink in the curve of x versus T. The transition is also marked by peaks in the heat capacity 
and the thermal expansion coefficient. 

where C refers to a single sublattice. The susceptibility in the paramagnetic 
region T > T,  is obtained from (37): 

The experimental results at T > T,  are of the form 
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Experimental values of BIT, listed in Tablc 2 often differ substantially from 
the value unity expected from (39). Values of BIT,,, of the observed magnitude 
may be obtained when next-nearest-neighbor interactions are provided for, 
and when possible sublatticc arrangements are considered. If a mean field 
constant - E  is i~ltroduccd to describe interactions within a sublattice, the11 
BIT, = ( p  + €) / (p  - 6). 

Susceptibility Below the Nhel Temperature 

Thcre are two situations: with the applied magnetic field perpendicular to 
thc axis of the spins; and with the field parallel to the axis of the spins. At and 
ahove the N6el temperature the s~isceptibility is nearly independent of the di- 
rection of the field relativr to the spin axis. 

For B, perpendicular to the axis of the spins we can calculate the suscepti- 
bility by elementaly considerations. The energy density in the presence of the 
field is, with A4 = = (&I, 

where 2rp is thc angle the spins make with each other (Fig. 21a). The energyis 
a minimum when 

so that 

(CGS) 

In thc parallel orientation (Fig. 21b) the magnetic energy is not changed if 
the spin systenls A and B make equal angles with the field. Thus the suscepti- 
bility at T = 0 K is zero: 

(b)  

Figure 21 Calcl~lation of (a) peycndicular and (b) parallel snsceptibilities at  0 K, in the mean 
field approximation. 



XI 

T, in K 

Figure 22 Magnetic susceptibility of manganese flnoride. MnF,, parallel and perpendicular to 
the tetragonal axis. (After S. Foner.) 

The parallel susceptibility increases smoothly with temperature up to T N .  
Measurements on MnF, are shown in Fig. 22. In very strong fields the spin 
systems will turn discontinuously f r o ~ r ~  the parallel orientation to the perpen- 
dicular orientation where the energy is lower. 

Antiferromagnetic Magnons 

We obtain the dispersion relation of magnons in a one-dimensional anti- 
ferromagnet by making the appropriate substitutions in the treatment 
(16)-(22) of the ferromagnetic line. Let spins with even indices 2p composc 
sublattice A, that with spins up (Sz  = S ) ;  and let spins with odd indices 21, + 1 
compose sublattice B, that with spins down (Sz  = -S) .  

We consider only nearest-neighbor interactions, with ] negative. Then 
(18) written for A becomes, with a careful look at (I:), 

The corresponding equations for a spin on B are 

We form S+ = S' + iSY: then 

clSlj/clt = (2i]S/fi)(ZS& + S&, + Sip+,)  ; 

dS~p+,/dt = -(2iJS/6)(2Sip+1 + S?, + S?,+9) 
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Figure 23 Magnon dispersion relatlon in the simple cubic antiferromagnet RhMnF, as deter- 
mined at 4.2 K by inelastic neutron scattering. (After C. G. Windsor and R. W7. H. Stevenson.) 

We look for solutions of the form 

S2:, = u exp[i2pka - iwt] ; Sl,+l = u exp[i(2p + 1) ka - iurt] , (49)  

so that (47) and (48) become, with we, - - 4JSIfi = 411 IS/fi, 

Equations (50) have a solution if 

w, cos ka = o  ; 
we, cos ka w, + w 

thus w ~ = w ~ ~ ( ~ - c o s ~ ~ )  ; w=w,,lsinkaI. (52)  

The dispersion relation for magnons in an antiferromagnet is quite differ- 
ent from (22) for magnons in a ferromagnet. For ka < 1 we see that (52) is lin- 
ear in k: w w,,lkal. The magnon spectrum of RhMnF, is shown in Fig. 23, as 
determined by inelastic neutron scattering experiments. There is a large re- 
gion in which the magnou frequency is linear in the wavevector. 

Well-resolved magnons have been observed in MnF, at specimen temper- 
atures up to 0.93 of the NBel temperature. Thus even at high temperatures the 
magnon approximation is useful. 



FERROMAGNETIC DOMAINS 

At temperatures well below the Curie point the electronic magnetic mo- 
ments of a ferromagnet are essentially parallel when regarded on a micro- 
scopic scale. Yet, loolang at a specimen as a whole, the magnetic moment may 
be very much less than the saturation moment, and the application of an exter- 
nal magnetic field may be required to saturate the specimen. The behavior ob- 
served in polycrystalline specimens is similar to that in single crystals. 

Actual specimens are composed of small regions called domains, within 
each of which the local magnetization is saturated. The directions of magneti- 
zation of different domains need not be parallel. An arrangement of domains 
with approximately zero resultant magnetic moment is shown in Fig. 24. Do- 
mains form also in antiferromagnetics, ferroelectrics, antiferroelectrics, ferro- 
elastics, superconductors, and sometimes in metals under conditions of a 
strong de Haas-van Alphen effect. The increase in the gross magnetic moment 
of a ferromagnetic specimen in an applied magnetic field takes place by two 
independent processes: 

In weak applied fields the volume of domains (Fig. 25) favorably oriented 
with respect to the field increases at the expense of unfavorably oriented 
domains; 

Figure 24 Ferromagnetic dolna~n pattern on a single crystal platelet of nickel. The domain 
boundaries are made visible by the Bitter magnetic powder pattern technique. The direction of 
magnetization within a domain is determined by observing growth or contraction of the domain in 
a magnetic field. (After R. W. D e  Blois.) 
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Applied ficld - 
Figure 25 Representative r~~ag~~etization cunre, showing the dominant magnetization processes 
in the different regions of the curve. 

Magnetic induction (CGS) 
B = H + 4 v B f  

Figure 26 The technical magnetization curve (or hysteresis loop). The coercivity H, is the re- 
verse field that reduces B  to zero; a related coercivity HCj reduces M or B - H to zero. The 
remanence B,  is the value of B  at H = 0. The saturation induction B ,  is the limit of B - H at large 
H, and tllr saturation magnetization M, = Bi4~471. In SI the vertical axis is B  = p,(H + iM). 

In strong applied fields the domain magnetization rotates toward the 
direction of thc field. 

Technical terms defined by the hysteresis loop are shown in Fig. 26. The 
cocrcivity is usually defined as the reverse field H ,  that reduces the induction 
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Figure 27 Magnetization curves for single crystals of iron, nickel, and cobalt From the curves 
for iron we see that the [loo] directions are easy directions of magnetization and the [Ill] direc- 
tions are hard directions. The applied field is B,. (After Honda and Kaya.) 

(b)  

Figure 28 Asymmetry of the overlap of electron distributions on neighboring ions provides one 
mechanism of magnetocrystalline anisotropy. Because of spin-orbit interaction the charge distrib- 
ution is spheroidal and not spherical. The asymmetly is tied to the direction of the spin, so that a 
rotation of the spin directions relative to the crystal axes changes the exchange energy and also 
changes the electrostatic interaction energy of the charge distributions on pairs of atoms. Both ef- 
fects give rise to an anisotropy energy. The energy of (a) is not the same as the energy of (b). 

B to zero, starting from saturation. In high coercivity materials the coercivity 
H,, is defined as the reverse field that reduces the magnetization M to zero. 

Anisotropy Energy 

There is an energy in a ferromagnetic crystal which directs the magnetization 
along certain crystallographic axes called directions of easy magnetization. This 
energy is called the magnetocrystalline or anisotropy energy. It does not 
come about from the pure isotropic exchange interaction considered thus far. 

Cobalt is a hexagonal crystal. The hexagonal axis is the direction of easy 
magnetization at room temperature, as shown in Fig. 27. One origin of the 
anisotropy energy is illustrated by Fig. 28. The magnetization of the crystal sees 
the crystal lattice through orbital overlap of the electrons: the spin interacts 
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with the orbital motion by means of thc spin-orbit coupling. In cobalt the 
anisotropy energy density is givcn by 

where 6 is the anglc the magnetization makes with the hexagonal axis. At room 
temperature K; = 4.1 X 10%rg/cm3; = 1.0 X 10%rg/cm3. 

Iron is a cubic crystal, and the cube edges are thc directions of easy mag- 
nctization. To represent the anisotropy energy of iron magnetized in an arbi- 
t r a v  direction with direction cosines a,,  a*, ar3 referred to the cube edges, we 
are guided by cubic symmetry. Thc expression for the anisotropy energy must 
be an even power of each mi, provided opposite ends of a crystal axis are equiv- 
alent ~nagnetically, and it must be invariant under interchanges of the ai 
arrlong themselvcs. The lowest order combination satisfying the symmetry re- 
quirements is a: + ar: + ar:, but this is identically equal to unity and does not 
describc anisotropy effects. The next conlhination is of the fourth degree: 
ar:cri + aryai + a&;, and then of the sixth degrce: a:a&$. Thus 

At room temperature in iron K ,  = 4.2 X lo5 crg/cm3 and K, = 1.5 x 10" erg/cm3. 

Transition Region Between Domains 

A Bloch wall in a crystal is the transition layer that separates adjacent 
regions (dorriai~~s) magnetized in different directions. The entire change in 
spin direction between domains does not occur in unc discontinuous jump 
across a single atomic plane, hut takes place in a gradual way over many atomic 
planes (Fig. 29). The exchange energy is lower when the change is distributed 
over many spins. This behavior may be understood by interpreting the Heisen- 
berg eq~lation (6) classically. We replace cos by 1 - i(p2; then w, = J S ~ ~ '  is 
the exchange energy between two spins making a small angle with each 
other. Here J is the exchange intcgral and S is the spin quantum number; we, is 
referred to the energy for parallel spins. 

If a total change of .n occurs in N equal steps, the angle between ncighhor- 
ing spins is .n/AT1 and the exchange energy per pair of neighboring atoms is 
we, = ~ ~ ~ ( ? r / h ' ) ~ .  The total exchange energy of a line of N + 1 atoms is 

The wall would thicken without limit were it not for the anisotropy energy, 
which acts to limit the width of the transition layer. The spins contained within 
the wall are largely directed away from the axes of easy rnagnetization. so thcrc 
is an anisotropy cncrgy associated with the wall, roughly proportional to the 
wall thickness. 



Figure 29 The structure of the Bloch wall separating domains. In iron the thickness of the transi- 
tion region is about 300 lattice constants. 

Consider a wall parallel to the cube face of a simple cubic lattice and sepa- 
rating domains magnetized in opposite directions. We wish to determine the 
number N of atomic planes contained within the wall. The energy per unit area 
of wall is the sum of contributions from exchange and anisotropy energies: 

o w  = u e a  + canis .  

The exchange energy is given approximately by (55)  for each line of atoms 
normal to the plane of the wall. There are l / a2  such lines per unit area, where 
a  is the lattice constant. Thus a,, = d ] s 2 / N a 2  per unit area of wall. 

The anisotropy energy is of the order of the anisotropy constant times the 
thickness Nu, or o,, - KNa; therefore 

ow - ( d ] ~ ~ / N a ~ )  + KNa . (56)  

This is a minimum with respect to N when 

For order of magnitude, N .= 300 in iron. 
The total wall energy per unit area on our model is 

ow = z ~ ( K ] s ~ / a ) ~  ; (59) 
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(a) (b)  (c)  (dl (4 
Figure 30 The origin of domains. 

in iron u,,, = 1 erg/cm2. Accurate calculation for a 180" wall in a (100) plane 
gives a, = ~(2K,]S~la)~ '~ .  

Origin of Domains 

Landau and Lifshitz showed that domain structure is a natural conse- 
quence of the various contributions to the energy-exchange, anisotropy, and 
magnetic-of a ferromagnetic body. 

Direct evidence of domain structure is furnished by photomicrographs of 
domain boundaries obtained by the technique of magnetic powder patterns 
and by optical studies using Faraday rotation. The powder pattern method 
developed by F. Bitter consists in placing a drop of a colloidal suspension of 
finely divided ferromagnetic material, such as magnetite, on the surface of the 
ferromagnetic crystal. The colloid particles in the suspension concentrate 
strongly about the boundaries between domains where strong local magnetic 
fields exist which attract the magnetic particles. The discovery of transparent 
ferromagnetic compounds has encouraged the use also of optical rotation for 
domain studies. 

We may understand the origin of domains by considering the structures 
shown in Fig. 30, each representing a cross section through a ferromagnetic 
single crystal. In (a) we have a single domain; as a consequence of the mag- 
netic "poles" formed on the surfaces of the crystal this configuration will have 
a high value of the magnetic energy (lI8~r) J B2 dV. The magnetic energy den- 
sity for the configuration shown will be of the order of M: = lo6 erg/cm3; here 
M, denotes the saturation magnetization, and the units are CGS. 

In (b) the magnetic energy is reduced by roughly one-half by dividing the 
crystal into two domains magnetized in opposite directions. In (c) with N do- 
mains the magnetic energy is reduced to approximately 1IN of the magnetic 
energy of (a), because of the reduced spatial extension of the field. 



Figure 31 Domain of closure at the end of a single crystal iron whisker. The face is a (100) plane; 
the whisker axis is [0011. (Courtesy of R. V. Coleman, C. G. Scott, and A. Isin.) 

In domain arrangements such as (d) and (e) the magnetic energy is zero. 
Here the boundaries of the triangular prism domains near the end faces of the 
crystal make equal angles (45") with the magnetization in the rectangular do- 
mains and with the magnetization in the domains of closure. The component 
of magnetization normal to the boundary is continuous across the boundary 
and there is no magnetic field associated with the magnetization. The flux cir- 
cuit is completed within the crystal-thus giving rise to the term domains of 
closure for surface domains that complete the flux circuit, as in Fig. 31. 

Domain structures are often more complicated than our simple examples, 
but domain structure always has its origin in the possibility of lowering the 
energy of a system by going from a saturated configuration with high magnetic 
energy to a domain configuration with a lower energy. 

Coercivity and Hysteresis 

The coercivity is the magnetic field H, required to reduce the magnetiza- 
tion or the induction B to zero (Fig. 26). The value of the coercivity ranges 
over seven orders of magnitude; it is the most sensitive property of ferromag- 
netic materials which is subject to control. The coercivity may vary from 600 G 
in a loudspeaker permanent magnet (Alnico V) and 10,000 G in a special high 
stability magnet (SmCo,) to 0.5 G in a commercial power transformer (Fe-Si 
4 wt. pet.) and 0.002 Gin  a pulse transformer (Supermalloy). Low coercivity is 
desired in a transformer, for this means low hysteresis loss per cycle of opera- 
tion. Materials with low coercivity are called soft; those with high coercivity 
are called hard, although there is not necessarily a 1 : 1 relationship of mag- 
netic hardness with mechanical hardness. 

The coercivity decreases as the impurity content decreases and also as in- 
ternal strains are removed by annealing (slow cooling). Amorphous ferromag- 
netic alloys may have low coercivity, low hysteresis losses, and high permeabil- 
ity. Alloys that contain a precipitated phase may have a high coercivity, as in 
Alnico V (Fig. 32). 
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Figure 32 Microstructure of Alnico \' in its optimum state as a permanent magnet. The composi- 
tion of Alnico \'is, by weight percent, 8 Al, 14 Ni, 24 Co, 3 Cu, 51 Fe. As aperinanent magnet it is 
a twn-phase system, with fine particles of one phase embedded in the other phase. The precipita- 
tion is carried out in a magnetic field, and the particles are oriented with their long axis parallel to 
the field direction. The width shown is 1.1 pm. (Courtesy of F. E. Luborsky.) 

Soft magnetic materials are used to concentrate and shape magnetic flux, 
as in motors, generators, transformers, and sensors. Useful soft materials in- 
clude electrical steels (usually alloyed with several percent of silicon to in- 
crease electrical resistivity and to decrease anisotropy); various alloys of 
Fe-Co-Mn, starting with permalloys of composition near NiT8Fezz, which have 
near-zero anisotropy energy and near-zero magnetostriction; NiZn and MnZn 
ferrites; and metallic glasses produced by rapid solidification. A commercial 
metallic glass (METGLAS 2605s-2) with composition Fe,,B1,Si9 has a hys- 
teresis loss per cycle much lower than the best grain-oriented silicon steel. 

The high coercivity of materials composed of very small grains or fine 
powders is well understood. A sufficiently small particle, with diameter less 
than 1 0 F  or cm, is always magnetized to saturation as a single domain be- 
cause the formation of a flux-closure configuration is energetically unfavorable. 
In a single domain particle it is not possible for magnetization reversal to take 
place by means of the process of boundary displacement, which usually re- 
quires relatively weak fields. Instead the magnetization of the particle must 
rotate as a whole, a process that may require large fields depending on 
the anisotropy energy of the material and the anisotropy of the shape of the 
particle. 

The coercivity of fine iron particles is expected theoretically to be about 
500 gauss on the basis of rotation opposed by the crystalline anisotropy energy, 
and this is of the order of the observed value. Higher coercivities have been 



reported for elongated iron particles, the rotation here being opposed by the 
shape anisotropy of the demagnetization energy. 

Rare earth metals in alloys with Mn, Fe, Co, and Ni have very large crystal 
anisotropies K and correspondingly large coercivitics, of the order of 2 W M .  
These alloys are exceptionally good permanent magnets. For example, the 
hexagonal co~npourid SmCoS has an anisotropy energy 1.1 x 10serg ~ r n - ~ ,  
equivalent to a coercivity 2WM of 290 kG (29  T). Magnets of Nd,Fel,B have 
energy products as high as 50 MGOe, exceeding all other commercially avail- 
able magnets. 

SINGLE-DOMAIN PARTICLES 

The dominant industrial and commercial applications of ferromagrietism 
are in magnetic recording devices, where the magnetic material is in the form 
of single-domain particles or regons. The total value of the production of 
magnetic devices for recording may be comparable with the total valuc of 
semiconductor device production and greatly exceeds the value of supercon- 
ducting device production, the latter being held back by low critical tempera- 
tures, as compared with magnetic Curie temperatures. The magnetic record- 
ing devices or memories typically are in the form of hard disks in coulputers 
and tape in video and audio recorders. 

An ideal single-domain particle is a fine particlc, usually elongated, that 
has its magnetic moment directed toward one end or the other of thc particle. 
The alternative orientations may be labeled as N or S; + or -; in digital 
recording, as 0 or 1. To have digital properties a ferromagnetic particle should 
be fine enough, typically 10-100 nm, so that only one domain is within the 
particlc. If the fine particle is elongated (acicular) or has uniaxial crystal sym- 
metry, only two valucs of the magnetic moment of the single domain are per- 
mitted, which is what one wants for digital properties. The first successful 
recording material was acicular T-Fe,O, with length-to-width ratio of about 
5 : 1, coercivity near 200 Oe and a length <I  pm; chrominm dioxide CrOz is 
the basis of a better material, in a form highly acicular (20 : 1) with coercivity 
near 500 Oe. 

Effective elongation can be attained with spheres by making a chain, 
like a string of beads. An ensemble of such chains or of elongated single do- 
main particles is said to exhibit superparamagnetism if the magnetic mo- 
ment of a unit is constant. If p is the magnetic moment in a magnetic field B,  
then the net magnetization of the ensemble will follow the Curie-Rrillouin- 
Langevin law of Chapter 11 if the  articles are embedded in a liquid so that 
they are each free to rotate as a whole. If the particles are frozen in a solid, 
thcre will be a remanent magnetization (Fig. 2 6 )  after removal of an applied 
field. 
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Geomagnetism and Biomagnetism 

Singlc domain ferromagnetic properties are of special geological interest 
in scdimentary rocks because the rocks through their remanent magnetizatiori 
carry a memory of the direction of the earth's magnetic field at the time that 
they were laid down, and thus of the geographical location of the rocks at that 
epoch. The rr~agnetic record is perhaps the most important basis of the theory 
of the drift of continents. Annually, layers of sedin~e~lt  are deposited in stream 
beds, layers that may hear some magnetic particles in single domain form. This 
record persists over at least 500 millior~ years of geological time and can tell us 
wherc on the surface of the earth the deposit was laid down at a given time. 
Lava flows also record rriagrletic field directions. 

The change in ~nagnetization from layer to layer gives a superb historical 
record of the drift of the continental plates on the earth's surface. The paleo- 
magnetic record is one basis of the branch of geology called plate tectonics. 
The original interpretation of the record was made Inore difficult, or more ex- 
citing, by the associated discovery (Brunhes, 1906) that the magnetic field of 
the earth itsclf can show reversals in direction, an effect contained within the 
standard dynamo theory of the earth's magnetism. Reversals have taken place 
once every 1 X lo4 to 25 X 10"ears. When a reversal occurs, it is relatively 
sudden. 

Fine single Jolnain particles, oftcn of magnetite Fe304, are even of impor- 
tance in biology. A direction-sceking effect known as magnetotaxis often con- 
trols, possibly sometimcs along with an astronomical guide system, the motion 
of bacteria, the migration of birds, and the ~novements of homing pigeons and 
bees. The cff'ect is due to the interaction of a single domain particle (or cluster 
of such particles, Fig. 33) in the orga~lism with the external magnetic field of 
the earth. 

Magnetic Force Mi~roscopy 

The success of the scanning tulineling microscope (STM) stimulated the 
development of related sca~lning probe dcvices, of which the scanning mag- 
netic force microscope is one of the most effective. A sharp tip of a magnetic 
material, such as nickel, is mounted on a cantilever lever (Fig. 34). Ideally, hut 
not yet, the tip is a singlc domain particle. Forces from the magnetic sample 
act on the tip and cailse a change, such as a deflection, in the cantilever status, 
and an image is formed by scanning the sample relative to the tip. The mag- 
netic force microscope (MFM) is the only magnetic imaging technique that 
can provide high resolution (10-100 nm) with little surface preparation. One 
can, for example, observe and image the magnetic flux that exits from the 
surface at the intersection of a Rloch wall with the surface (Fig. 29). An impor- 
tant application is to thc study of magnetic recording media-Figure 35 shows 
the magnetic signal from a test pattern of 2 p1n bits magnetized in the plane of 



Figure 33 Thin section of a cell of a magnetotactic bac- 
terium showing a chain of 50 nm particles of Fe,O,. Draw- 
ing by Marta Puebla from a photograph by R. B. Frankel 
and others. 
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Figure 35 Test strip magnetization in the plane of a Co-alloy disk in 2 pm hits, as detected by 
MFM close above the plane of the disk. (After Rugar et al.) 
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Figure 34 Basic concept of magnetic force microscopy. A magnetic tip attached to a flexible can- 
tilever is used to detect the magnetic field produced by the regions of alternating magnetization in 
the plane of the sample. (After Gmetter, Mamin, and Rugar, 1992.) 
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a Co-alloy disk; the parallel co~nporlent of the ficld seen by the sensor tip is 
what the photo shows. 

SUMMARY 
(In CGS Units) 

The susceptihility of a ferromagnet above the Curie temperature has the 
form x = C/(T - T,) in the mean field approximation. 

In thc mean field approximation the effective magnetic field seen by a mag- 
netic moment in a ferrornagnet is B, + AM, when A = T,/C and B, is the 
applied magnetic field. 

The elementary excitations in a ferromagnet are magnons. Their dispersion 
relation for ku < 1 has the form ho =Jk2az in zero external magnetic field. 
The thermal excitation of magnons leads at low temperatures to a heat ca- 
pacity and to a fractional magnetization change both proportional to T3". 

In an antiferrornagnet two spin lattices are equal, but antiparallel. In a ferri- 
rnagnet two lattices are antiparallel, but the magnetic moment of one is 
larger than the magnetic moment of the other. 

In an antifemornagnet the susceptibility above the Nee1 temperature has the 
form ,y = 2C/(T + 8 ) .  

The magnon dispersion relation in an antiferrornagnet has the form 
hw = jkn. The thermal excitation of rnagnons leads at low temperatures to a 
term in T 3  in the heat capacity, in addition to the phonon term in T3. 

A Rloch wall separates domains magnetized in different directions. The 
thickness of a wall is =(J/&?)'/' lattice constants, and the energy per unit 
area is =(KJ/u)~/' ,  where K is the anisotropy energy density. 

Problems 

1 .  Magnon dispersion rebtion. Derive the magnon dispersion relation (24) for a 
spin S on a simple cubic lattice, z = 6. Hint: Show first that (18a) is replaced by 

where the central atom is at p and the six nearest neighhors arc connected to it by 
six vectors 8.  Look for solutions of the equations for r1S;ldt and dSEldt of the form 
exp(ik . p - iwt) .  

2. Heat capacity of magnons. Use the approximate lnagnon dispersion relation 
w = Akqo find the leading term in the heat capacity of a three-dimensional ferro- 
rrlagnet at low temperatures k,T 4 J. The result is 0.113 kB(kBTlh~)3/2, per unit 



volume. The zeta function that enters thc rcsuli may he rsti~nated numerically; it is 
tabulated in Jahnke-Emde. 

3. Ne'el temperature. Taklng the effective ficld? on t l ~ r  two-subldthce model ot an 
ant~ferromagnebc as 

show that 

4 .  Magnetoelastic coupling. ITI a cubic crystal the elastic energy density in terms of 
the usual strain componer~ts uU is (Chapter 3 )  

and the leading term in the magnetic anlsotropy e n e r a  density is, frnm (54), 

Coupling hetweer~ elastic strain and magnetization direction may bc takcn formally 
into accnnnt by including in the total energy density a term 

arising from the strain dependence of L7,; here B, and B 2  arc called magrretoelastic 
coupling constants. Show that the total energy is a minimum bvhe~r 

This explains the ongin of magnr~ostrirtin~i, t l ~ r  cl~ange of length on magnet~zatlon. 

5 .  Coercive force of a small particle. (a) Consider a small spherical single-domain 
particle of a uniaxial lcrrornagnrt. Sliow that the reverse field along the axis re- 
quired to reversc thc magnetization is B,  = 2WM,, in CGS units. The coercive force 
of single-domain particles is observed to be of this magnitude. Take U ,  = K sin" as 
the anisotropy cnergy density and UM = B , M  cos 0 as the interaction energy den- 
sity with the external field; here 6 is the angle between B, and M. IIint: Expand the 
energics for small angles about 0 = n ,  and find the value of B, for which UK + L7>, 
does not have a minirnunr r~ear  0 = n. (b) Show that the magnetic energy of a satu- 
rated sphere of diameter d is =M:d3. An arrangement with appreciably less mag- 
nctic energy has a single wall in an equatorial plane. The domain wall energy will bc 
nuud2/4, where cw is the wall energy per unit area. Estimate for cobalt the critical 
radius below wl~ich the particles are stable as single domains, taking thc valuc ol 
]S2/n as for iron. 

6. Saturation magnetization near T,. Show that in the mean field approximation 
the saturation rnagnetization just below the Curie temperature has thc dominant 
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temperature dependence (T ,  - T)". A S S U ~ C  the spin is :. The result is the sarrrr as 
that for a second-order trarisitior~ in a rcrroclectric crystal, as discussed in Clia~pter 
16. The experimental data for ferromagncts (Table 1) suggest that the exporlrrtt is 
closer to 0.33. 

7 .  Nkel wall. The direction of n~agnetizatinn change in a domain wall goes fro111 that 
of the Bloch wall to that of a YGel wall (Fig. 36) in thin films of material of negligi- 
blc crystalline anisotropy energy, suclr as Permallo)~ The intercept of the Bloch wall 
with the surface of the film creates a surface rcgion of high demagnetization energy. 
The Nee1 wall avoids this intercept contrih~~lion, but at the expense of'a demagneti- 
zation contribution throughout the volulrre nT thc wall. The NBel wall becomes en- 
ergctically favorable when the film lrecurrres s~lficicntly thin. Consider, however, 
the cncrgetics of the NBel wall in bulk rr~aterial or negligible crystalline anisotropy 
energy. There is now a demagnetization corrtrih~~tion to the wall energy density By 
a rl~~alitative argument similar to (56) ,  show that ,~,=(dJ~'lRia') + (2~iZrlPh'a). Find 
A: fnr which uw is a minimum. Estimate the order of magnitude of u*, for typical val- 
ues of J ,  Ms. and a.  

8.  G b n t  magnetoresistance. In a ferromagnetic metal, the conductivitj- up for elec- 
trons whose rnagnctic moments are oriented parallel to the magnetization is typi- 
cally larger than ua for those antiparallel to the magnetizatinn. Consider a ferromag- 
netic conductor consisting of two separate regions of ider~tical climcnsions in series 
\\,hose rriagnetinations can be independently controlleci. Elet:trons ol a given spin 
flow first tllrorlglr one rcgion and then through the other. It is observed that the re- 
sistance wlvllen hoth rnagnctizations point upwards, RTT,  is lower than the resistance 

when they poirtt opposite, KT&. This resistance change can be large for mp/cr, > 1, 
and the phenomenon is callcd giant magnetoresistance (GMR). A srrlall external 
magnetic field car) switch thc rcsistance from Rri to RrT by reorienting t l ~ e  magneti- 
zation of the second layer. This cffcct is increasingly used in magnetic storagr appli- 
cations such as the ~rragnetic bit readout in hard drives. The giant rrtagnetnresis- 
tance ratio is defined as: 

Uloch wall NCel d l  
Figure 36 A Bloch wall and a Nee1 wall in a thin fi1111. The n~aglietization in the Uloch wall is nor- 
mal to the plane of thc Glnl and adds to the wall energy n demagnetizatio~~ energy -M%d per unit 
length of wall, where S is the \vdl tl~ickl~css and d the film thickness In the NPeI wall the magneti- 
zation is parallel to the surface: the addition to the wall encrgy is negligible \%.hen d < 8 .  The addi- 
tion to the Ntel wall cnerg). when d % S is the subject of Prohlclr~ 7. (After S .  Middelhock.! 



(a) If there is no spin-flip scattering for the conduction electrons, show that 

GMRR = (u/ua + ua/up - 2)/4 

(Hint: Treat the spin-up and spin-down conduction electrons as independent con- 
ducting channels in parallel.) (b) I f  ua + 0, explain physically wlry the resistance in 
the 7.1 magnetization configuration is infinite. 
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CHAPTER 13: MAGNETIC RESONANCE 

In this chapter we discuss dpamical magnetic effects associated with the spin 
angular momentum of nuclei and of electrons. The principal phenomena are 
often identified in the literature by their initial letters, such as 

NMK: nuclear magnetic resonance 
NQR: nuclear quadnipole resonance 
EPR or ESR: electron paramagnetic or spin resonance (Fig. 1) 
FMR: ferromagnetic resonance 
SWR: spin wave resonance (ferromagnetic films) 
AFMR: antiferrorriagnetic resonance 
CESR: conduction electron spin resonance 

The information that can bc ohtained about solids by resonance studies 
may be categorized: 

Electronic structure of single defects, as revealed by the fine structure of 
the absorption. 
Motion of the spin or of the surroundings, as revealed by changes in the line 
width. 
Internal magnetic fields sampled by the spin, as revealed by the position of 
the resonance line (chemical shift; Knight shift). 
Collective spin excitations. 

It is best to discuss NMR as a basis for a brief account of the other reso- 
nance experimcnts. A great impact of NMR has been in organic chemistry and 
biochcrnistry, where NMR provides a powerful tool for the identification and 
the stnicture determination of cornplex molecules. This success is due to the 
extremely high resolutiori attainable in diamagnetic liquids. A major medical 
application of NMK is magnetic resonance imaging (MRI), which allows the 
resolution in 3D of abnormal growths, configurations, and reactions in the 
whole body. 

NUCLEAR MAGNETIC RESONANCE 

L i r  consider a nucleus that possesses a magnetic moment p  and an angu- 
lar momentum 751. The two quantities are parallel, and we may writc 

p = y f i I  ; (1) 

the magnetogyric ratio y is constant. By convention I denotes the nuclear 
angular mo~nentum measured in units of fi. 



Figure 2 Energy level splitting of a nucleus of spin I = i in a static magnetic field B,. 

The energy of interaction with the applied magnetic field is 

. . U = - p  B a 

if B, = Bog, then 

The allowed values of I ,  are m, = I ,  I  - 1, . . . , -I ,  and U = -mIyABo. 
In a magnetic field a nucleus with I  = has two energy levels correspond- 

ing to m, = ?+, as in Fig. 2. If Awo denotes the energy difference between the 
two levels, then fiw, = $iB, or 

This is the fundamental condition for magnetic resonance absorption. 
For the proton1 y = 2.675 X lo4 s-I gauss-' = 2.675 X 10's-I tesla-l, 

so that 

where v is the frequency. One tesla is precisely lo4 gauss. Magnetic data for 
selected nuclei are even  in Table 1. For the electron spin, 

'The magnetic moment p, of the proton is 1.4106 X erg G-' or 1.4106 X J T-', 
and y = 2pdfi. The nuclear magneton pn is defined as e&WM,c and is equal to 5.0509 X lo-" erg 
G-' or 5.0509 X lO-"J T-'; thus p, = 2,793 nuclear magnetons. 



Table 1 Nuclear magnetic resonance data 

For every element the most abundant magnetic isotope is shown. After 
Varian Associates NMR Table. 
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Equations of Motion 

The rate of change of angular momentum of a system is equal to the 
torque that acts on the system. The torque on a magnetic moment p  in a mag- 
netic field B is p  X B, so that we have the gyroscopic equation 

M V d t = p X B ,  ; (3 )  

or 

d p f d t = y p x B , .  (6 )  

The nuclear magnetization M is the sum Zp,  over all the nuclei in a unit vol- 
ume. If only a single isotope is important, we consider only a single value of y, 
so that 

dMldt = yM X B, . (7) 

We place the nuclei in a static field B, = Bog. In thermal equilibrium at 
temperature T the magnetization will be along 4: 

where the susceptibility is ,yo and the Curie constant C = Np2/3kB, as in 
Chapter 11. 

The magnetization of a system of spins with I = 5 is related to the 
population difference ATl - N, of the lowcr and upper levels in Fig. 2: 
M, = (N, - N,)p, where the NS refer to a unit volume. The population ratio 
in thermal equilibrium is just given by the Boltzmann factor for the energy 
difference 2pBn: 

The equilibrium magnetization is M ,  = N p  tanh(~B/k,T). 
When the magnetization component M, is not in thermal equilibrium, we 

suppose that it approaches equilibrium at a ratc proportional to the departure 
from the equilibrium value M,: 

111 the standard notation T ,  is called the longitudinal relaxation time or the 
spin-lattice relaxation time. 

If at t = 0 an unmagnetized specirnen is placed in a magnetic field B,4, 
the magnetization will increase from the initial value LM, = 0 to a final value 
MZ = M,. Before and just after the specimen is placed in the field, the popula- 
tion N, will be equal to N,, as appropriate to thermal equilibrium in zero mag- 
netic field. It is necessary to reverse some spins to establish the new equilibrium 
distribution in the field B,. On integrating (10): 
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Figure 3 At time t = 0 an unmagnetized specimen M,(O) = 0 is placed in a static magnetic field 
B,. The magnetization increases with time and approaches the new equilibrium value Mo = x$,. 
This experiment defines the longitudinal relaxation time T,. The magnetic energy density -M . B 
decreases as part of the spin population moves into the lower level. The asymptotic value at t 9 TI 
is -MOB,. The energy flows from the spin system to the system of lattice vibrations; thus TI is also 
called the spin-lattice relaxation time. 

as in Fig. 3. The magnetic energy -M . B, decreases as M ,  approaches its new 
equilibrium value. 

Typical processes whereby the magnetization approaches equilibrium are 
indicated in Fig. 4. The dominant spin-lattice interaction of paramagnetic 
ions in crystals is by the phonon modulation of the crystalline electric field. 
Relaxation proceeds by three processes (Fig. 4b): direct (emission or 
absorption of a phonon); Raman (scattering of a phonon); and Orbach (inter- 
vention of a third state). 

Taking account of (lo), the z component of the equation of motion (7) 
becomes 

where (Ma - Mz)/TL is an extra term in the equation of motion, arising from 
the spin-lattice interactions not included in (7). That is, besides precessing 
about the magnetic field, M will relax to the equilibrium value Ma. 

If in a static field BOP the transverse magnetization component M, is not 
zero, then M ,  will decay to zero, and similarly for My. The decay occurs 



Insulator Metal 

Figure 4a Some important processes that contribute to longitudinal magnetization relaxation in 
an insulator and in a metal. For the insulator we show a phonon scattered inelastically by the spin 
system. The spin system moves to a lower energy state, and the emitted phonon has higher energy 
by hw, than the absorbed phonon. For the metal we show a similar inelastic scattering process in 
which a conduction electron is scattered. 

Direct 
1; a T 

Raman Orbach 
l /T1 T~ or T' l /T1 a e ~ p - ~ ~ T )  

Figure 4b Spin relaxation from 2 + 1 by phonon emission, phonon scattering, and a two-stage 
phonon process. The temperature dependence of the longitudinal relaxation time TI is shown for 
the several processes. 

because in thermal equilibrium the transverse components are zero. We can 
provide for transverse relaxation: 

dM,ldt = y(M X B,), - M,/T2 ; (13b) 

dM,ldt = y(M X B,), - M,/T, , (134 

where T2 is called the transverse relaxation time. 
The magnetic energy -M . B ,  does not change as M, or M y  changes, pro- 

vided that B ,  is along %. No energy need flow out of the spin system during 
relaxation of M ,  or M y ,  SO that the conditions that determine T2 may be less 
strict than for T , .  Sometimes the two times are nearly equal, and sometimes 
T ,  % T,, depending on local conditions. 

The time T2 is a measure of the time during which the individual moments 
that contribute to M,, M ,  remain in phase with each other. Different local 
magnetic fields at the different spins will cause them to precess at different 
frequencies. If initially the spins have a common phase, the phases will be- 
come random in the course of time and the values of M,, My will become zero. 
We can think of T2 as a dephasing time. 
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To rf supply and circuit 
for measuring inductanc IB,, (static) 

and losses. 
rf coil 

Figure 5 Schematic arrangement for magnetic resonance experiments 

The set of equations (13) are called the Bloch equations. They are not 
symmetrical in x, y, and z because we have biased the system with a static mag- 
netic field along 9 .  In experiments an rf magnetic field is usually applied along 
the f or j. axis. Our main interest is in the behavior of the magnetization in the 
combined rf and static fields, as in Fig. 5. The Bloch equations are plausible, 
but not exact; they do not describe all spin phenomena, particularly not those 
in solids. 

We determine the frequency of free precession of the spin system in a 
static field B, = B,9 and with M ,  = Ma. The Bloch equations reduce to 

We look for damped oscillatory solutions of the form 

M, = m exp(-tlT') cos wt ; My = -m exp(- t/T1) sin wt . (15) 

On substitution in (14) we have for the left-hand equation 

1 1 -w sin wt - -7 cos wt = - yBo sin wt - - cos wt , 
T T2 (16) 

so that the free precession is characterized by 

w, = yB, ; T' = T, . 
The motion (15) is similar to that of a damped harmonic oscillator in two 

dimensions. The analogy suggests correctly that the spin system will show res- 
onance absorption of energy from a driving field near the frequency w, = yB,, 
and the frequency width of the response of the system to the driving field will 
be Aw .= 1/T2. Figure 6 shows the resonance of protons in water. 

The Bloch equations may be solved to give the power absorption from a 
rotating magnetic field of amplitude B,: 

B, = B ,  cos wt ; B, = - B ,  sin wt . (18) 



Figure 6 Proton resonance absorption in water. 
(E. L. IIahn.) 

After a routine calculation one finds that the power ahsorption is 

(CGS) 

The half-width of the resonance at half-maximum power is 

(Aw), = 1/T2 . (20) 

LINE WIDTH 

The magnetic dipolar intcraction is usually the most i~rlportar~t cause of 
line broadening in a rigid lattice of magnctic dipoles. The lnaguetic field AB 
seer1 by a magnetic dipole p, due to a magnetic dipolc p, at a point r,, from 
the first dipole is 

(CGS) 

by a fundamental resillt of magnetostatics. 
The order of magnitude of the intcraction is, with B,  written for AB, 

The strong dependence on r suggests that close-neighbor interactions will be 
dominant, so that 

(CGS) B, - )(Lla3 , (23) 
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where a is the separation of' nearest neighbors. This result gives us a rrleasure 
o l  the width of the spin resonance line, assuming randorr~ orientation of the 
neighbors. For protons at 2A separation, 

To exprrss (21 ), (22), and (23) in SI, multiply the right-lland sides by gd4~r 

Motional Narrowing 

The linc width decreases for nuclei in rapid relative motiur~. Tlie effect in 
solids is illlistrated by Fig. 7: diffusion resembles a random walk as atoms jump 
from one crystal site to another. An atorr~ ranlains in one site for an avcragc 
time T that decreases markedly as the teiliperature increases. 

The motional effects 011 the line width arc cvcn more spectacular in nor- 
mal liquids, because the n~olecules arc highly mobile. The width of the proton 
resonance line in water is only 1 K 5  of the width expected for water molecules 
frozen in position. 

Thc effect of nuclear motion on T, and on the line width is subtle, but call 
he iinderstood by an elementary argument. I'e know from the Bloch equa- 
tions that T, is a measure of the time in which an individual spin becomcs 
dephased by one radiar~ because of a local perturbation in thc magnetic field 

6.0 

, 5.0 - 
i% 
F 4.0 .- 
C = 3.0 
2 
'7 - 2.0 

1.0 

0 
150 200 250 300 350 

Te~nperaturc, K 

Figure 7 Effcct of dirrusion of nuclei on the ~ i '  NMK line width in metallic lithium. At low tem- 
peratures the width agrees with the theoretical value for a rigid lattice. .4s the temperature in- 
creases, the diffusion rate increases and the line width decreases. The abrupt decrease ill liue 
width above T = 230 K occurs d l e n  the diffusion hopping time .r becomes shorter than IIyR,. 
Thus the experiment gives a direct measure of t l ~ c  Impping t i~ne lor an atom to change lattice 
sites. (hfter H. S .  Gutowsky and B. R. blcGalu-ey) 
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Figure 8 Phase of a spin ~ I I  a constant local field, as compared with dephasing of a spin which 
after fixed time intervals T hops at random among sites having local fields il. 

intensity. Let ( A w ) ,  = yB, denote the local frequency deviation due to a 
perturbation Bi. The local field may be caused by dipolar interactions with 
other spins. 

If the atoms are in rapid relative motion, the local field Bi seen by a given 
spin will fluctuate rapidly in time. We suppose that the local field has a value 
+B, for am average time T and then changes to -B,, as in Fig. 8a. Such a ran- 
dom change could be caused by a change of the angle between /.L and r in (21). 
In the time T the spin will precess by an extra phase angle 6 9  = -+ YB$T relative 
to thc phase angle of the steady precession in the applied field Bn. 

The motional narrowing effect arises for short T such that 6 9  < 1. After n 
intervals of duration T the mean square dephasing angle in the ficld B, will be 

by analogy with a random walk process: the mean square hsplacement from the 
initial position after n steps of length e in random directions is (P) = ne2. 

The average number of steps necessary to dephase a spin by one rachan is 
n = llyZ~:?. (Spins dephased by much more than one radian do not con- 
tribute to the absorption signal.) This numbcr of steps takes place in a time 
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quite different frorr~ the rigid lattice result T2 3 l lyB,.  From (26) we obtain as 
the line width for rapid motion with a characteristic time T: 

where (Aw), is the line width in the rigid lattice. 
The argument assumes that (Aw),T < 1, as othenvisc 6p will not be < 1. 

Thus Aw < (Aw),. The shorter is 7, the narrower is the resonance line! This 
remarkable effect is known as motional narrowing.' The rotational relax- 
ation time of water moleculcs at room temperature is known from dielectric 
constant measurerncnts to he of the order of 10-"' s; if (Aw), ;= lo%-', then 
( A W ) ~ T  = 10 and Aw = (Aw)~,T - 1 S-I ,  Thus the motion narrows the proton 
resonance line to about lo-' of the static width. 

HYPERFINE SPLITTING 

The hypcrf'ine interaction is the magnetic interaction between the mag- 
nctic moment of a nucleus and the magnetic moment of an electron. To an 
observer stationed on the nucleus, the interaction is caused by the magnetic 
field produced by the magnetic ~rio~rlent of the electron and by the motion of 
the electron about the nucleus. There is an electron current about the mlcleus 
if the electron is in a state with orbital angular momentum about the nucleus. 
But even if the electron is in a statc of zero orbital angular momentum, there 
is an electron spin current ahout the nucleus, and this current gives rise to the 
contact hyperfine interaction, of particular importarlce in solids. We can 
understand the origin of the contact interaction by a qualitative physical argu- 
ment, given in CGS. 

The results of the Uirac theory or the electron suggest that the magnetic 
mo~rler~t of pg = e h / 2 ~ r ~ c  or  the electron arises from the circulation of an elec- 
tron with velocity c in a currcnt loop of radius approximately the electron 
Compton wavclcngth, X, = film - lo-" cm. The electric current associated 
with thc circ~llation is 

I - e X (turns per unit time) - ec/X, , (29) 

"The physicaI ideas are drre to N. BIoemhergen, E. M. PurceLI, and R. V Pound, Phys. Rev. 
73, 679 (1948). The result differs from the theoly of optical line width cansed by strong collisiuns 
hrtween atoms (as irr a gas disclrargc), where a short T gives a broad line. In the nuclear spin prob- 
lem the collisions are weak. In most optical pn~bblns the collisions of atoms are strong enough to 
intcrruyi the phase of the oscillation. In nuclear resonance the phase may vary snrwtl~ly in a 
collision, although the frequency may valy suddenly from one value to another nearby value. 



Figure 9 Magnetic field B prodncrd hy a charge moving in a circular loop. The contact part of 
the hyperfine interaction with a nuclear magnetic moment arises Cro~n the rcgiorr within or near to 
the current loop. The field avcragcd over a spl~erical shell that encloses the loop is 7.ero. Thus for 
an s electron (L = 0) only the contact part contributes to the interaction. 

and the magnetic field (Fig. 9) produced by the currcnt is 

The observer on the nucleus has the probability 

of finding himself insidc thc electron, that is, within a sphere of volume X, 
about the electron. Here @(O) is the value of the electron wavefunction at the 
nucleus. Thus the average value of the magnetic field seen by thc nuclcus is 

where pB = eti/2rnc = :eke is the Bohr magneton. 
The contact part of the hyperfine interaction energy is 

where I is the nuclear spin in units of fi. The contact interaction in an atom has 
the form 
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Figure 10 Energy levels in a magnetic field of a system with S = i, I = i. The diagram is drawn 
for the strong field approximation p,B P a, where a is the hyperfine coupling constant, taken to 
be positive. The four levels are labeled by the magnetic quantum numbers m,, m,. The strong 
electronic transitions have Am, = 0, Ams = 21. 

Values of the hyperfine constant a for the ground states of several free 
atoms are: 

nucleus H ' ~ i '  NaZ3 K3' K4' 
I 1 3 3 - - 3 3 - 

I 2 2 

a in gauss 507 144 310 83 85 
a in MHz 1420 402 886 231 127 

In a strong magnetic field the energy level scheme of a free atom or ion is 
dominated by the Zeeman energy splitting of the electron levels; the hyperfine 
interaction gives an additional splitting that in strong fields is U' amsm,, 
where ms, m, are the magnetic quantum numbers. 

For the energy level diagram of Fig. 10 the two electronic transitions have 
the selection rules Am, = 5 1, AmI = 0, the frequencies are w = yHo + a/2fi. The 
nuclear transitions are not marked; they have Ams = 0, so that w,,, = a/2h. The 
frequency of the nuclear transition 1 + 2 is equal to that of 3 -+ 4. 

The hyperfine interaction in a magnetic atom may split the ground energy 
level. The splitting in hydrogen is 1420 MHz, thls is the radio frequency line of 
interstellar atomic hydrogen. 

Examples: Paramagnetic Point Defects 

The hyperfine splitting of the electron spin resonance furnishes valuable 
structural information about paramagnetic point defects, such as the F centers 
in alkali halide crystals and the donor impurity atoms in semiconductor crystals. 



Figure 11 An F center is a negative ion vacancy with one 
excess electron bound at the vacancy. The distribution of the 
excess electron is largely on the positive metal ions adjacent 
to the vacant lattice site. 

F Centers in Alkali Halides. An F center is a negative ion vacancy with 
one excess electron bound at the vacancy (Fig. 11). The wavefunction of the 
trapped electron is shared chiefly among the six alkali ions adjacent to the 
vacant lattice site, with smaller amplitudes on the 12 halide ions that form 
the shell of second nearest neighbors. The counting applies to crystals with the 
NaCl structure. If ~ ( r )  is the wavefunction of the valence electron on a single 
alkali ion, then in the first (or LCAO) approximation 

where in the NaCl structure the six values of rp mark the alkali ion sites that 
bound the lattice vacancy. 

The width of the electron spin resonance line of an F center is determined 
essentially by the hyperfine interaction of the trapped electron with the nu- 
clear magnetic moments of the alkali ions adjacent to the vacant lattice site. 
The observed line width is evidence for the simple picture of the wavefunction 
of the electron. By line width we mean the width of the envelope of the possi- 
ble hyperfine structure components. 

As an example, consider an F center in KCl. Natural potassium is 93 per- 
cent K3' with nuclear spin I = ;. The total spin of the six potassium nuclei at 
the F center is I,, = 6 x = 9, so that the number of hyperfine components 
is 21,- + 1 = 19; this is the number of possible values of the quantum number 
m,. There are (21 + = 46 = 4096 independent arrangements of the six 
spins distributed into the 19 components, as in Fig. 12. Often we observe only 
the envelope of the absorption line of an F center. 

Donor Atoms in Silicon. Phosphorus is a donor when present in silicon. 
Each donor atom has five outer electrons, of which four enter diamagnetically 
into the covalent bond network of the crystal, and the fifth acts as a paramag- 
netic center of spin S = i. The experimental hyperfine splitting in the strong 
field limit is shown in Fig. 13. 

When the concentration exceeds about 1 x 10" donors ~ m - ~ ,  the split line 
is replaced by a single narrow line. This is a motional narrowing effect ( E ~ .  28) 
of the rapid hopping of the donor electrons among many donor atoms. The 
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Qnantum nu~r~ber  7n1 

Figure 12 The 4096 arrangements of the six nuclear spins of K~~ as distrihnted into I9 hyperfine 
components. Each component uill he split further into a very large number of components by 
virtue of the residual hyperfine interaction with the 12 neighboring C1 ~mclei, which may be CP5 
(75 percent) or C13' (25 percent). The envelope of the pattern is approximately gaussian in form. 

4 Phosphorus (6 x 10" cm3) - magnetic 
field 

Plrosplrorus (1  x 10" cm3); 1 = 1/2 

Figure 13 Electron spin resonance lines of P donor atoms in silicon. At the higher donor con- 
celrtration near the metal-insulator transition, a donor electron C ~ I  liop from site to site SO rapidly 
that the hyperfine structure is suppressed. (After R. C, Fletcher, W. A. Yager, G .  L. Pearson, and 
F R. Merritt.) 

rapid hopping averages out the hyperfine splitting. The hopping rate increases 
at the higher concentratior~s as the overlap of the donor electron wavefunctions 

L, 

is increased, a view supported by conductivity measnrements (Chapter 14). 

Knight Shvt 

At a fixed frequency the resonance of a nuclear spin is observed at a 
slightly different magnetic field in a metal than in a diamagnetic solid. The 
effect is known as the Knight shift or metallic shift and is vahiable as a tool 
for the study of conduction electrons. 



The interaction energy of a nucleus of spin I and magnetopic ratio 
Yr is 

where the first term is the interaction with the applied magnetic field B ,  and 
the second is the average hyperfine interaction of thc nucleus with the con- 
duction electrons. The average conduction electron spin ( S z )  is related to the 
Pauli spin susceptibility X, of the conduction electrons: Mz = gNp,(S,) = x$,, 
whence the interaction may be written as 

The Knight shift is defined as 

and simulates a fractional change in the magnetogyic ratio. By the definitio~l 
(34) of the hyperfine contact energy, the Knight shift is givcn approximately by 
K ;= x S l ~ ( 0 ) l 2 / ~ ;  that is, by the Pauli spin susceptibility increased in the ratio of 
the conduction electron concentration at the nucleus to the average conduc- 
tion electron concentration. 

Experimental values are given in Table 2. The value of the hyperfine cou- 
pling constant a is somewhat different in the ~netal than in the free at0111 be- 
cause the wave functions at the nucleus are different. From the Knight shift of 
metallic Li it is deduced that the value of 1$(0)12 in the metal is 0.44 or the 
value in the free atom; a calculated valiie of the ratio i~sing thcorctical wavc 
functions is 0.49. 

Table 2 Knight shifts in NMR in metallic elements 

(At room temperature) 

Knight shift 
in percent Nucleus 

Knight shift 
in percent 
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0 0 
(a) (b) ( 4  

Figure 14 (a) Lowest-energy orientation of a nuclear electric quadmpole moment (Q > 0) in the 
local electric field of the four ions shown. The electrons of the ion itself are not shown. (b) High- 
est energy orientation. (c) The energy level splitting for I = 1. 

NUCLEAR QUADRUPOLE RESONANCE 

Nuclei of spin I 2 1 have an electric quadrupole moment. The quadrupole 
moment Q is a measure of the ellipticity of the distribution of charge in the 
nucleus. The quantity of interest is defined classically by 

eQ = $ $ (3z2 - ?)P( r )d3~  , (39) 

where p(r) is the charge density. An egg-shaped nucleus has Q positive; a 
saucer-shaped nucleus has Q negative. The nucleus when placed in a crystal 
will see the electrostatic field of its environment, as in Fig. 14. If the symmetry 
of this field is lower than cubic, then the nuclear quadmpole moment will lead 
to a set of energy levels split by the interaction of the quadrupole moment 
with the local electric field. 

The states that are split are the 21 + 1 states of a spin I. The quadrupole 
splittings can often be observed directly because an rf magnetic field of the 
appropriate frequency can cause transitions between the levels. The term 
nuclear quadrupole resonance refers to observations of nuclear quadmpole 
splittings in the absence of a static magnetic field. The quadrupole splittings 
are particularly large in covalently bonded molecules such as Clz, Br2, and 12; 
the splittings are of the order lo7 or 10' Hz. 

FERROMAGNETIC RESONANCE 

Spin resonance at microwave frequencies in ferromagnets is similar in 
principle to nuclear spin resonance. The total electron magnetic moment of 
the specimen precesses about the direction of the static magnetic field, and 
energy is absorbed strongly from the rf transverse field when its frequency is 
equal to the precessional frequency. We may think of the macroscopic vector S 
representing the total spin of the ferromagnet as quantized in the static mag- 
netic field, with energy levels separated by the usual Zeeman frequencies; the 



magnetic selection rule Ams = i l  allows transitions only between adjacent 
levels. 

The unusual features of ferromagnetic resonance include: 

The transverse silsceptihility components and are very large because 
the magnetization of a ferromagnet in a given static field is very milch lar- 
ger than the magnetization of electronic or nuclear paramagnets in the same 
field. 
The shape of the speci~ne~i plays an irriportar~t role. Because the magnetiza- 
tion is large, the demagnetization Geld is large. 
The strong exchange coupling between the ferromagnetic electrons tends to 
suppress the dipolar contribution to the linc width, so that thc fcrromag- 
netic resonance lines can be quite sharp (<1 6) under favorable conditions. 
Saturation effects occur at low rf power levels. It is not possible, as it is with 
nuclear spin systems, to drive a ferromagnetic spin system so hard that the 
magnetization M ,  is reduced to zero or reversed. The ferromagnetic reso- 
nance excitation breaks down into spin wave modes before the magnetiza- 
tion vector can bc rotated appreciably from its initial direction. 

Shape Effects in FMR 

We treat the effects of specimen shape on the resonance frequency. Con- 
sider a specinieri of a cubic ferromagnetic insulator in the form of an ellipsoid 
with principal axes parallel to x, y, z axes of a cartesiari coordinate system. The 
demagnetization factors N,, N y ,  ATz are identical with the depolarization fac- 
tors to be defined in Chapter 16. The components of the internal magnetic 
field Bi in the ellipsoid arc rclatcd to thc applicd field by 

The Lorentz field (4d3)M and the exchange field AM do not contribute to the 
torque because their vector product with M vanishes identically. In SI we re- 
place the components of M by poM, with the appropriate redefinition of the Ws. 

The components of the spin equation of motion M = y(M X B') become, 
for an applied static field B04, 

To first order we may set dMz/dt = 0 and M; = M .  Solutions of (40) with 
time dependence cxp(-iot) cxist if 
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Applied magnetic field (in gauss) 

Figure 15 FMR in a polished sphere of the 
ferromagnet yttrium iron garnet at 3.33 GHz 
and 300 K for B,  11 [lll]. The total line 
width at half-power is only 0.2 G. (After 
R. C. LeCraw and E. Spencer.) 

so that the ferromagnetic resonance frequency in the applied field Bo is 

( C G S )  020 = ?[Bo + ( N y  - N,)MI[Bo + (Nx - NJMI ; ( 4 1 )  

The frequency wo is called the frequency of the uniform mode, in distinction 
to the frequencies of magnon and other nonuniform modes. In the uniform 
mode all the moments precess together in phase with the same amplitude. 

For a sphere N, = N,, = N,, SO that wo = yBo. A very sharp resonance 
line in this geometry is shown in Fig. 15. For a flat plate with Bo perpendicular 
to the plate N,  = Ny = 0 ;  N ,  = 47r, whence the ferromagnetic resonance 
frequency is 

(CGS)  w, = Y(B,  - 47rM) ; 

If Bo is parallel to the plane of the plate, the xz plane, then N ,  = N ,  = 0 ;  Ny  = 

47r. and ' 5" ," ?I+KE*.'..'-.' 

(CGSJ w,, = y[B,,(Bo t 4 ~ 3 l ) l '  : !SI) q, y[Bo(B, + &Im . (43) 



Figure 16 Spin wave resonance in a thin film. The plane of the film is normal to the applied mag- 
netic field B,. A cross section of the film is shown here. The internal magnetic field is B,, - 4mM. 
The spins on the surfaces of the film are assumed to be held fixed in direction by surface anisotropy 
forces. A uniform rf field will excite spin wave modes having an odd number of half-wavelengths. 
The wave shown is for n = 3 half-wavelengths. 

The experiments determine y, which is related to the spectroscopic split- 
ting factor g by - y = gpB/h. Values of g for metallic Fe, Co, Ni at room tem- 
perature are 2.10,2.18, and 2.21, respectively. 

Spin Wave Resonance 

Uniform rf magnetic fields can excite long-wavelength spin waves in thin 
ferromagnetic films if the electron spins on the surfaces of the film see differ- 
ent anisotropy fields than the spins within the films. In effect, the surface 
spins may be pinned by surface anisotropy interactions, as shown in Fig. 16. 
If the rf field is uniform, it can excite waves with an odd number of half- 
wavelengths within the thickness of the film. Waves with an even number of 
half-wavelengths have no net interaction energy with the field. 

The condition for spin wave resonance (SWR) with the applied mag- 
netic field normal to the film is obtained from (42) by adding to the right-hand 
side the exchange contribution to the frequency. The exchange contribution 
may be written as Dk2, where D is the spin wave exchange constant. The as- 
sumption ka & 1 is valid for the SWR experiments. Thus in an applied field B,  
the spin wave resonance frequencies are: 

where the wavevector for a mode of n half-wavelengths in a film of thickness L 
is k = n?r/L. An experimental spectrum is shown in Fig. 17. 
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Spin wave order number 

Figure 17 Spin wave resonance spectrum in a Pennalloy (80Ni20Fe) film at 9 GIIz. The order 
n~~mber  is tlie number of half-wavelengths in the thickness of the film. (After R. Weber.) 

ANTIFERROMAGNETIC RESONANCE 

\ve consider a uniaxial antiferromagnet with spins on two sublattices, 1 and 
2. \Zk suppose that the magnetization M, on sublattice 1 is directed along the 
+ z  direction by an anisotropy field B, i ;  the anisotropy field (Chapter 12) results 
from an anisotropy energy density C1,(OI) = K sin2 O1. Here 8, is the angle be- 
tween M, and the z axis, whence BA = 2K/M, with M = lMll = IM,I. The mag- 
netization M, is hrected along the -s direction by an anisotropy Field -BA4.  If 
+z is an easy direction of magnetization, so is -z .  If one sublattice is directed 
along +z, the other will bc directed along -z. 

The exchange interaction between M, and Mg is treated in the mean field 
approximation. The exchange fields are 

whcrc A is positive. Here B, is the field that acts on the spins of sublattice 1, 
and B, acts on sublattice 2. In the absence of an external magnetic field the 
total field acting on MI is B, = -AM, + B,?; the total field on Mp is 
Be = -AMI - B.42, as in Fig. 18. 



I B,(ex) = -AMz 

\ 

\ 
\ 
\ 

-BA \ 
\ B,(ex) S -AM1 

Figure 18 Effective fields in antiferromagnetic resonance. \ 

The magnetization MI of sublattice 1 sees a field -AM,  + f 
B,P; the magnetization M ,  sees -AM,  - B,?. Both ends of 
the crystal axis are "easy axes" of magnetization. 

In what follows we set = M ;  Mz = -M. The linearized equations of 
motion are 

dMi /d t  = y[MY(AM + B,) - M(-AM$)]  ; 

dMY/dt = y[M(-AM;)  - M;(AM + B,)] ; ( 4 6 )  

d M y d t  = y[M$(-AM - B,) - ( -M)( -AMY)]  ; 

= Y[( -MI( -AM;)  - M",(-AM - B,)] . ( 4 7 )  

We define M: = M ;  + iM;; M: = M i  + iM$.  Then (46)  and (47) bccomc, 
for time dependence e x p ( - i o t ) ,  

-iuM: = -iy[M:(BA + AM)  + M l ( A M ) ]  ; 

- i o M l  = i y [ M l ( B A  + A M )  + M:(AM)] . 

These equations have a solution if, with the exchange field BE = AM, 

Thus the antiferromagnetic resonance frequency is given by 

0; = $B*(B, + 2BE)  . (48) 

MnF, is an extensively studied antiferrornagnet. The structure is shown in 
Fig. 19. The observed variation of o, with temperature is shown in Fig. 20. 
Careful estimates were made by Keffer of B, and B E  for MnF,. He estimated 
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@ Mn2+ 
Figure 19 Chem~cal and magnetic structure of MnF2 

F- The arrows indicate the hrectlon and arrangement of the 
magnetic moments asslgned to the manganese atoms. 

Temperature in K I 

Figure 20 Antiferromagnetic resonance frequency for MnF, versus temperature. 
and Nethercot.) 

(After Johnson 

BE = 540 kG and B A  = 8.8 kG at 0 K, whence (2BABE)lI2 = 100 kG. The 
observed value is 93 kG. 

Richards has made a compilation of AFMR frequencies as extrapolated 
to 0 K: 

Crystal CoF, NiF, MnF, FeF, MnO NiO 
Frequency in  10" Hz 85.5 93.3 26.0 158. 82.8 109 



ELECTRON PARAMAGNETIC RESONANCE 

Exchange Narrowing 

We consider a pararr~agmet with an exchange interaction J among nearest- 
neighbor electron spins. The temperature is assumed to be well above any 
spin-ordering temperature T,. Under these conditions the width of the spin 
resonance line is usually much narrowcr than cxpcctcd for thc dipolc-dipolc 
interaction. The effect is called exchange narrowing; there is a close analogy 
with motional narrowing. We interpret the exchange frequency w,, =]/li as a 
hopping frequency 1 / ~ .  Then by generalization of the motional-narrowing 
result (28) we have for tlie width of tlie exdrange-narrowed line: 

where = Y(B?) is the square 01 the static dipolar width in the absence 
of exchange. 

A usefill and striking example of exchange narrowing is the paramagnetic 
organic crystal known as the g marker or DPPH, diphenyl picryl hydrazyl, often 
used for magnetic field calibration. This free radical has a 1.35 G half-width of 
the resonance line at half-power, only a few percent of the pure dipole width. 

Zero-Field Splitting 

A number of paramagnetic ions have cvstal ficld splittings of thcir magnetic 
ground state encrgy levels in the range of 10'' - lo1' Hz, conveniently accessi- 
ble by microwave techniques. The Mn" ion has been studied in many crystals as 
an additive impurity. A ground state splitting in the range lo7 - lO9Hz is 
observed, according to the environment. 

PRINCIPLE OF MASER ACTION 

Crystals can be used as microwave and light amplifiers and as sourccs of 
coherent radiation. A maser amplifies microwaves by the stimulated emission 
of radiation; a laser amplifies light hy the same method. The principle, due to 
Townes, may be understood from the two-level magnetic system of Fig. 21 rel- 
evant for masers. There are nu atoms in the upper state and ne atoms in the 
lower state. U7e immerse the system in radiation at frequency w;  tlie amplitude 
of the magnetic component of the radiation field is Brf The probability per 
atom per unit time of a transition between the upper and lower states is 

here p is the magnetic moment, and A o  is the combined width of the two 
levels. The result (50) is from a standard result of quantum mechanics, called 
Fermi's golden rule. 
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Upper state 
n" 

Figure 21 A two-level system, to explain maser op- 
eration. The populations of the upper and lower 
states are nu and n,, respectively. The frequency of 

1 the emitted radiation is w; the combined width of the 
7 states is AW = hw, + PW,. 

The net energy emitted from atoms in both upper and lower states is 

per unit time. Here 9 denotes the power out; hw is the energy per photon; 
and nu - nl is the excess of the number of atoms n, initially able to emit a pho- 
ton over the number of atoms nl able to absorb a photon. 

In thermal equilibrium nu < nl, so there is no net emission of radiation, 
but in a nonequilibrium condition with nu > nl there will be emission. If we 
start with nu > nl and reflect the emitted radiation back onto the system, we 
increase Brf and thereby stimulate a higher rate of emission. The enhanced 
stimulation continues until the population in the upper state decreases and 
becomes equal to the population in the lower state. 

We can build up the intensity of the radiation field by placing the crystal 
in an electromagnetic cavity. This is like multiple reflection from the walls of 
the cavity. There will be some power loss in the walls of the cavity: the rate of 
power loss is 

B P  w 
(CGS) 9, = -- . - ; 

8~ Q (52) 

where V is the volume and Q is the Q factor o nd B$ 
to be a volume average. 

The condition for maser action is that the emitted power 9 exceed the 
power loss 9,. Both quantities involve B:. The maser condition can now be ex- 
pressed in terms of the population excess in the upper state: 

VAB 
(CGS) nu - nl > - 

8 v Q  ' 

where /L is the magnetic moment. The line width AB is defined in terms of 
the combined line width Aw of the upper and lower states as pAB = fiAw. The 



Figure 22 Three-level maser system. Two possible modes of operation are shown, starting from 
rf saturation of the states 3 and 1 to obtain n, = n,. 

central problem of the maser or laser is to obtain a suitable excess population 
in the upper state. This is accomplished in various ways in various devices. 

Three-Level Maser 

The three-level maser system (Fig. 22) is a clever solution to the excess 
population problem. Such a system may derive its energy levels from magnetic 
ions in a crystal, as Bloembergen showed. Rf power is applied at the pump 
frequency L o p  = Eg - El in sufficient intensity to maintain the population 
of level 3 substantially equal to the population of level 1. This is called 
saturation-see Problem 6. Now consider the rate of change of the population 
n2 of level 2 owing to normal thermal relaxation processes. In terms of the 
indicated transition rates P, 

In the steady state dn2/dt = 0, and by virtue of the saturation rf power we have 
n3 = n,, whence 

The transition rates are affected by many details of the paramagnetic ion 
and its environment, but one can hardly fail with this system, for either n2 > nl 
and we get maser action between levels 2 and 1, or n2 < n, = n, and we get 
maser action between levels 3 and 2. The energy levels of the Er3+ ion are 
used in communication fiber optics amplifiers. The ion is optically pumped 
from level 1 to level 3; there is fast nonradiative decay from level 3 to level 2. 
The signal at a wavelength of 1.55 pm is amplified by stimulated emission 
from level 2 to level 1. The wavelength is favorable for long-distance propaga- 
tion in the optical fiber. The bandwidth is of the order of 4 X 1012 Hz. 
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Figure 23 Energy level diagram of Cr3+ in rnhy, as used in laser operation. The initial excitation 
takes place to the broad hands; they decay to the intermediate levels by the emission of 
phonons, and the intermediate levels radiate photons as the ion makes the transition to the ground 
level. 

Lasers 

The same crystal, ruby, used in the microwave maser was also the first 
crystal to exhibit optical maser action, but a different set of energy levels of 
Cr3+ are involved (Fig. 23). About 15,000 cm-' above the ground state there 
lie a pair of states labeled ' E ,  spaced 29 cm-' apart. Above ' E  lie two broad 
bands of states, labeled 4 ~ 1  and 4F2. Because the bands are broad they can be 
populated efficiently by optical absorption from broadband light sources such 
as xenon flash lamps. 

In operation of a ruby laser both of the broad 4F bands are populated by 
broadband light. Atoms thus excited will decay in sec by radiationless 
processes with the emission of phonons to the states 'E.  Photon emission from 
the lower of the states ' E  to the ground state occurs slowly, in about 5 x sec, 
so that a large excited population can pile up in 'E.  For laser action this popula- 
tion must exceed that in the ground state. 

ions cm-3 are in an The stored energy in ruby is lo8 erg cm-3 if 10'' cr3+ . 
excited state. The ruby laser can emit at a very high power level if all this 
stored energy comes out in a short burst. The overall efficiency of conversion 
of a ruby laser from input electrical energy to output laser light is about one 
percent. Another popular solid state laser is the neodymium glass laser, made 
of calcium tungstate glass doped with Nd3+ ions. This operates as a four level 
system (Fig. 24). Here it is not necessary to empty out the ground state before 
laser action can occur. 



Figure 24 Four-level laser system, as in the neodymium 
glass laser. 

SUMMARY 

(In CGS Units) 

The resonance frequency of a free spin is wo = yB,, where y = p/hI is the 
magnetogyric ratio. 

The Bloch equations are 

dM,/dt = y(M X B ) ,  - MJT, ; 

dM,ldt = y (M X B ) ,  - My/T2 ; 

dMB/dt  = y(M X B),  + (M,  - M,)/T, 

The half-width of the resonance at half-power is (Am),,,  = 1/T2. 

The dipolar line width in a rigid lattice is ( A B ) ,  = d a 3 .  

If the magnetic moments are ambulatory, with a characteristic time T < 
l / (Aw) , ,  the line width is reduced by the factor ( A W ) , ~ .  In this limit 
1/T,  = 1/T2 .= ( A w ) ~ , T .  With exchange coupling in a paramagnet the line 
width becomes ==(Am)2,w,,. 

The ferromagnetic resonance frequency in an ellipsoid of demagnetization 
factors N,, N y ,  Nz is 0; = Y [ B ~  + ( N ,  - Nz)M] [BO + ( N ,  - N, )M] .  

The antiferromagnetic resonance frequency is 02, = 4 B A ( B A  + 2B,), in a 
spherical specimen with zero applied field. Here BA is the anisotropy field 
and BE is the exchange field. 

The condition for maser action is that nu - nl > VAB/BwpQ.  
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Problems 

1.  Equivalent electrical circuit. Consider an clnpty coil of inductance L, in a series 
with a resistance R,; show if the coil is co~nplctcly filled with a spin system charac- 
terized by the susceptibility components ~ ' ( w )  and x"(o) that the inductance at 
frequency w becomes L = [l + 4vx' (o) ]Lo,  in series with an effective resistance 
R = 4 ~ w ~ " ( o ) L ,  + A,. In this problem ,y = X' + i,y" is defined for a linearly polar- 
ized rf field. Hint: Consider the impedance of the circuit. (CGS units.) 

2 .  Rotating coordinate system. We define the vector F(t) = F&)f + Fy(t)f + F,(t)i. 
Let the coordinate system of the unit vectors %, y,  4 rotate with an instantaneous 
angular velocity a, so that d3dt  = - 4 3 ,  etc. (a) Show that dF/& = (dF/dt), + 
R x F, where (dF/dt), is the time derivative of F as viewed in the rotating frame R. 
(h) Shou. that (7) may be written (dMldt), = yM X (R, + a&). This is the equation 
of motion of M in a rotating coordinate system. Tlre transformation to a rotating 
systcm is extraordinarily useful; it is exploited widely in the litcrature. (c) Let 
R = - yB,i; thus in the rotating fiame there is no static magnetic field. Still in the ro- 
tating frame, we now apply a dc pulse B , i  for a time t. If the magnetization is initially 
along 9, find an expression for the pulse length t such that the magnetization will be 
directed along -4 at the end of the pulse. (Neglect relaxation effects.) (d) Decribe 
this I ~ ~ l s e  ac viewed from the laboratory frame of reference. 

3.  Hyperfine effects on ESR in metals. We suppose that the electron spin of a con- 
duction electron in a metal sees an effective magnetic field from the hyperfine 
interaction of the electron spin with the nuclear spin. Let the z component of the 
firld seer, by the conduction clcctron be written 

where I,'is equally likely to be 2;. (a) Show that (B:) = (aI2N)'N. (b) Show that 
(B$ = 3(aI2N)'N" for N * 1. 

4.  FMR in the anisotropy j e l d .  Consider a sphcrical specimen of a uniaxial ferro- 
magnetic cvstal with an anisotropy energy density of the form U, = K sin2 0, where 
0 is the angle betu~een the rnagrletization and thc z axis. We assume that K is posi- 
tive. Show that the ferromagnetic resonance frequency in an external magnetic field 
B,9 is w,, = y(B, + B,), where B, = 2K/M, .  

3 .  Exchange frequency resonance. Consider a ferrimagnct with two sublattices 
A and B of magnetizations M, and M,, where M, is opposite to Ma when the spin 
system is at rest. The gyromagnetic ratios are YA, y, and thc molecular fields are 
B, = -AMHr BE = -AMA. Show that there is a resonance at 

This is called the exchange frequency resonance. 

6. Rf saturation. Gwen, at equilibriurr~ for temperaturc 7: a two-level spin system in 
a magnetic field H , i ,  with populations N1, N ,  and transition rates !A',,, W,,. We 



apply an rf signal that giws a transition ratc Wa (a) Derive the equation for dMz/dt  
and show that ~ I I  the steady state 

where l/Tl = WIP + WP1. It will he helpful to write iV = N, + N2; n = Nl - h;,; and 
no = N(W21 - W,,)/(FVPl + WII,,). We see that as long as 2W,+T1 < 1 the absorption of 
energy from the rf field does rrot snhstantially alter thc population distribution from 
its thermal equilibrium value. (b) Using the expression for n, write down the rate at 
which energy is absorbed frurrr the rf field. W7hat happcns as W, approaches 1/2Tl? 
This effect is called saturatiori, and it.7 onset may he uscd to measure TI. 
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NOTE: The text and problems of this chapter assume facility in the use of 
electromagnetic theory at the level of a good senior course. 
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Figure 1 Dielectric function E ( W )  or E ( W ,  0) of a free-electron gas versus frequencyin units of the 
plasma frequency u p .  Electromagnetic waves propagate without damping only when E is positive 
and real. Electromagnetic waves are totally reflected from the medium when E is negative. 



DIELECTRIC FUNCTION OF THE ELECTRON GAS 

The dielectric function E(w,K)  of the electron gas, with its strong depen- 
dence on frequency and wavevector, has significant consequences for the 
physical properties of solids. In one limit, E ( w , O )  describes the collective exci- 
tations of the Fermi sea-the volume and surface plasmons. In another limit, 
E(O,K) describes the electrostatic screening of the electron-electron, electron- 
lattice, and electron-impurity interactions in crystals. 

We will also use the dielectric function of an ionic crystal to derive the po- 
lariton spectrum. Later we discuss the properties of polarons. But first we are 
concerned with the electron gas in metals. 

Definitions of the Dielectric Function. The dielectric constant E of elec- 
trostatics is defined in terms of the electric field E and the polarization P, the 
dipole moment density: 

(CGS) D = E + 47rP = EE ; 

Thus defined, E is also known as the relative permittivity. 
The introduction of the displacement D is motivated by the usefulness of 

this vector related to the external applied charge density p,, in the same way 
as E is related to the total charge density p = p,, + pind, where pind is the 
charge density induced in the system by p,,,. 

Thus the divergence relation of the electric field is 

(CGS) 
div D = div EE = 4npe, (2) 

div E = 47rp = 4n(p,  + pied) (3) 

Parts of this chapter will be written in CGS; to obtain results in S I ,  write 
for 4 n .  

.. -- 

We need relations between the Fourier components of D, E,  p, and the 
electrostatic potential cp. For brevity we do not exhibit here the frequency de- 
pendence. Define E ( K )  such that 



then (3) becomes 

div E = div C E(K) exp(iK - r )  = 47r C p(K) exp(iK. r) , (3b) 

and (2) becomes 

div D = div Z e(K)E(K) exp(iK.r) = 4n-Z p,,(K) exp(iK-r) . (3c) 

Each of the equations must be satisfied term by term; we divide one by 
the other to obtain 

The electrostatic potential Q,,, defined by -VQ,, = D satisfies the 
Poisson equation V2~,,, = -47rp,,; and the electrostatic potential 9 defined 
by -Vq = E satisfies VZ9 = -4~rp. The Fourier components of the potentials 
must therefore satisfy 

by (3d). We use this relation in the treatment of the screened coulomb potential. 

Plasma Optics 

The long wavelength dielectric response e(w,O) or E(W) of an electron gas 
is obtained from the equation of motion of a free electron in an electric field: 

If x and E have the time dependence e-'"t, then 

- w2mx = -eE ; x = eElmw2 . ( 5 )  

The dipole moment of one electron is -ex = -e2E/mw2, and the polarization, 
defined as the dipole moment per unit volume, is 

where n is the electron concentration. 
The dielectric function at frequency w is 



14 Plasmons, Polaritons, and Polarons 397 

The dielectric function of the free electron gas follows from (6) and (7): 

4 m e 2  
( C G S )  E ( W )  = 1 - - ; 

m2 

The plasma frequency wp is defined by the relation 

( C G S )  w; = 4 m e 2 / m  ; 

A plasma is a medium with equal concentration of positive and negative 
charges, of which at least one charge type is mobile. In a solid the negative 
charges of the conduction electrons are balanced by an equal concentration of 
positive charge of the ion cores. We write the dielectric function ( 8 )  as 

plotted in Fig. 1. 
If the positive ion core background has a dielectric constant labeled ~ ( m )  

essentially constant up to frequencies well above wp, then ( 8 )  becomes 

E ( W )  = ~ ( m )  - 4mezlmw2 = ~ ( m ) [ l -  ?$/w2] , (11)  

where Gp is defined as 

0; = 4 m e 2 / ~ ( m ) m  . 

Notice that E = 0 at w = Zp. 

Dispersion Relation for Electromagnetic Waves 

In a nonmagnetic isotropic medium the electromagnetic wave equation is 
. . "?""...Fr.-.u;i. .,.> <, 

(SI) poaP~/ .3?  = v%'". : (13) 

We look for a solution with E cc exp(-iwt) exp(iK . r )  and D = e(w,K)E;  then 
we have the dispersion relation for electromagnetic waves: 

(CGS)  e(w,K)w2 = cZI<2 ; 

This relation tells us a great deal. Consider 

E real and > 0. For w real, K is real and a transverse electromagnetic wave 
propagates with the phase velocity C/E'". 
E real and < 0. For w real, K is imaginary and the wave is damped with a 
characteristic length I I I K I .  
E complex. For w real, K is complex and the waves are damped in space. 



. E = m. This means the system has a finite response in the absence of an ap- 
plied force; thus thc poles of E(o,K) define the frequencies of the free 
oscillations of the medlum. 
E = 0. We shall see that longitudinally polarized waves are possible only at 
the zeros of E .  

Transuene Optical Modes in a Plasma 

The dispersion relation (14) hccomes, with (11) for ~ ( w ) ,  

For o < ij, we have K2 < 0, so that K is imaginary. The solutions of the wave 
equation are of the form exp(-IKlx) in the frequency region O < w 5 G,. 
Waves incident on the medium in this frequency region do not propagate, but 
will be totally reflected. 

An electron gas is transparent when o > Gp, for here the dielectric func- 
tion is positive real. The dispersion relation in this region may be written as 

this describes transverse electromagnetic waves in a plasma (Fig. 2 ) .  
Values of the plasma frequency wp and of thc free space wavelength A, = 

2.rrc/wp for electron concentrations of interest are given below. A wave will prop- 
agate if its free space wavelength is less than A,; otherwise the wave is rcflected. 

Transparency of Metals i n  t h e  Ultraviolet. From the preceding discussion 
of the dielectric function we conclude that simple metals should reflect light in 
the visible region and be transparent to light at high frequencies. A comparison 
of calculated and observed cutoff wavelengths is given in Table 1. The reflection 
of light from a metal is entirely similar to the reflection of radio waves from the 
ionosphere, for the free electrons in thc ionosphere make the dielectric con- 
stant negative at low frequencies. Experimental restilts for InSb with n = 4 X 
10'' c m - h e  shown in Fig. 3, where the plasma frequency is near 0.09 eV. 

Longitudinal Plasma Oscillations 

The zeros or  the dielectric function determine the frequencies of the 
longitudinal modcs of oscillation. That is, the condition 

determines the longitudinal frequency w~ near K = 0. 
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Figure 2 Dispersion relation for transverse electromagnetic waves in a plasma. The group veloc- 
ity o, = do/dK is the slope of the dispersion curve. Although the dielectric function is between 
zero and one, the group velocity is less than the velocity of light in vacuum. 

Table 1 Ultraviolet transmission limits of alkali metals, in A 

A,, calculated 1550 2090 2870 3220 3620 
Ap, observed 1550 2100 3150 3400 - 

0.05 0.10 0.15 0.20 
Photon energy, eV 

Figure 3 Reflectance of indium antimonide 
with n = 4 X 10" CII-~. (After J. N. Hodgson.) 



By the geometry of a longitudinal polarization wave there is a depolarization 
field E = -47rP, mscussed below. Thus D = E + 4~rP = 0 for a longitudinal 
wave in a plasma or more generally in a crystal. In S I  units, D = eOE + P = 0. 

For an electron gas, at the zero (17) of the dielectric function (10) 

whence wL = wp. Thus there is a free longitudinal oscillation mode (Fig. 4 )  
of an electron gas at the plasma frequency described by (15) as the low- 
frequency cutoff of transverse electromagnetic waves. 

A longitudinal plasma oscillation with K = 0 is shown in Fig. 5 as a uni- 
form displacement of an electron gas in a thin metallic slab. The electron gas is 
moved as a whole with respect to the positive ion background. The displace- 
ment u of the electron gas creates an electric field E = 47rneu that acts as a 
restoring force on the gas. 

The equation of motion of a unit volume of the electron gas of concentra- 
tion n is 

(CGS) 
d2u nm- = -neE = -4m2e2u , 
dt2 

(19)  

This is the equation of motion of a simple harmonic oscillator of frequency wp, 

the plasma frequency The expression for op is identical with (9 ) ,  which arose in 
a different connection. In SI, the displacement u creates the electric field 
E = neul~,,, whence up = (ne2/eom)112. 

A plasma oscillation of small wavevector has approximately the frequency 
w,. The wavevector dependence of the dispersion relation for longitudinal 
oscillations in a Fermi gas is given by 

where u, is the electron velocity at the Fermi energy. 

Figure 4 A plasma oscillation. The arrows indicate the direction of displacement of the electrons. 
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Surface charge density 
u = -neu 

g = +neu 

Figure 5 In (a) is shown a thin slab or film of a metal. A cross section is shown in (b), with 
the positive ion cores indicated by + signs and the electron sea indicated by the gray back- 
ground. The slab is electrically neutral. In (c) the negative charge has been displaced upward 
uniformly by a small distance u, shown exaggerated in the figure. As in (d), this displacement 
establishes a surface charge density -neu on the upper surface of the slah and +neu on the 
lower surface, where n is the electron concentration. An electric field E = 4meu is produced 
inside the slah. This field tends to restore the electron sea to its equilibrium position (b). In SI 
units, E = neul~,. 

PLASMONS 

A plasma oscillation in a metal is a collective longitudinal excitation of 
the conduction electron gas. A plasmon is a quantum of a plasma oscillation; 
we may excite a plasmon by passing an electron through a thin metallic film 
(Figs. 6 and 7) or by reflecting an electron or a photon from a film. The charge 
of the electron couples with the electrostatic field fluctuations of the plasma 
oscillations. The reflected or transmitted electron wilI show an energy loss 
equal to integral multiples of the plasmon energy. 

Experimental excitation spectra for A1 and Mg are shown in Fig. 8. A 
comparison of observed and calculated values of plasmon energies is given in 
Table 2; further data are given in the reviews by Raether and by Daniels. Recall 
that Lip as defined by (12) includes the ion core effects by use of ~ ( m ) .  



I Scattered elecbon 

Figure 6 Creation of a plasmon in a metal film by inelastic scattering of an electron. The incident 
electron typically has an energy 1 to 10 keV; the plasmon energy may be of the order of 10 eV. An 
event is also shown in which two plasmons are created. 

L 1 Cathode 

-- -!-Anode 

Retarding 

Figure 7 A spectrometer with electrostatic analyzer 
for the study of plasmon excitation by electrons. (After 
J. Daniels eta].) Spherical condensor 

It  is equally possible to excite collective plasma oscillations in dielec- 
tric films; results for several dielectrics are included. The calculated plasma 
energies of Si, Ge, and InSb are based on four valence electrons per atom. 
In a dielectric the plasma oscillation is physically the same as in a metal; the 
entire valence electron gas oscillates back and forth with respect to the ion 
cores. 
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Figure 8 Energy loss spectra for electrons reflected from films of (a) aluminum and (b) nragne- 
sium, for primaty electron energies of 2020 cV The 12 loss peaks observed in A1 are made up of 
combinations of 10.3 and 15.3 eV losses, where the 10.3 eV loss is due to surface plas~nons and the 
15.3 cV loss is due to voll~me plasmo~is. The ten loss peak? obsenrcd in Mg are made up of con~bi- 
nations of 7.1 cV surface plasmons and 10.6 cV volume plasmons. Surface plasmons are the suh- 
ject of Problem 1. (After C .  J. Powell and J. R .  Swan.) 

Table 2 Volume plasmon energies, in e V  

Calculated 

hlaterid Observed 

Metals 
Li 
Na 
K 
M g 
A1 

Dielectrics 
Si 
Ge 
InSb 

ELECTROSTATIC SCREENING 

The electric field of a positive charge embedded in an electron gas falls off 
with increasing r faster than l /r,  becanse the electron gas tends to gather 
around and thus to screen the positive charge. The static screening can be de- 
scribed hy the wavevector dependence of the static dielectric function e(0,K). 
We consider the response of the electror~s to an applied external electrostatic 
field. We start with a nniform gas of electrons of charge concentration -a$ 
superirriposed on a hackground of positive charge of concentration nfi Let the 



positive charge hackground be deformed mechanically to produce a sinusoidal 
variation of positive charge density in the x  direction: 

P f  ( x )  = noe + p,,(K) sin Kx . ( 2 2 )  

The term P,,,(K) sin Kx gives rise to an electrostatic field that we call the exter- 
nal field applied to the electron gas. 

The electrostatic potential cp of a charge distribution is found from the 
Poisson cquation V Z q  = -4.rrp, by ( 3 )  with E = - V q .  For the positive 
charge we have 

q = q F a ( K )  sin Kx ; p  = p,,(K) sin Kx . ( 2 3 )  

The Poisson equation gives the relation 

The electron gas will be deformed by the combined influences of the elec- 
trostatic potential q, , , (K)  of the positive charge distrihntion and of the as yet 
unknown induced clcctrostatic potential q i n d ( K )  sin Kx of the deformation of 
the electron gas itself. The electron charge density is 

P - ( x )  = -n$ + pbd(K) sin ~x , ( 2 5 )  

where is the amplitude of the charge density variation induced in the 
electron gas. We want to find p J K )  in terms o f p , , , ( K ) .  

The amplitude of the total electrostatic potential q ( K )  = cp,,(K) + qind(K)  of 
the positive and negative charge distributions is related to the total charge density 
variation p ( K )  = p,,(K) + pind(K) by the Poisson equation. Then, as in Eq. ( 2 4 ) ,  

To go further we need another equation that relates the electron conceii- 
tration to the electrostatic potential. We develop this connection in what is 
called the Thomas-Fermi approximation. The approximation consists in assum- 
ing that a local internal chemical potential can be defined as a function of the 
electron concentration at that point. Now the total chemical potential of the 
electron gas is constant in equilibrium, independent of position. In a region 
where there is no electrostatic contrihlition to the chemical potential we have 

at absolute zero, accordi~~g to ( 6 . 1 7 ) .  In a region where the electrostatic poten- 
tial is ~ ( x ) ,  the total chemical potential (Fig. 9) is constant and equal to 

where cF(x)  is the local value of the Fermi energy. 
The expression (28) is valid for static electrostatic potentials that vary 

slowly compared with the wavelength of an electron at the Fernli level; 
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Che~r~ical potential 
/ 

P 
6 

0 

electron concentratinn 

Figure 9 111 thcr~nal and diffusive equilibrium the chemical potential is constant; to maintain it 
constant we increme the electron concentration in regions of space where the potential energy is 
low, and we decrease the concentration where the potential is high. 

specifically, the approximation is q kF.  By a Taylor series expansion of E,, 
Eq .  (28)  may he written as 

de, 
-[n(x) - no] = ep(x)  . (29) 
dno 

From (27) we have dcF/dno = 2eF/3n,, whence 

The left-hand side is the induced part of the electron concentration; thus 
the Fourier components of this equation are 

p,&) = (3noeZ/2e,jp(K) . (31) 

By (26)  this becomes 

phd(K) = - (6m,e2/~FK2)p(K) . (32) 

By (3dj we have 

here, after some rearrangement, 

where a. is the Bohr radius and D(cF) is the density of states for a free electron 
gas. The approximation (33)  for c(0,K) is called the Thomas-Fermi dielectric 
function, and l / k ,  is the Thomas-Fermi screening length, as in (40)  below. For 
copper with no = 8.5 X loz2 ~ m - ~ ,  the screening length is 0.55 A. 

1% have derived two limiting expressions for the dielectric function of an 
electron gas: 

We notice that e(0,K) as K + 0 does not approach the same limit as e(w,O) as 
w 4 0. This means that great care must be taken with the dielectric function 



near the origin of the w-K plane. The full theory for the general function 
E(w,K)  is due to ~ i ~ ~ d h a r r l . '  

Screened Coulomb Potential. We consider a point charge q placed in a sea 
of conduction electrons. The Poisson equation for the unscreened coulomb 
potential is 

v2q, = -47rqa(r) : ( 3 6 )  

and we know that cp, = q/n Let us write 

We use in (36 )  the Fourier representation of the delta function: 

whence K ' ~ , ( K )  = 4 ~ 4 .  
By (3e), 

cp,(K)lcp(K) = E(K)  , 

where cp(K) is the total or screened potential. We nse E ( K )  in the Thomas- 
Fermi form ( 3 3 )  to find 

The screened coulomb potential is the transform of cp(K): 

K sin Kr 4 d K -  =, exp( -kd )  
P + kf 

as in Fig. 10a. The screening parameter k, is defined by ( 3 4 ) .  The exponential 
factor reduces the range of the coulomb potential. The bare potential qlr is 
obtained on letting the chargc concentration no 4 0, for then k, -+ 0. In the 
vacuum limit q ( K )  = 47rq/K2. 

One application of the screened interaction is to the resistivity of certain 
alloys. The atoms of the series Cu, Zn, Ga, Ge, As have valences 1, 2, 3 ,  4 ,  5 .  
An atom of Zn, Ga, Ge, or As added substitutionally to metallic Cu has an ex- 
cess charge, referred to Cu, of 1 ,2 ,  3 ,  or 4 if all the valence electrons join the 
conduction band of the host metal. The foreign atom scatters the conduction 
electrons, with an interaction given by the screened coulomb potential. This 
scattering contributes to the rcsidual clcctrical resistivity, and calcnlations by 
Mott of the resistivity increase are in fair agreement with experiment. 

'A good discussion of the Lindhard dielectric function is given by I .  Ziman, Principles of the 
thvuy ofsulirlu, 211d ed., Canbridge, 1072, Chapter 5. The algebraic stcps in the evaluation of 
Ziman's equation (5.16) are given in detail by C. Kittel, Solid state physics 22, 1 (196R), Section 6. 
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Figure 10a Comparison of screened and unscreened 
coulomb potentials of a static unit positive charge. The 
screening length Ilk, is set equal to unity. The static 
screened interaction is taken in the Thomas-Fermi ap- 
proximation, which holds for low wavevectors q < k,; 
More complete calculations with all wavevectors in- 
cluded exhibit spatial oscillations, called Friedel 
oscillations, in 2kFr and are plotted in QTS, p. 114. 

Screened 
~o ten t~a l  a 

2 energy potential nscreened : 4 . 2  
PI 

-0.3 

Pseudopotential Component U ( 0 ) .  In the legend to Fig. 9.22b we stated a 
result that is important in pseudopotential theory: "For very small k the poten- 
tial approaches -$ times the Fermi energy." The result, which is known as the 
screened ion Iimit for metals, can be derived from Eq. (39).  When converted to 
the potential energy of an electron of charge e in a metal of valency z with no 
ions per unit volume, the potential energy component at k = 0 becomes 

U(0) = -eznocp(0) = -4mnoe2/k,2 . 

The result (34)  for kt in this situation reads 

whence 

U(0) = - ; E ~  . (43)  

Mott Metal-Insulator Transition 

A crystal composed of one hydrogen atom per primitive cell should always 
be a metal, according to the independent-electron model, because there will al- 
ways be a half-filled energy band within which charge transport can take place. 
A crystal with one hydrogen molecule per primitive cell is a different matter, 
because the two electrons can fill a band. Under extreme high pressure, as in 
the planet Jupiter, it is possible that hydrogen occurs in a metallic form. 

But let us imagine a lattice of hydrogen atoms at absolute zero: will this be 
a metal or an insulator? The answer depends on the lattice constant, with small 
values of a giving a metal and large values giving an insulator. Mott made an 
early estimate of the critical value a, of the lattice constant that separates the 
metallic state from the insulating state: a, = 4.5a0, where a, = ti2/me2 is the ra- 
dius of the first Bohr orbit of a hydrogen atom. 

On one approach to the problem, we start in the metallic state where a 
conduction electron sees a screened coulomb interaction from each proton: 



Figure lob Sclnilog plot of observed "zero tempera- 
ture" condiictivity m(D) versus donor concentration n for 
phosphorous donors in silicon. (After T F. Roscnbamii, 
ct al.) 

where k,2 = 3.939nhi3/ao, as in (34), where no is thc electron concentration. At 
high concentrations k, is large and the potential has no hound statc, so that we 
must have a metal. 

The potential is known to have a bound state when k, is smaller than 
1.19/ao. With a bound state possible the electrons may condense about the 
protons to form an insulator. The inequality rnay be written in terms of no as 

With n, = l/a3 for a simple cnhic lattice, wc may have an insulator when a, > 
2.78a0, which is not far from the Mott result 4.5ao found in a diffcrcnt way. 

The terrn metul-insulator transition has come to denote situations where 
the electrical conductivity of a rriaterial changes from metal to insulator as a 
function of some external parameter, which may be composition, pressure, 
strain, or magnetic field. The metallic phase may usually be pictured in terms 
of an independent-clcctron model; the insulator phase may suggest important 
electron-electron interactions. Sites randomly occupied introduce new and in- 
teresting aspects to the problem, aspects that lie within percolation theory. 
The percolation transition is beyond the scope of our book. 

When a semiconductor is doped with increasing concentrations of donor 
(or acceptor) atoms, a transition will occur to a conducting metallic phase. 
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Experimental rcsi~lts for P atoms in silicon are shown in Fig. lob. Here the 
i~isulator-mctal transition takes place when thc concentration is so high that 
the ground state wavefunctions of electrons on neighboring impurity atoms 
overlap significantly. 

The observed value of the critical concentration in the Si : P alloy system 
is n, = 3.74 x lo1' cm 3, as in the figure. If we take 32 X 10-%m as the 
radius of the ground state of a donor in Si in the spherical approximation, then 
by the Mott critcrion a, = 1.44 X 10-"m. The P atoms are believed to oc- 
cupy latticc sites at random, but if instead their lattice were simple cubic, the 
critical Mott concentratior~ would be 

appreciably less than the observed value. It is usual in the semiconductor liter- 
ature to refer to a heavily-doped semiconductor in the metallic range as a 
degenerate semiconductor. 

Screening and Phonons in Metals 

An interesting applicatio~l of our two limiting forms of the dielectric func- 
tion is to longitudirral acoustic phonons in metals. For lorigitudinal modes the 
total dielectric function, ions ph19 electrons, must be zero, by (17). Provided 
the sound velocity is less than the Fermi velocity of the eIectrons, we may use 
for the electrons the Thomas-Fermi dielectric function 

Provided also that thc ions are well-spaced axid move independently, we may 
use for them the plasmon E(w,O) limit with the approximate mass M. 

The total dielectric function, lattice plus electrons, but without the elec- 
tronic polarizability of the ion cores, is 

At low K and w wc neglect the term 1. At a zero of E(o,K) we have, with 
eF - ;mu$, 

This describes long wavelength longitudinal acoustic phonons. 
In thr alkali metals the result is in quitc good agreement with the 

observed longitudinal wave velocity. For potassium we calculate u = 1.8 X 

lo5 cm s-'; the observed longitudinal sound velocity at 4 K in the [loo] direc- 
tion is 2.2 X 1@ crrl s-'. 



There is another zero of E(w,K) for positive ions imbedded in an electron 
sea. For high frequencies we ~ i se  the dielectric contribiltion -w:/02 of the 
electron gas: 

and this function has a zero when 

This is the electron plasma frequency (20), but with the reduced mass correc- 
tion for the motion of the positive ions. 

POLARITONS 

Longitudinal optical phonons and transverse optical phonons were dis- 
cussed in Chapter 4 ,  but we deferred treatment of the interaction of trans- 
verse optical phonons with transverse clectromagnctic waves. When the hvo 
waves are at resonance the phonon-photon colipling entirely changes the char- 
acter of the propagation, and a forbidden band is established for reasons that 
have nothing to do with the periodicity of the lattice. 

By resonance we mean a conditior~ in which the frequencies and wavevectors 
of both waves are approximately equal. The region of the crossover of the two 
dashed curves in Fig. 11 is the resonance region; the two dashed curves are the 
dispersion relations for photons and transverse optical phonons in the absence of 
any coupling bet-wccn thcm. In reality however, there always is coupling implicit 

- ~ 

in Maxwell's eqiiations and expressed by the dielectric function. The quantum of 
the coupled phonon-photon transverse wave field is called a polariton. 

In this section we see how the coupling is responsible for the dispersion 
relations shown as solid curves in the figure. All takes place at very low values 
of the wavevector in comparison with a zone boundary, because at crossover 
w(photon) = ck(photon) = o(phonon) = 1013 s-'; thus k = 300 cm-'. 

An early warning: although the symbol o, will necessarily arise in the the- 
ory, the effects do not conccrn longitudinal optical phonons. Longitudinal 
phonons do not coiiple to transverse photons in the bulk of a crystal. 

The coupling of the electric field E of the photon with the dielectric polar- 
ization P of the TO phonon is described by the electro~rlagnetic wave equation: 

(CGS) C'PE = W ~ ( E  + ~ V P )  . (53) 

At low wavevectors the TO phonon frequency w, is independent of K. The po- 
larization is proportional to the displacement of the positive ions relative to 
the negative ions, so that the equation of motion of the polarization is like that 
of an oscillator and may be written as, with P  = Nqu, 
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Figure 11 A plot of the obsemed energies and wavevectors of the polantons and of the LO 
phonons in Gap The theoretical dispersion curves are shorn by the solid lines. The dispersion 
curves for the uncoupled phonons and photons are bllown by the short, dashed lines. (After 
C. H. Henyand J. J. Hopfield.) 

where there are N ion pairs of effective charge q and reduced mass M, per unit 
volnme. For simplicity we neglect the electronic contribution to the polarization. 

The equations (53) and (54) have a soliltion when 

This gives the polariton dispersion relation, similar to that plotted in Figs. 11 
and 12. At K = 0 there are two roots, o = 0 for the photon and 

for the polariton. Here o, is the TO phonon frequency in the absence of 
coupling with photons. 

The dielectric function obtained from (54) is: 

If there is an optical electronic contribution to the polarization from the ion 
cores, this should be included. In the frequency range from zero up through 
the infrared, we write 
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Figure 12 Couplcd lnodcs of plioto~~s and transverse optical phonon in an ionic crystal. The fine 
horizontal line represents oscillators of frequen o, in the absence of coupling to the electromag- 
netic field, and the fine line labeled w = cK/  F e(m) corresponds to clcctromag~~etic waves in the 
crystal, hut uncoupled to the lattice oscillators w,. The heavy lines are the dispersion relations in 
the presence of conpling hetween the lattice oscillators and the electromagnetic wave. One effect 
of the coupling is to create the frequency gap between w ,  and w,: within this gap the wavevector is 
pure imaginary of magnitude given by the hrnken line in the fignre. In the gap the wave attenuates 
as expi-IKlx), and we see from the plot that the attenuation is much stronger near w ,  than ncar 
w,. The character of the branches varies with K;  tlrcre is a regiun of mixed electric-mechanical as- 
pects near the nominal crossover. Note, finally, it is intuitively obvious that the group velocity of 
light in the medium is always <c, because the slope a d a K  for the actual dispersion relations 
(hemy lines) is everywhere lcss thau thc slope c fur the u~~cuupled photon in free space. 

in accord with the definition of ~ ( m )  as the optical dielectric constant, ob- 
tained as thc square of the optical refractive index. 

M7e set w  = 0 to ohtain the static dielectric function: 

~ ( 0 )  = e ( m )  + ~ T ~ N ~ ~ / M W ;  , (59) 

which is combined with (58) to obtain ~ ( w )  in terms of accessible parameters: 

The zero of ~ ( w )  defines the longitudinal optical phonon frcqucncy wL, as the 
pole of e ( w )  defines w,. The zero gives 

~ ( m ) w ;  = E(O)O+ . (61) 
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(a) 

Figure 13a Plot of ~ ( w )  from (60) for ~ ( m )  = 2 and ~ ( 0 )  = 3. The dielectric constant is negative 
between w = wT and w, = (3/2)"2wT; that is, between the pole (infinity) of E(W) and the zero of 
~ ( w ) .  Incident electromagnetic waves of frequencies in the shaded regions w, < w < w, will not 
propagate in the medium, but will be reflected at the boundary. 
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Figure 13b Dielectric function (real  art) of SrF, measured over a wide frequency range, 
exhibiting the decrease of the ionic polarizability at high frequencies. (A. von Hippel.) 



TO phonon LO phonon 

Figure 14 Relative displacements of the positive and negative ions at one instant of time for a 
wave in an optical mode traveling along the z axis. The planes of nodes (zero displacement) are 
shown; for long wavelength phonons the nodal planes are separated by many planes of atoms. In 
the transverse optical phonon mode the particle displacement is perpendicular to the wavevector 
K; the macroscopic electric field in an infinite medium will lie only in the ? x direction for the 
mode shown, and by the symmetry of the problem dE,/ax = 0. It follows that div E = 0 for a TO 
phonon. In the longitudinal optical phonon mode the particle displacements and hence the dielec- 
tric polarization P are parallel to the wavevector. The macroscopic electric field E satisfies D = 

E + 4 f l  = 0 in CGS or eOE + P = 0 in SI: by symmetry E and P are parallel to the z axis, and 
aE Jaz  # 0. Thus div E # 0 for an LO phonon, and ~ ( w )  div E is zero only if ~ ( o )  = 0. 

Waves do not propagate in the frequency region for which e(w) is nega- 
tive, between its pole at w = w, and its zero at w = o,, as in Fig. 13. For nega- 
tive E ,  waves do not propagate because then K is imaginary for real w, and 
exp(i&) + exp(- IKlx), damped in space. The zero of e(w), by our earlier argu- 
ment, is the LO frequency at low K ,  Fig. 14. Just as with the plasma frequency 
wp, the frequency w, has two meanings, one as the LO frequency at low K and 
the other as the upper cutoff frequency of the forbidden band for propagation 
of an electromagnetic wave. The value of w, is identical at both frequencies. 

LST Relation 

We write (61) as 

where ~ ( 0 )  is the static dielectric constant and ~ ( m )  is the high-frequency limit 
of the dielectric function, defined to include the core electron contribution. 
This result is the Lyddane-Sachs-Teller relation. The derivation assumed a 
cubic crystal with two atoms per primitive cell. For soft modes with WT+ 0 we 
see that ~ ( 0 )  + 00, a characteristic of ferroelectricity. 

Undamped electromagnetic waves with frequencies within the gap cannot 
propagate in a thick crystal. The reflectivity of a crystal surface is expected to 
be high in this frequency region, as in Fig. 15. 
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Figure 15 Keflectance of a crystal of NaCl at reveral temperatures, versus wavelength. The nom- 
inal values of w ,  and w, at room temperature correspond tn wavelengths uf 38 and 61 X lo-' cm, 
respectively. (After A. Mitsuishi et al.) 

Wave number in clllil 

Wavelength in lo4 cm 

Figure 16 Reflectance versus wavelength of a LiF film hacked by silver, for radiation incident 
near 30". The longitudinal optical ~ h o n o n  absorbs strongly the radiation polarized (p) in the plane 
~ ~ u r ~ n a l  to the Cilm, hut absorbs hardly at all the radiation polarized (s) parallel to the film. (After 
D. W Rerreman.) 



For films of thickness less than a wavelength the situation i s  changed. Be- 
cause for frequencics in the gap the wave attenuates as exp(- IKlx), it is possi- 
ble for the radiation to be transmitted through a film for the small values of IKI 
near o,, but for the large values of IKI near o, the wave will be reflected. By 
reflection at nonnormal incidence the frequency w, of longitudinal optical 
phonons can be observed, as in Fig. 16. 

Experimental values of e(O), ~ ( m ) ,  and or are given in Table 3, with 
values of o, calculated using thc LST relation, Eq. (62). We compare values of 

Table 3 Lattice parameters, chiefly at 300 K 

Static Optical 
dielectric dielectric 
constant cu~~starit W T ,  in 10'5-' o,,, in 1013 sf '  

Crystal 4m) experimental LST relation 

LiH 12.9 3.6 11. 21. 
LiF 8.9 1.9 5.8 12. 
LiCl 12.0 2.7 3.6 7.5 
LiBr 13.2 3.2 3.0 6.1 
NaF 3.1 1.7 4.5 7.8 
NaCl 5.9 2.25 3.1 5.0 
NaBr 6.4 2.6 2.5 3.9 
KF 5.5 1.5 3.6 6.1 
KC1 4.85 2.1 2.7 4.0 
KI 5 . 1  2.7 1.9 2.6 
RbF 6.5 1.9 2.9 5.4 
RbI 5.5 2.6 1.4 1.9 
CsCl 7.2 2.6 1.9 3.1 
CsI 5.65 3.0 1.2 1.6 
TlCl 31.9 5.1 1.2 3.0 
TlBr 29.8 5.4 0.81 1.9 
AgCl 12.3 4.0 1.9 3.4 
AgBr 13.1 4.6 1.5 2.5 
Mg" 9.8 2.95 7.5 14. 
Gap 10.7 8.5 6.9 7.6 
GaAs 13.13 10.9 5.1 5.5 
GaSb 15.69 14.4 4.3 4.fi 
InP 12.37 9.6 5.7 6.5 
InAs 14.55 12.3 4.1 4.5 
InSb 17.88 15.6 3.5 3.7 
Sic 9.6 6.7 14.9 17.9 
C 5.5 5.5 25.1 25.1 
Si 11.7 11.7 9.9 9.9 
Ge 15.8 15.8 5.7 5.7 
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w,/w, obtained by inelastic neutron scattering with experimental values of 
[E(o)/E(~)]'" obtained by dielectric measurements: 

NaI KRr GaAs 
wL/wT 1.44 ? 0.05 1.39 t- 0.02 1.07 ? 0.02 
[E(O)/E(~)]"~ 1.45 ? 0.03 1.38 t- 0.03 1.08 

The agreement with the LST relation is excellent 

ELECTRON-ELECTRON INTERACTION 

Fermi Liquid 

Because of the interaction of the conduction electrons with each other 
through their electrostatic interaction, the electrons suffer collisions. Further, 
a moving electron canses an inertial reaction in the surrounding electron gas, 
thereby increasing the effective mass of the electron. The effects of electron- 
electron interactions are usually described within the framework of the 
Landau theory of a Fermi liquid. The object of the theory is to give a unified 
account of the effect of interactions. A Fermi gas is a system of noninteracting 
fermions; the same system with interactions is a Fermi liquid. 

Landau's theory gives a good account of the low-lying single particle exci- 
tations of the system of interacting electrons. These single particle excitations 
are called quasiparticles; they have a one-to-one correspondence with the 
single particle excitations of the free-electron gas. A quasiparticle may be 
thought of as a single particle accompanied by a distortion cloud in the elec- 
tron gas. One effect of the coulomb interactions bctween electrons is to 
change the effective mass of the electron; in the alkali metals the increase is 
roughly of the order of 25 perccnt. 

Electron-Electron Collisions. It is an astonishing property of metals that 
conduction electrons, although crowded together only 2 A apart, travel long 
distances between collisions with each other. The mean free paths for 
electron-electron collisions are longer than lo4 A at room temperature and 
longer than 10 cm at 1 K. 

Two factors are responsible for these long mean free paths, without which 
the free-electron model of metals woi~ld have little value. The most powerful 
factor is the exclusion principle (Fig. 17), and the second factor is the screen- 
ing of the coulomb interaction between two electrons. 

We show how the exclusion pinciple reduces the collision frequency of an 
electron that has a low excitation energy E, outside a filled Fermi sphere 
(Fig. 18). We estimate the effect of the exclusion ~rinciple on the two-body 
collision 1 + 2 + 3 + 4 between an electron in the excited orbital 1 and an 
electron in the filled orbital 2 in the Fermi sea. It is convenient to refer all 
energies to the Fermi level p taken as the zero of energy; thus E, will be 



Figure 17 A collision between two electrons 
of wavevectors k, and k,. After the collision 
the particles have wavevectors k, and k,. The 
Pauli exclusion principle allows collisions only 
to final states k,, k, which were vacant before 
the collision. 

(4 
Figure 18 In (a) the electrons in initial orbitals 1 and 2 collide. If the orbitals 3 and 4 are initially 
vacant, the electrons 1 and 2 can occupy orbitals 3 and 4 after the collision. Energy and momentum 
are conserved. In (b) the electrons in initial orbitals 1 and 2 have no vacant final orbitals available 
that allow energy to be conserved in the collision. Orbitals such as 3 and 4 would conserve energy 
and momentum, but they are already filled with other electrons. In (c) we have denoted with X the 
wavevector of the center of mass of 1 and 2. All pairs of orbitals 3 and 4 conserve momentum and 
energy if they lie at opposite ends of a diameter of the small sphere. The small sphere was drawn 
from the center of mass to pass through 1 and 2. But not all pairs of points 3 ,4  are allowed by the 
exclusion principle, for both 3 ,4  must lie outside the Fermi sphere; the fraction allowed is =E, /E~ 



14 Plasmons, Polaritons, and Polarons 

positive and ep will bc negative. Because of the exclusion principle the orbitals 
3 and 4 of thc electrons after collision must lie outside the Fermi sphere, all 
orbitals within the sphere being already occupied; thus both cncrgics e,, e, 
must be positive referred to zero on the Fermi spherc. 

The consewatiorl of energy requires that lc,l < el, for otherwise E, + eq = 

el + e2 could not be positive. This mcans that collisions are possible only if the 
orbital 2 lies within a shell of thickness el within the Fermi surface, as in Fig. 
18a. Thus the fraction =el/eF of the electrons in filled urbitals provides a suit- 
able target for electron 1. But even if the target electron 2 is in the suitable 
energy shell, only a small fraction of the final orbitals compatible with conser- 
vation of energy and momentum are allowed by thc cxclilsion principle. This 
gives a second factor of e,/tF. 

In Fig. 18c we show a small sphcrc on which all pairs of orbitals 3, 4 
at opposite ends of a diameter satisfy the conservation laws, but collisions can 
occur only if both orbitals 3, 4 lie outside the Fermi sea. The product or  the 
two fractions is ( E ~ / E ~ ) !  If el corresponds to 1 K and tF to 5 X lo%, wc have 
( E ~ / E ~ ) ~  = 4 X 10-lo, the factor by wludi the exclusion principle reduces the 
collision rate. 

The argument is not changed for a thermal distribiltion of electrons at 
a low temperature such that kgT < eF SVc replace el by the thermal energy 
=k,T, and now the rate at which electron-electron collisions take place is re- 
duced below the classical vahle by (kBT/e,)', SO that the effective collisio~i 
cross section u is 

u = (kBT/cF)2uo , (63)  

where uo is the cross section for the electron-electron interaction. 
The interaction of one electron with another has a range of the order of 

the screening length l lk,  as in (34) .  Numerjcal calcillations give the effective 
cross section with screening for collisions between electrons as of the order of 
10-'" cm' or 10 A' in typical metals. The effect of the electron-gas background 
in electron-electron collisions is to reduce on below the value expected from 
the Rutherford scattering equation for the unscreened coulomb potential. 
However, much the greater reduction i11 the cross section is caused by the 
Pauli factor (~,T/E,)~.  

At room temperature in a typical mctal kBT/eF is --lo-', so that 
u - l ~ - ~ u ~  -10-l9 cm2. The mean free path for electron-electron collisions is 
e = l /na  - cm at room temperature. This is longer than the mean free 
path due to electron-phonon collisions by at least a factor of 10, so that at 
room temperature collisions with phonons are likely to be dominant. At liquid 
helium temperatures a contribution proportional to T2 has been found in the 
resistiblty of a number of metals, consistent with the form of the electron- 
electron scattering cross section (63).  The mean free path of electrons in in- 
dium at 2 K is of the ordcr of 30 cm, as expected from (63) .  Thus the Pauli 



principle explains one of the central questions of thr theory of metals: how do 
the electrons travel long distances without colliding with each other? 

ELECTRON-PHONON INTERACTION: POLARONS 

The most common effect of the electron-phonon interaction is seen in the 
temperature dependence of the electrical resistivity, which for pure copper is 
1.55 microhm-cm at 0°C: and 2.28 microhm-cm at 100°C. The electrons are 
scattered by the phonons, and the higher the temperature, the more phonons 
there are and hence more scattering. Above the Debye temperature the num- 
ber of thermal phonons is roughly proportional to the absolute temperature, 
and we find that the resistivity increases approximately as the absolute tem- 
perature in any reasonably pure metal in this temperature region. 

A more subtle effect of the electron-phonon intcraction is the apparent in- 
crease in electron mass that occurs because the electron drags the heavy ion 
cores along with it. In an insulator the combination of the electron and its 
strain field is known as a polaron, Fig. 19. The effect is large in ionic crystals 
because of the strong coulomb interaction between ions and electrons. I11 co- 
valent crystals the effect is weak because neutral atoms have only a weak inter- 
action with electrons. 

Thc strength of thc clcctron-latticc intcraction is mcasured by the dimen- 
sionless coupling constant CY given hy 

1 deformation energy 

za = 5% (64) 

where uL is the longiti~dinal optical phonon frequency near zero wavevector. 
We view ;a as "the number of phonons which surround a slow-moving elec- 
tron in a crystal." 

Values of a deduced frorri diverse experi~nerlts and theory are given in 
Table 4, after F. C. Brown. The values of a are high in ionic crystals and low in 
covalent crystals. The values of the effective mass miol of the polaron are fiom 
cyclotron resonance experiments. The values given for the band cffcctive mass 
rn* werc calculatcd from mi,,. Thc last row in the tahle gives the factor m',,,lrn' 
by which the band mass is increased by the deformation of the lattice. 

Theory relates the effective mass of the polaron miul to the effective band 
mass rn* of the electron in the undefornled lattice by t11e relation 

for CY < 1 this is approximately m*(l  + ;a). Because the coupling constant a is 
always positive, the polaron mass is greater than the bare mass, as we expect 
from the inertia of the ions. 
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Figure 19 The formation of a polaron. (a) A conduction electron is shown in a rigid lattice of 
an ionic crystal, KCI. The forces on the ions adjacent to the electron are shown. (b) The electron is 
shown in an elastic or deformable lattice. The electron plus the associated strain field is called a 
polaron. The displacement of the ions increases the effective inertia and, hence, the effective 
mass of the electron; in KC1 the mass is increased by a factor of 2.5 with respect to the band theory 
mass in a rigid lattice. In  extreme situations, often with holes, the particle can become self- 
trapped (localized) in the lattice. In covalent crystals the forces on the atoms from the electron are 
weaker than in ionic crystals, so that polaron deformations are small in covalent crystals. 

It is common to speak of large and small polarons. The electron associated 
with a large polaron moves in a band, but the mass is slightly enhanced; these 
are the polarons we have discussed above. The electron associated with a small 
polaron spends most of its time trapped on a single ion. At high temperatures 
the electron moves from site to site by thermally activated hopping; at low 
temperatures the electron tunnels slowly through the crystal, as if in a band of 
large effective mass. 



Table 4 Polaron coupling constants a, masses mio1, and band masses m* for 
electrons in the conduction band 

Crvstal KC1 KRr AeCl AaBr ZIIO PbS InSb G d s  

Holes or electrons can become self-trapped by inducing an asymmetric 
local deformation of the lattice. This is most likely to occur when the band 
edge is degenerate and the crystal is polar (such as an alkali halide or silver 
halide), with strong coupling of the particle to the lattice. The valence band 
edge is more often degencratc than the conduction band edge, so that holes 
are more likely to be self-trapped than are electrons. Holes appear to be self- 
trapped in all the alkali and silver halides. 

Ionic solids at room temperature gerlerally have very low conductivities 
for the motion of ions through the crystal, less than (ohm-cm)-', but a 
family of compounds has been reported with conductivities of 0.2 (ohm-cm)-' 
at 20°C. The compounds have the composition MAGI,, where M denotes K, 
Rb, or NH,. The Ag' ions occupy only a fraction of the equivalent lattice sites 
available, and the ionic condnctivity proceeds by the hopping of a silver ion 
from one sitc to a nearby vacant site. The crystal structures also have parallel 
open channels. 

PEIERLS INSTABILITY OF LINEAR METALS 

Consider a one-dimcnsional metal with an electron gas filling all conduc- 
tion band orbitals out to the wavevector k,., at absolute zero of temperature. 
Peierls suggested that such a linear metal is unstable with respect to a static 
lattice deformation of wavevector G = 2kF. Such a deformation crcatcs an en- 
ergy gap at the Fermi surface, thereby lowering the encrgy of electrons below 
the energy gap, Fig. 20. The deformation proceeds until limited by the in- 
crease of elastic energy; the equilibrium deformation A is given by the root of 

Consider the elastic strain A cos 2kpx. The spatial-average elastic energy 
per unit length is Eei,,,, = $~A~(cos~2k,x)  = $ 2 ~ "  where C is the force 
constant of the linear metal. We next calculate Eel,,,,,,,,. Suppose that the ion 
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Figure 20 Peierls instability. Electrons with wave- 

0 vectors near the Fermi surface have their energy 
Wavevector lowered by a lattice deformation. 

contribution to the lattice potential seen by a conduction electron is propor- 
tional to the deformation: U(x) = 2AA cos 2kFx. From (7.51) we have 

eK = (fi2/2m)(kg + P) ? [4(fi2k22m)(fi2P/2m) + A2A2]ln . (67) 

It is convenient to defme 

x, = fi2@/m ; x, = fi2kg/m ; x - fi2~kF/m 

We retain the - sign in (67) and form 

whence, with dKlr  as the number of orbitals per unit length, 

We put it all together. The equilibrium deformation is the root of 

$A - (2A2mA/d2kF) sinh-l(fi2k2mAA) = 0 . 

The root A that corresponds to the minimum energy is given by 

fi2k%lmAA = sinh(-fi2kFrC/4mA2) , 

whence 

IA IA = (2fi2k;/m) eq(-)i2kFrC/4mA2) , 

if the argument of the sinh in (68) is >> 1. We assume k, G k,,. 



The result is of the form of the energy gap equation in the BCS theory of 
superconductivity, Cl~apter 10. The deformation A is a collective effect of all 
the electrons. If we set JY = h2kj/2m = conduction hand width; N(0) = 

2 m l ~ h ~ k ,  = density of orbitals at Fermi level; V = 2A2!C = effective electron- 
electron interaction energy, then we can write (69) as 

IA IA - 4W exp-l/N(O)V] , (70) 

which is analogous to the BCS energy gap equation. An example of a Peierls 
insulator is TaS,. 

SUMMARY 
(In CGS units) 

The dielectric function may he defined as 

in terms of the applied and induced charge density components at w,K. 

The plasma frequency Gp = [4mne?e(~)rn]"~ is the frequency of the uniform 
collective longitudinal oscillation of the electron gas against a background of 
fixed positive ions. I t  is also the low frequency cutoff for propagation of 
transverse electromagnetic waves in the plasma. 

The poles of the dielectric fur~ction define w~ and the zeroes define wL. 

In a plasma the coulomb interaction is screened; it becomes (qlr) exp(-k,r), 
where the screening length llk, = ( ~ F J 6 . r m ~ ~ ) ' ~ .  

A metal-insulator transition may occur when the nearest-neighbor scpara- 
tion a becomes of the order of 4ao, where no is the radius of the first Bohr 
orhit in the insulator. The metallic phasc cxists at smaller values of a. 

A polariton is a quantum of the coupled TO phonon-photon fields. The cou- 
pling is assured by the Maxwell equations. The spectral region w,- < w < w, 
is forbidden to electromagnetic wave propagation. 

The Lyddane-Sachs-Teller relation is wi!w2, = e(O)/~(m). 

Problems 

1. Surface plasmons. Consider a semi-infinite plasma on the positive side of the 
plane z = 0. A solution of Laplace's equation V" = 0 in the plasma is qi(x,z) = 

A cos kr KkZ, whence E, = kA cos kr e-k"; EXj = kA sin kw c-". (a)Shoa. that in the 
vac~~nrn qo(x,z) = A cos kx  e" for z < 0 satisfies the boundary condition that the 
tangential component of E be continuous at the boundary; that is, find Ex0. 
(b) Note that D, = e(w)Ei; Do = E,. Show that the boundary condition that the 
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norn~al component of D be continuous at the hn~mdaly requires that c(w) = 1 ,  
whence from (10) we have the Stern-Ferrell rewlt: 

for the frequency w ,  of a surface plasma oscillation 

2 .  Interface plasmons. We consider the plane interface z = 0 between metal 1 at 
z > 0 and metal 2 at s < 0. Metal 1 has bl~lk plasmon frequency up,; metal 2 has 
op,. The dielectric constants in both ~netals are those or frcc-electron gases. Show 
that surface plasmons associated mith the interface havc thc frequency 

3.  Alfve'n waves. Consider a solid with an cqual concentration n of electrons of mass 
m ,  and holes of mass m,,. This situation may arisc in a semimetal or in a compen- 
sated semiconductor. Place the solid in a lrniform magnetic field B = Be. Intro- 
duce the coordinate 5 = x + i y  appropriate for circularly polarized motion, with 6 
having time dependence a-I"'. Let we = rBlm,c and wh = eB/mhc. (a) In CGS units, 
show that [<: = eEe/m,wiw + w,); [,, = -rE+/rnhw(o - wh) are the displacements 
of the electrons and holes in the electric field E- ePot  = (E, + iEy) e~'Ot. 
(b)  Show that the dielectric polarization Pi = r~ejt,, - &) in thc regime w & w,, o h  

may be written as P+ = nc2(ml, + m,)E+/BZ, and the dielectric function c(w) = 

EL + 4vPiP+/E+ = E, + 4nc2p/B2, where c, is the dielectric constant of thc host lat- 
tice and p = n(m, + ml,) is the mass density of the carriers. If cl may bc  ncglected, 
the dispersion relation wec(w) = c2K%ecomes, fur electroniagnetic waves propa- 
gating in the z direction, w2 = ( B ~ / ~ T ~ ) K ~ .  Such waves are krro\z,n m Alfvkn waves; 
thcy propagate with the constant velocity B/(4.rrp)"'.. If B = 10 kG; n = 10" c111-~; 
m = g, the velocity is -10' cm s-'. Alfien waves have been observed in seini- 
metals and in electron-hole drops in germanium (Chapter 15). 

4 .  Helicon wanes. (a) Employ the method of Problem 3 to treat a specimen with 
only onc carrier type, say holes in concentration p, and in t l ~ e  limit o & oh = 
s B l n ~ ~ c .  Show that c(w) = -ITe2/nzhww,,, where Di(o)  = t(w)E+(w). The term E, 

in c has hccn neglected. (b) Show further that the dispersion relation hecomes o = 
( B C / ~ ~ I ~ ) K ' ,  the helicon dispersion relation; in CGS. For K = 1 cn-I and B = 

1000 (:, estimatc the helicon frequency in sodium metal. (The frequency is nega- 
tive; with circular-polarized modes the sign of the frequency refers to the sense oC 

the rotation.) 

5.  Plasmon mode of a sphere. The frequency of the uniform plasmon mode of a 
sphere is dctcrmincd by the depolarization field E = -47rP/3 of a sphere, where 
the polarization P= -nrr, with r as the average displacement of the electrons of 
concentration n. S h o ~  from F = n u  that the resonance frequency of the electron 
gas is w i  = 4meV3m. Bccausc all electrons participate in the oscillation, such an 
excitatior~ is called a collective excitation or collective mode of the electron gas. 

6. M~gnstoplanmafrequenc~. Use the method of Problem 5 to find the frequency 
of the urrifnrln plasulon ulode of a sphere placed in a constant uniform rnagnetic 
field B. Let B he  along the z axis. The solution should go to the cyclotron 



frequency w,. = eB/mc in one limit and to wo = (4me2/3m)u' in another limit. Take 
the motion in the xy plane. 

7. Photon branch at low wavevector. (a) Find what (56) becomes when E(W)  
is taken into account. (b) Show that there is a solution of (55) which at low 
wavevector is w = C W ~ ,  as expected for a photon in a crystal of refractive 
index n2 = E .  

8. Plasma frequency and electrical conductivity. An organic conductor has been 
found by optical studies to have wp - 1.80 X 10'"~' for the plasma frequency, 
and T = 2.83 X 10-15 s for the electron relaxation time at room temperature. 
(a) Calculate the electrical conducti\lty from these data. The carrier mass is not 
knowu and is not needed here. Take ~ ( m )  = 1. Convert the result to units 
(n cm)-'. (b) From the crystal and chemical structure, the conduction electron 
couccntration is 4.7 X lo2' ~ m - ~ .  Calculate the electron effective mass m'. 

9. Bulk modulus of the Femi gas. Show that the contribution of the kinetic en- 
ergy to the bulk modulus of the electron gas at absolt~tr zero is B = inmt$. It is 
convenient to use (6.60). We can use our result for B to find the vclocity of sound. 
which in a compressible fluid is u = (B!p)l/Z, where u = (ni/3M)l"cF, in agreement 
with (46). These estimates neglect attrachve interactions. 

10. Response of electron gas. It is sometimes stated error~eously in books on electro- 
magnetism that the static conductivity a, which in gaussian units has the dimensions 
of a frequency, measures the response frequency of a metal to an electric ficld sud- 
denly applied. Criticize this statement as it might apply to copper at room tempcra- 
ture. The resistivity is -1pohm-cm; the electron concentration is 8 X 10" 2 6 ' ;  the 
mean free path is -400 A; the Fermi velocityis 1.6 X lo8 crn s-'. You will not neccs- 
sarily need all these data. Give the order of magnitude of the three frequencies u, 
w,, and 117 that might bc relevant in the problem. Set up and solve the prohlem 
of the response x j t )  of the system to an electric field E(t < 0) = 0; E( t  > 0) = 1 .  
The system is a sheet of mpper; the field is applied normal to the sheet. Inclnde the 
damping. Solve the differential cquation by elementary methods. 

'11. Gap plasmons and the van der Waals interaction. Consider two sen~i-infinite 
media with plane surfaces z = 0 ,  d. The dielectric function of the identical rriedia 
is ~ ( w ) .  Show that for surface plasmons symmetrical with respect to the gap the 
frequency must satisfy ~ ( w )  = -tanh (Kd!2), where K2 = k: + k;. The electric po- 
tential will have the form 

p -,f(z) exp(ik& + ikYy - iwt) 

Look for nonretarded so1utio11-that is, solutions of the Laplace equation rather 
than of the wave equation. The sum of the zero-point energy of all gap modes 
is the nonretarded part of the van der Waals attraction between the two 
specimens-see N. G. van Karrlperr, R. R. A. Nijboer, and K. Schram, Physics 
Letters 26A, 307 (1968). 

 h his prohlerr~ is so~ncwhat difficult. 
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w', k' * Raman scattering (generic term): 
Brillouin scattering when acoustic 
phonon is involved; polariton 
scattering when optical phonon 
is involved. 

w = w ' f C l  + for phonon emission (Stokes process) 
k = k ' * K  sials  { _ for phonon absorption (anti-Stokes) 

Two phonon creation. 

Electron spectroscopy with x-rays (XPS): 
incident x-ray photon ejects valence or 
core electron from solid. 

Figure 1 There are many types of experiments in which light interacts with wavelike excitations 
in a crystal. Scvcral absorptio~i proccsscs arc illustrated Irere. 



CHAPTER 15: OPTICAL PROCESSES AND EXCITONS 

The dielectric function r(o,K) was introduced in the preceding chapter to 
describe the response of a crystal to an electromagnetic field (Fig. 1). The di- 
electric function depends sensitively on the electronic hand structure of a 
crystal, and studies of the dielectric function by optical spectroscopy are very 
useful in the determination of the ovcrall hand structure of a crystal. Indeed, 
optical spectroscopy has developed into the most important experimental tool 
for band structure determination. 

In the infrared, visible, and ultraviolet spectral regions the wavevcctor of 
the radiation is very small compared wit11 the shortest reciprocal lattice vector, 
and therefore it may usually be taken as zero. We are conccmed then with the 
real r '  and imaginary e" parts of the dielectric fi~nction at zero wavevector; 
E(W) = el(w) + ~E"(w), also written as q (w)  + ir,(w). 

However, the dielectric function is not directly accessible experimentally 
from optical measurcmcnts: the dlrectly accessible functions are the reflect- 
ance R(w), thc rcfractive index n(w), and the extinction coefficient K(w). Our 
first objective is to relate the experimentally observable quantities to the real 
and imaginary parts of the dielectric function. 

OPTICAL REFLECTANCE 

The optical measurements that give the fullest information on the elec- 
tronic system are mcasurcments of the reflectivity of light at norrrial incidence 
on single crystals. The reflectivity coefficient r(w) is a complex function de- 
fined at the crystal surface as the ratio of the reflected electric field E(rcf1) to 
the incident electric field E(inc): 

where we have separated the a n ~ ~ l i t u d e  p(w) and phase O(w) components of 
the reflectivity coefficient. 

The refractive index n(o)  and the extinction coefficient K(o) in the 
crystal are related to the reflectivity at normal incidence by 

as derived in Problern 3 by elementary consideration of the continuity of the 
components of E and B parallel to the crystal surface. By definition, n(o)  and 
K(w) are related to the dielectric functior~ r(w) by - n(w) + iK(w) = N(w) , (3) 



where N(w) is the complex refractive index. Do not confuse K(w) as used here 
with the symbol for a wavevector. 

If the incident traveling wave has the wavevector k, thcn the y component 
of a wave traveling in the x direction is 

The transmitted wave in the ~riedium is attenuated because, by the dispersion 
relation for electromagnetic waves, the wavevector in the medium is related to 
the incident k in vacuum by (n + i K ) k :  

Ey(trans) exp ([i[(n + iK)kx - w t ] )  = exp(-Kkx) exp[i(nkx - wt)] . ( 5 )  

One quantity measured in experiments is the reflectance R, defined as 
the ratio of the reflected intensity to the incident intensity: 

R = E*(refl)E(refl)/Ea(inc)E(inc) = rir = P2 . (6) 

It is difficult to measure the phase O(w) of the reflected wave, but we show 
below that it can be calculated from the measured reflectance R(o) if this is 
known at all frequencies. 

Once we know hoth R(o) and O(w), we can proceed by (2) to obtain n(w) 
and K(w). We use these in (3) to obtain ~ ( w )  = E'(o) + iel'(w), where ~ ' ( w )  and 
~ " ( w )  are the real and imagnary parts of the &electric fnnction. The inversion 
of (3) gives 

E'(w) = nL &? ; ;"(w) = 2nK . (7 )  

We now show how to find the phase O ( o )  as an integral over the re- 
flectance R(w); by a similar method we relate the real and imaginary parts of 
the dielectric function. In this way we can find everything from the experi- 
mental R(w). 

Kramers-Kronig Relations 

The Kramers-Kronig relations enable us to find the real part of the re- 
sponse of a linear passive system if we know the imaginary part of the response 
at all frequencies, and vice versa. They are central to the analysis of optical 
experiments on solids. 

The response of any linear passive system can be represented as the su- 
perposition of the responses of a collection of damped harmonic oscillators 
with masses M,. Let the response function a(w) = a '(w) + iuu(w) of the col- 
lection of oscillators be defined by 

where the applied force field is the real part of F, exp(-iwt) and the total dis- 
placement x = x, is the real part of x, exp(-iwt). From the equation of motion, 

I 
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we have the coniplex response function of the oscillator system: 

where the constaritsJ; = 1/M, and relaxation frcqllencies p, are all positive for 
a passive systern. 

If a(w) is the dielectric polarizahility of atoms in concentration n, then f 
has the form of an oscillator strength times ne'vm; s u d ~  a dielectric response 
function is said to be of the Kramers-Heisenberg form. The relations wc de- 
velop also apply to the electrical conductivity u(w) in Ohm's law, j, = u(o)E,. 

\C7e need not assume the specific form (9), but wc make ilse of three prop- 
erties of the response function viewed as a f~inction of the complex variable o .  
Any function wit11 the following propcrtics will satisfy the Kramers-Kronig 
relations (11): 

(a) The poles of a(w) are all helow the rcal axis. 
(b) The integral of a(w)/w vanishes when taken around an infinite semi- 

circle in the upper half of the complcx w-plane. It suffices that a(w) -+ 0 uni- 
for~nly as Iwl -+ m. 

(c) The function a'(@) is even and a"(@) is odd with respect to real w. 

Consider the Cauchy integral in thc form 

where P denotes the principal part of the integral, as discussed in the mathe- 
matical note that follows. The right-hand side is to he colnpleted by an integral 
over the semicircle at infinity in the upper half-plane, but urc have seen in (b) 
that this integral vanishes. 

We equate the real parts of (10) to ohtain 

In the last integral \VP s~ihstitute s for -p and use property (c) that a " ( - s )  = 

-aU(s);  this integral then becomes 

and we have, with 

1 1 - 2 s --+-------- 
s - w  s + w  s Z w 2  ' 



the result 

This is one of the Kramers-Kronig relations. The other relation follows on 
equating the imaginary parts of Eq. (10):  

1 " a"" '+ = -kP fff(s) - J ~ E U ~ ~ ]  a"(o) = -- p --- 
I - 2 - w  s - w  , s + o  

whence 

These relations are applied below to the analysis of optical reflectance data; 
this is their most important application. 

Let us apply the Kramers-Kronig relations to r ( w )  klewed as a response func- 
tion between the incident and reflected waves in (1) and (6). We apply (11) to 

to obtain the phase in terms of the reflectance: 

We integrate by parts to obtain a form that gives insight into the contribu- 
tions to the phase angle: 

Spectral regions in which the reflectance is constant do not contribute to the 
integral; further, spectral regions s 9 w and s w do not contribute milch be- 
cause the furictior~ 111 I(s + w)/(s - w)l is small in these regions. 

Mathematical Note. To obtain the Cauclly integral (10)  we take the inte- 
gral Ja(s)(s - w)-'rls over the contour in Fig. 2. The function a ( s )  is analytic in 
the tipper half-plane, so that thc value of the integral is zero. The contribution 
of segment (4) to the integral vanishes if the integrand a(s ) l s  + 0 is faster than 
1st-I as Is1 + m. For the response function (9) the integrand + 0 as Is13; and 
for the conductivity a ( s )  the integrand + 0 as ~ S I - ~ .  The segment (2) con- 
tributes, in the liriiit as u + 0, 
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to the integral, where s = w + u el0. The segments (1) and (3) are by definition 
the principal part of the  integral between -w and m. Because the  integral 
over (1) + (2) + (3) + (4) must vanish, 

EXAMPLE: Conductivity of Collisionless Electron Gas. Consider a gas of free 
electrons in the lirr~it as the collision frequency goes to zero. From (9) the response 
function is, with f = llrrb, 

by the Dirac identity. We confir111 that the delta function in (16) satisfies the Kramers- 
Kronig relation ( l l a ) ,  by which 

in agreement ~ r~ i th  (16). 
M7e obtain the electrical conductivity u(w) from the dielectric function 

where a ( ~ )  = xJ( - e )E ,  is thc response function. We use the equivalence 

for the Maxwell equation can be written either as c curl H = 4nu(o)E - iwE or as 
c curl H = -iue(o)E. We combine (16), (18), anrl (19) to find the conductivity of a 
collisionless electron gas: 

For collisionless electrons the real part of the conductivity has a delta function at o = 0. 



Electronic Interband Transitions 

It came as a sl~rprisc that optical spectroscopy developed as an important 
experimental tool for the determination of hand stmctl~re. First, the absorp- 
tion and reflection bands of crystals are broad and apparently featureless func- 
tions of the photon energy when this is greater than the band gap. Second, 
direct interband absorption of a photon fiw will occur at all points in the Bril- 
louin zone for which e n e r u  is consewed: 

where c is an empty band and v is a filled hand. The total ahsorption at givcn o 
is an integral over all transitions in the zone that satisfy (21). 

Three factors unraveled the spectra: 

The broad bands are not like a spectral line greatly broadened by damping, 
but the bands convey much intelligence which emerges when derivatives are 
taken of the rcflcctance (Fig. 3 ) ;  derivatives with respect to wavelength, 
electric field, temperature, prcssurc, or uniaxial stress, for example. The 
spectroscopy of derivatives is called modulation spectroscopy. 

I / fio. in e\' 

Figure 3 Comparison of (a) reflectance, (h) wavelength derivative reflectance (first derivative), 
and ( c )  electroreflectance (third derivative), of the spectral region in germanium between 3.0 and 
3.6 eV. iACLcr data by D. D. Scll, E. 0. Ka~ie, and D. E. .lspr~es.) 
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The relation (21) does not exclude spectral structure in a crystal, because 
transitions accumulate at frequencies for which the bands c, v are parallel- 
that is, at frequencies where 

At these critical points in k space the joint density of states D,(E, + 
ho)D,(~ , )  is singular, according to the same argument we used in (5.37) to 
show that the density of phonon modes D ( o )  is singular when V k o  is zero. 
The pseudopotential method for calculating energy bands helps identify the 
positions in the Brillouin zone of the critical points found in modulation 
spectra. Band-band energy differences can be calculated with an accuracy as 
good as 0.1 eV. The experimental results can then be fed back to give im- 
provements in the pseudopotential calculations. 

EXCITONS 

Reflectance and absorption spectra often show structure for photon 
energies just below the energy gap, where we might expect the crystal to be 
transparent. This structure is caused by the absorption of a photon with the 
creation of a bound electron-hole pair. An electron and a hole may be bound 
together by their attractive coulomb interaction, just as an electron is bound to 
a proton to form a neutral hydrogen atom. 

The bound electron-hole pair is called an exciton, Fig. 4. An exciton can 
move through the crystal and transport energy; it does not transport charge 

Figure 4a An exciton is a bound electron-hole pair, 
' usually free to move together through the crystal. In . . . . some respects it is similar to an atom of positronium, 

formed from a positron and an electron. The exciton . . . shown is a Mott-Wannier exciton: it is weakly bound, 
with an average electron-hole distance large in com- 

e . parison with the lattice constant. 

Figure 4b A tightly-bound or Frenkel exciton shown local- 
ized on one atom in an alkali halide crystal. An ideal Frenkel 
exciton will travel as a wave throughout the crystal, but the 
electron is always close to the hole. 



because it is electrically neutral. It is similar to positronillm, which is formed 
from an electron and a positron. 

Excitoris can be forrned in every insulating crystal. When the band gap is 
indirect, excitons near the direct gap may be unstable with respect to decay 
into a free electron and free hole. All excitons are unstabIe with respect to the 
illtimate recombination process in which the electron drops into the hole. Ex- 
citons can also form complexes, snch as a hiexciton from two excitons. 

We have seen that a free electron and free hole are created whenever a 
photon of energy greater than the energy gap is absorbed in a crystal. The 
threshold for this process is fcw > Eg in a direct process. In the indirect 
phonon-assisted process of Chapter 8 the threshold is lower by the phonon en- 
ergy h0.  But in the formation of excitons the energy is lowered with respect to 
these thresholds by the binding energy of the exciton, which may be in the 
range 1 meV to 1 eV, as in Table 1. 

Excitons can be formed by photon absorption at any critical point (22), for 
if Vke, = Vkec the group velocities of electron and hole are equal and the parti- 
cles may be bound by their coulomb attraction. Transitions leading to the 
formation of excitons below the energy gap are indicated in Figs. 5 and 6. 

The binding cncrgy of the exciton can be measured in three ways: 

In optical transitions from the valcncc band, by the difference between the 
energy required to create an exciton and the energy to create a free electron 
and free hole, Fig. 7. 
In recombination luminescence, by comparison of the energy of the free 
electron-hole recombination line with the energy of the exciton recombina- 
tion line. 
By photo-ionization of excito~ls, to form free carriers. This experinrent re- 
quires a high concentration of excitons. 

\Ye discuss excitons in two different limiting approximations, one by Frenkel 
in which the exciton is small and tightly hoiind, and the other by Mott and 
LYannier in which the exciton is weakly bound, w l t h  an electron-hole separation 
large in comparison with a lattice constant. Intermediate examples are known. 

Table 1 Binding energy of excitons, in meV 

Si 14.7 BaO 56. RbCl 440. 
Ge 4.15 InP 4.0 LiF (1000) 
GaAs 4.2 InSb (0.4) AgBr 20. 
Gap 3.5 KT 480. Ag Cl 30. 
CdS 29. KC1 400. TIC1 11. 
CdSe 15. KBr 400. TlBr 6. 

Data asscmblcd by Frcdcrick C. Brown and Arnold Schmidt. 
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Figure 5 Exciton levels in relation to the conduction band edge, for a simple band structure with 
both conduction and valence band edges at k = 0. An exciton can have translational kinetic en- 
ergy. Excitons are unstable with respect to radiative recombination in which the electron drops 
into the hole in the valence band, accompanied by the emission of a photon or phonons. 

Figure 6 Energy levels of an exciton created in a direct process. Optical transitions from the top 
of the valence band are shown by the arrows: the longest arrow corresponds to the energy gap. 
The binding energy of the exciton is E,, referred to a free electron and fiee hole. The lowest fre- 
quency absorption line of the crystal at absolute zero is not E,, but is Eg - E,. 

Frenkel Excitons 

In a tightly bound exciton (Fig. 4b) the excitation is localized on or near a 
single atom: the hole is usually on the same atom as the electron although the 
pair may be anywhere in the crystal. A Frenkel exciton is essentially an excited 
state of a single atom, but the excitation can hop from one atom to another by 
virtue of the coupling between neighbors. The excitation wave travels through 
the crystal much as the reversed spin of a magnon travels through the crystal. 

The crystalline inert gases have excitons which in their ground states cor- 
respond somewhat to the Frenkel model. Atomic krypton has its lowest strong 
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Figure 7 Effect of an exciton level on the optical ahsnrptinn of a semiconductor for photons of 
energy near the band gap E p  in gallium arsenide at 21 K. The vertical scale is the intensity absorp- 
tion coefficient a ,  as in I(r) = I ,  exp(-ax). Thc cnergy gap and exciton binding energy are 
dcduced fro111 the shape of the ahsorptinn cnrvo: the gap E, is 1.521 eV and the exciton binding 
energy i s  0.0034 eV (After M. D. Sturge,) 

atomic transition at 9.99 eV. Thc corresponding transition in the crystal is 
closely equal and is at 10.17 e\7, Fig. 8. The encrgygap in the crystal is 11.7 eV, 
so the exciton ground state energy is 11.7 - 10.17 = 1.5 eV, referred to a free 
electron and free hole separated and at rest in the crystal. 

The trar~slational states of Frenkel excitons have the form of propagating 
waves, like all other excitations i ~ i  a structure. Consider a crystal of 
N atoms on a line or ring. If uj is the ground state of atomj, the ground state of 
the crystal is 

if interactions between the atoms arc ncglected. If a single atom j is in an 
excited state u,, the system is described by 

This function has the same energy as the function cpi with any other atom I ex- 
cited. However, the functions cp that describe a single excited atom and 
N - 1 atoms in their ground state are not the stationary quantum states of the 
prohlem. If there is any interaction between an excited atom and a nearby 
atom in its ground state, the excitation energy will be passed from atom to 
atom. The eigenstates will have a wavelike form, as we now show. 
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Figure 8 Absorption spectrum of solid krypton at 20 K. (Atter G. Balhnl.) 

\he11 the ha~niltonian of the systcm operates on the function (oJ with the 
jtf~ atom excited, we obtain 

where E is the free atom excitation energy-; the interaction T measures the rate 
of transfer of the excitation from j to its nearest neighbors, j - 1 and 
j + 1. The solutions 01 (25) are waves of the Bloch form: 

$k = 2 exp(qka) q 
j 

To see this we let X operate on qhk: 

from (25). We rearrange the right-hand sidc to ohtain 

XJI, = 2 eqk"[c + ~(e"'  + e-'b)]q = ( E  + 2T cos ka)$k , 
J 

(28) 

so that the energy cigenvalues of the problem are 

Ek=e+2Tcoskn , 
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Figure 9 Energy versus wavevector for a Frenkel exciton, calculated with pos~t~vc nearest- 
neighbor tra~lsfcr illteractio~l 'I: 

as in Fig. 9. The application of periodic boundary conditions determines the 
allowed values of the wavevector k: 

Alkali Halides. In alkali halide crystals the lowest-enera excitons are local- 
ized on the negative halogen ions, as in Fig. 4b. The negative ions have lower 
electronic excitation levels than do the positive ions. Pure alkali halide crystals 
are transparent in the visible spectral region, which means that the exciton en- 
ergies do not lie in the visible, but the crystals show considerable excitonic 
absorption structure in the vacuum ultraviolet. 

A doublet structure is particiilarly e\.ident in sodium bromide, a structure 
similar to that of the lowest excited state of the krypton atom-which is iso- 
electronic with the Br- ion of KBr. The splitting is caused by the spin-orbit in- 
teraction. These excitons are Frenkel excitons. 

Molecular Crystals. In lnolecular crystals the covalent binding within a 
molecule is strong in comparison with the van der Waals binding between mol- 
ecules, so that thc excitons are Frenkel excitons. Electronic excitation lines of 
an inchvidual molecule appear in the crystalline solid as an cxciton, oftcn with 
little shift in frequency. At low temperatures the lines in the solid are qnite 
sharp, although there may be more structure to the lines in the solid than in 
the molecule because of the Davydov splitting, as discussed in Problem 7. 
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Weakly Bound (Mott-Wannier) Excitons 

Consider an electron in the conduction band and a hole in the valence 
band. The electron and hole attract each other by the coulomb potential 

(CGS) U(r) = -e%r , (31) 

where r is the distance between the particles and E is the appropriate dielec- 
tric constant. (The lattice polarization contribution to the dielectric constant 
should not be included if the frequency of motion of the exciton is higher than 
the optical phonon frcqucncies.) There will be bound states of the exciton sys- 
tem having total energies lower than the bottom of the conduction band. 

The problem is the hydrogen atom problem if the energy surfaces for the 
electron and hole are spherical and nondegenerate. The energy levels referred 
to the top of the valence band are given by a modified Rydberg equation 

(CGS) 

Here n is the principal quantu~n number and p is the reduced mass: 

formed from the effective Inasses m,, inh of the electron and hole. 
The excitor~ ground state energy is obtained on setting n = 1 in (32); this 

is the ionization energy of the exciton. Studies of the optical absorption lines 
in cuprous oxide, Cu20, at low tcmpcratures give results for the exciton level 
spacing in good agrcement with the Rydberg equation (32) except for transi- 
tions to the state n = 1. An empirical fit to the lines of Fig. 10 is obtained with 
the relation v(cm-') = 17,508 - (8001n". Taking c = 10, we find p -0.7 m 
from the coefficient of lln2. The constant term 17,508 cm-' corresponds to an 
energy gap E,, = 2.17 eV. 

Ezciton Condensation into Electron-Hole Drops (EHD) 

A condensed phase of an electron-hole plasma forrris in Ge and Si when 
maintained at a low temperature and irradiated by light. The following sequence 
of events takes place when an electron-hole drop (EHD) is formed in Ge: The 
absorption of a photon of energy hw > Eg produces a free electron and free hole, 
with hug11 efficiency These combine rapidly, pcrhaps in 1 ns, to form an exciton. 
The exciton inay decay with annihilation of the e-h pair with a lifetime of 8 ps. 

If the exciton conccntration is s~ifficiently high-over 1013 cm-3 at 2 K- 
most of thc cxcitons will condense into a drop. The drop lifetime is 40 ps, but 
in strained Ge may be as long as 600 ps. \\'ithi11 the drop the excitons dissolve 
into a degenerate Fermi gas of electrons and holes, with metallic properties: 
this state was predicted by L. V. Keldysh. 



Figure 10 Logarithm of the optical transmission versus photon energy in cuprous oxide at 77 K, 
showing a series oT exciton lincs. Notc that 011 t l~e  vertical axis the logarithm is plotted decreasing 
upward; thus a peak cnrresponds to absorption. The hand gap Ep is 2.17 el'. (After l'. W. Uaumeister.) 

FE 
EHD 

I I I I I 

Figure 11 Recombination radiation of free electrons uith holes and of electron-hole drops in Ge 
at 3.04 K .  The Fermi energy in the drop is E ,  and the cohesive energy of the drop with respect to a 
frcc cxciton is 9,. (After T. K. Lo.) 

Figure 11 sliows the reconibination radiation in Ge from free excitons 
(714 meV) and from the EHD phase (709 meV). The of the 714 meV 
line is accounted for by Doppler broadening, and the width of the 709 meV 
line is compatible with the kinetic cncrgy distribution of electrons and holes in 
a Fermi gas of concentration 2 x 10" Figure 12 is a photograph of a 
large EHD. 
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Figure 12 Photograph of an electron-hole drop in a 4 mm disk of pure germanium. The drop is 
the intense spot adjacent to the set screw on the left of the disk. The photograph is the image of 
the drop obtained by focusing its electron-hole recombination luminescence onto the surface of 
an infrared-sensitive camera. (After J. P. Wolfe et al.) 

'4verage concentration, all phases, p;~irs/cm3 

Figure 13 Phase diagram for photoexcited electrons and holes in unstressed silicon. The diagram 
shows, for example, that with an average concentration near 1017 cm-3 at 15 K, a free-exciton gas 
with saturated-gas concentration of 1016 cm-3 coexists with a (variable) volume of liquid droplets, 
each with a density of 3 X 10'' cm-! The liquid critical temperature is about 23 K. Theoretical and 
experimental values for the metal-insulator transition for excitons are also shown. (From J. P. Wolfe.) 



Table 2 Electron-hole liquid parameters 

Crystal Binding energy relative Concentration, Critical 
(unstressed) to free exciton, in meV n orp, in cm-3 temperature in K 

Conrtesy of D. Bimberg. 

The exciton phase dlagram for silicon is plotted in the temperature- 
concentration plane in Fig. 13. The exciton gas is insulating at low pressures. 
At high pressures (at the right of the diagram) the exciton gas breaks up into a 
conducting plasma of unpaired electrons and holes. The transition from exci- 
tons to the plasma is an example of the Mott transition, Chapter 14. Further 
data arc givcn in Tahle 2. 

RAMAN EFFECT IN CRYSTALS 

Raman scattering involves two photons-one in, one out-and is one step 
more complex tlran the one  hoto on processes treated earlier in this chapter. In 
the Haman effect a is scattered inelastically by a crystal, with creation 
or annihilation of a phonon or magnon (Fig. 14). The process is identical to the 
inelastic scattering of x-rays and it is similar to the inelastic scattering of 
neutrons by a crystal. 

The selection rules for the first-order Raman effect are 

where w, k refer to the inciderit photon; w', k' refer to the scattered photon; 
and a, K refer to the phonon created or destroyed in the scattering event. In 
the second-order Raman effect, hvo phonons are involved in the inelastic 
scattering of the photon. 

The Raman effect is made possible by the strain-dependence of the elec- 
tronic polarizahility. To show this, we suppose that the ~olarizability cr associ- 
ated with a phonon mode may he written as a power series in the phonon 
amplitude u: 

If u(t) = u, cos Ot and the incident clcctric field is E ( t )  = E ,  cos wt, then the 
induced elcctric dipole moment has a component 

aiEouo cos wt cos Ot = ~ a , ~ , u ~ [ c o s ( w  + O)t + cos(w - O)t] . (36) 
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Stokes 

Figure 14 Raman scattering of a 
photon with emission or absorp- 
tion of a phonon. Similar processes 
occur with Inagnons (spin waves). 

Thus photons at freq~iencies o + 0 and o - 0 can be emitted, accompanied 
by absorption or emission of a phonon of frequency 0. 

Thc photon at o - 0 is called the Stokes line and that at w + 0 is the 
anti-Stokes line. The intensity of the Stokes line involves the matrix element 
for phonon creation, which is just the matrix element for the harmonic oscilla- 
tor, as in Appendix C: 

where nK is the initial l~opi~lation of phonon niode K. 
The anti-Stokes line involves phonon annihilation, with a photon intensity 

proportional to 

~ ( o  + a) a J(nK - 1 Ju InK) l2 YLK (38) 

If the phonon population is initially in thermal equilibrium at temperature 
T, the intensity ratio of the two lines is 

with ( 7 1 ~ )  given by the Planck distribution function ll[exp(fiO/kBT) - I]. We 
see that the relativc intensity of the anti-Stokes lines vanishes as T + 0, be- 
cause here therc are no thermal phonorls available to be annihilated. 

Observations on the K = 0 optical phonon in silicon are shown in Figs. 15 
and 16. Silicon has two identical atoms in the primitive cell, and there is no 
electric dipole momerlt associated with the primitive cell in the absence of 
deformation by phonons. But a f l~  does not vanish for silicon at K = 0, so that 
we can observe the mode by first-order Raman scattering of light. 

The second-ordcr Raman effect arises f ro~n the term a2u2 in the polariz- 
ability. Inelastic scattering of light in this order is accompanied by the creation 
or two phonons, or the absorption of two phonons, or the creation of one and 
tbc absorption of another phonon. The phonons may have different frequen- 
cies. The intensity distribution in thc scattered photon spectrum may be quite 
complicated if there are sevcral atoms in the primitive cell because of the 



Raman shift, cm-' 
Figure 15 First-order Raman spectra of the K = 0 
optical mode of a silicon crystal observed at three 
temperatures. The incident photon has a wavelength 
of 5145 A. The optical phonon frequency is equal to 
the frequency shift; it depends slightly on the temper- 
ature. (After T. R. Hart, R. L. Aggarwal, and B. Lax.) 

1LF 
200 400 600 800 

Temperature, in K 

Figure 16 Intensity ratio of anti-Stokes to Stokes 
lines as a function of temperature, for the obser- 
vations of Fig. 15 on the optical m ~ d e  of silicon. 
The observed temperature dependence is in good 
agreement with the prediction of Eq. (39): the 
solid curve is a plot of the function exp(-Afl/kBT). 
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Raman shift, cm" 

Figure 17 Raman spectrum of Gap at 20 K. The two highest peaks are the first-order Raman 
lines associated with the excitation of an LO phonon at 404 cm-I and a TO phonon at 366 cm-'. 
All the other peaks involve two phonons. (After M. V. Hohden and J. P. Russell.) 
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corresponding number of optical phonon modes. Second-ordcr Raman spectra 
have been observed and analyzed in numerous crystals. Measurements on 
gallinm phosphide (Gap) are shown in Fig. 17. 

Electron Spectroscopy with X-Rays 

The next degree of complexity in optical processes involves a photon in 
and an electron out of the solid, as in Fig. 1. Two important techniques are 
x-ray photoemission from solids (XPS) and ultraviolet photoemission (UPS). In 
solid state physics they are used in band structure studies and surface physics, 
including catalysis and adsorption. 

XPS and UPS spectra can be compared directly with valence band densi- 
ties of states D(E) .  The specimen is irradiated with highly monochromatic 
x-rays or ultraviolet photons. The photon is absorbed, with the emission of a 
photoelectron whose kinetic energy is equal to the energy of the incident pho- 
ton minus the binding energy of the electron in dle solid. The electrons come 
from a thin layer near the surface, typically 50 A in depth. The resolution of 
thc best XPS spectrometer systems is less than 10 me\', which permits refined 
studies of band structure. 

The valence band structure of silver is shown by Fig. 18, with the zero of 
energy set at the Fermi lel~el. Electrons in the first 3 eV below the Fermi level 
come from the 5s conduction band. The strong peak with structure below 3 eV 
is from the 4d valencc electrons. 

Excitations are also seen from deeper levels, often accompanied by excita- 
tion of plasmons. For example, in silicon the 2p electron with a binding energy 
close to 99.2 eV is observed in replica at 117 eV with single plasmon excitation 
and at 134.7 eV with two plas~non excitation. The plasmon energy is 18 eV. 

9 5 0 Figure 18 Valence-band elcctron emission from 
Binding energy, eV silver, after S~egbahn and co-workers 



ENERGY LOSS OF FAST PARTICLES IN A SOLID 

So far we have nsed photons as probes of the electronic structure of solids. 
We can also use electron beams for the same pilrpose. Thc rcsults also involve 
the dielectric function, now through the imaginary part of 1/e(w). The dielcc- 
tric function enters as Im{~(w)]  into the energy loss by an electromagnetic 
wave in a solid, but as -In~{l/e(w)] into the energy loss by a charged particle 
that penetrates a solid. 

Consider this diffcrence. The general result from electromagnetic theory 
for the power dissipation density by diclcctric losses is 

per unit volume. With a transverse electromagnetic wave Ee-'"' in the crystal, 
we have dD/dt = -iw ~(w)Ee-"', whence the time-average power is 

1 1 = - WE~((E"COS wt - e'sin wt)cos o t )  = - we"(w)E2 , 
471 87r (41) 

proportional to e"(w). The tangential component of E is continuous across the 
boundary of the solid. 

If a particle of charge e and velocity 1; enters a crystal, the dielectric dis- 
place~nerit is, by standard texts, 

because by the Poisson equation it is D, and not E, that is related to the free 
charge. In an isotropic medium the Fourier component E(w,k) is related to 
the Fourier conlponent D(w,k) of D(r,t) by E(w,k) = D(w,k)/e(w,k). 

The time-average power dissipatiorl associated with this Fourier compo- 
nent is 

-- - 47r I w D2(w,k)([(t)' cos wt + ( t )  sin wt],-sin wll) , 

whence 
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Figure 19 t"(o) for Cu and Au; the bold lines are from energy loss r~~easurcrncnts by J. Daniels, and 
the other lines were dau l a t ed  from optical measurements by D. Beaglehole, and L. R. Cm~firld ct d. 

The result is the motivation for the introduction of the energy loss function 
-I~n(l/c(w,k)} and it i s  also a motivation for experinlents on energy losscs hy 
fast electrons in thin films. 

If thc dielectric function is indepelldellt of k: the power loss is 

where fiko is the maximum possible lllolnentum transfcr from the primary par- 
ticle to an electron of the crystal. Figure 19 shows the excellent experimental 
agreement between values of E"(w) deduced from optical reflectivit\. measure- 
ments with values deduced from electron energy loss measure~nents. 

SUMMARY 

The Kramers-Kronig relations connect the real and imagnay parts of a 
responsc fi~nction: 

The complex refractive index N(w) = n(o )  + iK(w), where n is the refrac- 
tive index and K is the extinction coefficient; further, ~ ( w )  = N2(w), whence 
e f (u )  = 71' - f? and ~ " ( 0 )  = 2nK. 

The reflectance at normal incidcncc is 



The  energy loss function - In~{l /e(w))  gives the  energy loss by a charged 
particlc moving in a solid. 

Problems 

1 .  Causality and the response function. The Kramers-Kronig relations are consis- 
tent with the principle that an effect not precede its cause. Consider a delta- 
function force applied at time t = 0: 

whence F ,  = 112.x. (a) Show by direct irrtegration or by use of the KK relations that 
the oscillator response fur~ctiorr 

gives zero displacernent, r( t)  = 0, for t < 0 under the above force. For t < 0 
the contour integral rnay be completed by a semicircle in the upper half-plane. 
(h) Evahrate x(t) for t > 0. Note that a ( w )  has poles at - $p2)"2 - iiP, both 
in the lower half-plane. 

2. Dissipation sum rule. B y  comparison of cr'(w) from (9) and from (114 in the limit 
w + m ,  shou~ that the following sum rule for the oscillator strengths must hold: 

3. Rejlection at normul incidence. Consider an electromagnetic wave in vacuum, 
with field components of the form 

Let the wave be incident upon a medium of dielectric constant E and permeability 
r = 1 that fills the half-space x > 0. Show that the reflecthltp coefficient r(w) as 
defined by E(refl) - r(o)E(inc) is given by 

where n + iK = E"', with n and K rcal. Show further that the reflectance is 

'4. Conductioity sum rule and superconductioity. We write the electrical con- 
ductivity as u(w) = u'(w) + iu"(w), where a', u" are real. (a) Show by a Kramers- 
Kronig relation that 

'This problem is somewhat difficult. 



15 Optical Processes and Excitons 451 

This result is used m the theory of ~~~pcrconductivity. If at very high frequencies 
(such as x-ray frequencies) u " ( w )  is identical for the superconducting and normal 
states, then we must have 

But at frequencies 0 < w < w, within the supcrconducting energy gap the real part 
of the conductivity of a superconductor vanishes, so that in this region the integral 
on the left-hand side is lower by = rrbwr. Thcrc must be an additional contribution 
to aj to balance this deficiency. (b) Show that if ul(w < wg) < uh(w < mg), as is ob- 
served experimentally, then c:(w) car1 lrave a dclta function contribution at w = 0, 
and from the delta function there is a contribution uC(o) = ub o$w. The delta 
fnnction corresponds to infinite conductivity at zero frequency. ( c )  By elementary 
consideration of the classical motion of corrdl~ction clcctrons at very high frequen- 
cies, show that 

(CGS) I,: uf(w) tiw = me2/zm , 

a rrs~llt round by Ferrell and Glover. 

5.  Dielectric constant and the semiconductor energy gap. Thc effect on ~ " ( w )  
of an energy gap wg in a semiconductor may be approximated very roughly by 
sobstitnting $S(w - wg) for B(w) in the response function (Ifi); that is, we take 
E"(w) = (2me2/mw)nS(w - wg). This is crude because it puts all the absorption at 
tlir gall freqnency. The factor 1W enters as soon as we move the delta function 
away fro111 the origin, bccause the integral in the sum rule of Problem 2 starts at the 
origin. Show that thc rcal part of the dielectric constant on this irrodel is 

It follows that the ~ta t ic  dielectric constant is ~ ' ( 0 )  = 1 + wk/w;, widcly used as a 
rule of tliurrrh. 

6.  Hagen-Rubenn relation for infrared reflectivity of metols. The complex refrac- 
tive index n + iK of a rnctal for w~ < 1 is given by 

where ug is the conductivity for static fields. \.Vc assume here that intraband 
currents are dominant; interband transitions are neglected. Using the result of 
Problem 3 for the reflection coefficient at norn~al incidence, show that 

~~rovirled that uo S w.  This is the Hagen-Rubens relation. For sodium at room 
temperai~irc, uo = 2.1 X 10" sC1 in CGS and T = 3.1 X 10-14 s, as deduced from 



T = uOrn/neZ. Radiation of 10 pm has w = 1.88 X 1014 s-', so that the Hagen- 
Rubens result should apply: R = 0.976. The result calculated from experimental val- 
ues of n and K is 0.987. Hint: If uo * w ,  then n2 = Kt. This simplifies the algebra. 

'7. Daoydoo splitting of exciton lines. The Frenkel exciton band of Fig. 9 is doubled 
when there are two atoms A, B in a primitive cell. Extend the theory of Eqs. (25) to 
(29) to a linear crystal AB.AB.AB.AB. with transfer integrals T ,  between AB and T, 
between B.A. Find an equation for the two bands as functions of the wavevector. 
The splitting between the bands at k = 0 is called the Daydov splitting. 

'This problem is somewhat difficult. 
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NOTATION: E,  = 10~/47rc~ ; 

(CGS) D = E + 4n-P = EE = ( 1  + 4 v ) E  ; 

= 1.9 x 10-18 esu-cm 

Figure 1 The permanent dipole moment of a molecule of water has the 
magnitude 1.9 X lo-'' esu-cm and is directed from the 0'- ion toward 
the midpoint of the line connecting the H+ ions. (To convert to SI units, 
multiply p by f X lo".) 

Figure 2 Electrostatic potential and field components in CGS at position r,  0 for a dipole p 
directed along the z axis. For 0 = 0, we have E, = Ey = 0 and E, = 2p/r3; for 0 = ~ / 2  we have 
Ex = Ey = 0 and E ,  = TO convert to SI, replace p by pl47rq,. (After E. M .  Purcell.) 



First we relate the applied electric field to the internal electric field in a 
dielectric crystal. The study of the electric field within dielectric matter arises 
when we ask: 

What is the relation in the material between the dielectric polarization P 
and the macroscopic electric field E in the Maxwell equations? 
What is the relation between the dielectric polarization and the local 
electric field which acts at the site of an atom in the lattice? The local field 
determines the dipole moment of the atom. 

Maxwell Equations 

Polarization 

The polarization P is defined as the dipole moment per unit 
volume, averaged over the volume of a cell. The total dipole moment is 
defined as 

where r, is the position vector of the charge q,. The value of the sum will be 
independent of the origin chosen for the position vectors, provided that the 
system is neutral: Let ri = r, + R; then p = Xq,rL = RXq, + Zq,r, = Zqnr,. 
The dipole moment of a water molecule is shown in Fig. 1. 

The electric field at a point r from a dipole moment p is given by a stan- 
dard result of elementary electrostatics: 

3 ( p .  r)r - pp 
(CGS) E(r) = 

15 

The lines of force of a dipole pointing along the z axis are shown in Fig. 2 



MACROSCOPIC ELECTRIC FIELD 

One contribution to the electric field inside a body is that of the applied 
electric field, defined as 

where e ( r )  is the microscopic electric field at the point r. The field E is a 
much smoother quantity than the microscopic field e. \.Ve could well have 

E, = field produced by fxed charges external to the body . 

written the dipole field (2) a. e(r) because it is a microscopic urisrnoothed 
field. 

\Ve call E the macroscopic electric field. It is adequate for all problems 
in the electrodylla~nics of crystals provided that we know thc connection be- 
tween E, the polarization P, and the current density j, and provided that thc 
wavelengths of interest are long in comparison with the lattice spacing.' 

To find the contribution of the polarization to the macroscopic field, we 

(3) 

can simplify the sum over all the dipoles in the specimen. By a famous theo- 
rem of electrostaticsZ the macroscopic electric field caused by a uniform polar- 

The other contribution to the electric field is the sum of the fields of all 
charges that constitute the body. If the body is neutral, the contribution to the 
average field may be expressed in terms of the sum of the fields of atomic 
dipoles. 

We define the average electric field E(r,) as the average field over t he  
volume of t h e  crystal cell that contains the lattice point r,: 

ization is equal to the electric field in vacuum of a fictitious surface charge 

'A detailed derivation oC thc Maxwell equations fur the macroscopic fields E and B, starting 
from the Maxlvell equations in terms of the microscopic fields e and h, is given by E. M. Purcell, 
Elsrtrlcit!y and magnetism, 2nd ed., McGrawHill, 1985. 

'The electrostatic potential in CGS units of a dipole p is ~ ( r )  = p . grad(1ir). For a volume 
distribution of polarization P we have 

which by a vcctor identity becomes 

If P is constant, then div P = 0 and by the Gaurs theorem we have 

where udS is an element of charge on the surface of the body. This completes the proof. 
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Figure 3 (a) A uniformly polarized dielectric slab, with the polarization vector P normal to the 
plane of the slab. (b) A pair of uniformly charged parallel plates which give rise to the identical 
electric field E, as in (a) The upper plate has the surface charge density u = +P, and the lower 
plate has u = -P .  

density u  = fi . P on the surface of the body. Here fi is the unit normal to the 
surface, drawn outward from the polarized matter. 

We apply the result to a thin dielectric slab (Fig. 3a) with a uniform vol- 
ume polarization P. The electric field El(r)  produced by the polarization is 
equal to the field poduced by the fictitious surface charge density u  = fi . P 
on the surface of the slab. On the upper boundary the unit vector ii is directed 
upward and on the lower boundary fi is directed downward. The upper bound- 
ary bears the fictitious charge u  = fi . P = P per unit area, and the lower 
boundary bears -P per unit area. 

The electric field E l  due to these charges has a simple form at any point 
between the plates, but comfortably removed from their edges. By Gauss's law 

(CGS) E, = -4~1~1 = - 4 ~ p  ; ( 4 4  

We add E, to the applied field E, to obtain the total macroscopic field 
inside the slab, with i the unit vector normal to the plane of the slab: 

We define 

E, = field of the surface charge denisty fi . P on the boundary . 

This field is smoothly varying in space inside and outside the body and satisfies 
the Maxwell equations as written for the macroscopic field E. The reason E l  is 
a smooth function when viewed on an atomic scale is that we have 
replaced the discrete lattice of dipoles pi with the smoothed polarization P. 



Depolariaation Field, El  

If the polarization is uniform within the body, the only contributions to the 
macroscopic field are from E, and El: 

Here Eo is the applied field and El is the field due to the uniform polarization. 
The field E,  is called the depolarization field, for within the body it 

tends to oppose the applied field E, as in Fig. 4. Specimens in the shape of 
ellipsoids, a class that includes spheres, cylinders, and discs as limiting forms, 
have an advantageous property: a uniform polarization produces a uniform de- 
polarization field inside the body. This is a famous mathematical result demon- 
strated in classic texts on electricity and magnet i~m.~ 

If P,, Py, P, are the components of the polarization P referred to the principal 
axes of an ellipsoid, then the components of the depolarization field are written 

Here N,, N,, Nz are the depolarization factors; their values depend on the 
ratios of the principal axes of the ellipsoid. The N's are positive and satisfy the 
s u m r n l e N , + N y + N z = 4 ~ i n C G S , a n d N , + N y + N z = 1 i n S I .  

Values of N parallel to the figure axis of ellipsoids of revolution are plotted 
in Fig. 5. Additional cases have been calculated by Oshorn4 and by Stoner. In 
limiting cases N has the values: 

Shape Axis 

Sphere 4 ~ / 3  113 
Thin slab normal 4 ~  1 
Thin slab in plane 0 0 
Long circular cylinder longitudinal 0 0 
Long circular cylinder transverse 271 1/2 

We can reduce the depolarization field to zero in two ways, either by working 
parallel to the axis of a long fine specimen or by making an electrical connection 
between electrodes deposited on the opposite surfaces of a thin slab. 

3R. Becker, Electromagneticfields and interactions, Blaisdell, 1964, pp. 102-107. 
'J. A. Osborn, Phys. Rev. 67,351 (1945); E. C. Stoner, Philosophical Magazine 36,803 (1945). 
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CGS SI 

Figure 4 The depolarization field El is op- 
posite to P. The fictitious surface charges are 
indicated: the field of these charges is El 
within the ellipsoid. 

Figure 5 Depolarizatiou factor N 
parallel to the figure axis of ellip- 
soids of revolution, as a function 
of the axial ratio c/a. 

A uniform applied field E, will induce uniform polarization in an ellipsoid. 
We introduce the dielectric susceptibility x such that the relations 

(CGS)  P = XE : 

connect the macroscopic field E inside the ellipsoid with the polarization P. 
Here ,ysl = 4?rxccs 

If E,  is uniform and parallel to a principal axis of the ellipsoid, then 

(CGS)  E = E , + E , = E , - N P ;  

by (8), whence 

(CGS)  
X 

P = x(E, - NP) ; P = - 1 + N ~ ~ ~  ' 

The value of the polarization depends on the depoIarization factor N. 



LOCAL ELECTRIC FIELD AT AN ATOM 

The value of the local electric field that acts at the site of an atom is signif- 
icantly different from the value of the macroscopic electric field. We can con- 
vince ourselves of this by consideration of the local field at a site with a cubic 
arrangement of neighbors5 in a crystal of spherical shape. The macroscopic 
electric field in a sphere is 

. . . . , . .. , . - :.- . , . 
1 E = E,, + El = E,, - 3E, P ' 

by (10). 
But consider the field that acts on the atom at the center of the sphere 

(this atom is not unrepresentative). If all dipoles are parallel to the z axis and 
have magnitude p, the z component of the field at the center due to all other 
dipoles is, from (2), 

In SI we replace p by p/4rreO. The x, y, z directions are equivalent because of 
the symmetry of the lattice and of the sphere; thus 

whence = 0. 
The correct local field is just equal to the applied field, El,,,, = E,, for an 

atom site with a cubic environment in a spherical specimen. Thus the local 
field is not the same as the macroscopic average field E .  

We now develop an expression for the local field at a general lattice site, 
not necessarily of cubic symmetry. The local field at an atom is the sum of the 
electric field E, from external sources and of the field from the dipoles within 
the specimen. It is convenient to decompose the dipole field so that part of the 
summation over dipoles may be replaced by integration. 

We write 

'Atom sites in a cubic crystal do not necessarily have cubic syrnmetly. thus the 0'- sites in the 
barium titanate structure of Fig. 10 do not have a cubic environment. However, the Nat and C1- 
sites in the NaCl structure and the Cs+ and C1- sites in the CsCl structure have cubic symmetry 
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L E3 from dipoles 
inside sphere 

Figure 6 The internal electric field on an atom in a clystal is the sum of the external applied field 
E, and of the field due to the other atoms in the crystal. The standard method of summing the di- 
pole fields of the other atoms is first to sum individually over a moderate number of neighboring 
atoms inside an imaginary sphere concentric with the reference atom: this defines the field E,, 
which vanishes at a reference site with cubic symmetry The atoms outside the sphere can be 
treated as a uniformly polarized dielectric. Their contribution to the field at the reference point is 
El + E,, where El is the depolarization field associated with the outer boundary and E, is the 
field associated with the surface of the spherical cavity. 

Here 
E, = field produced by fixed charges external to the body; 
E, = depolarization field, from a surface charge density ii . P on the outer 

surface of the specimen; 
E, = Lorentz cavity field: field from polarization charges on inside of a 

spherical cavity cut (as a mathematical fiction) out of the specimen with the 
reference atom as center, as in Fig. 6; El + E, is the field due to uniform po- 
larization of the body in which a hole has been created; 

E, = field of atoms inside cavity. 
The contribution El + E, + E, to the local field is the total field at one 

atom caused by the dipole moments of all the other atoms in the specimen: 

and in SI we replace p, by p , / 4 ~ € ~ .  
Dipoles at distances greater than perhaps ten lattice constants from the 

reference site make a smoothly varying contribution to this sum, a contribu- 
tion which may be replaced by two surface integrals. One surface integral is 
taken over the outer surface of the ellipsoidal specimen and defines E,, as in 
Eq. (6). The second surface integral defines E2 and may be taken over 
any interior surface that is a suitable distance (say 50 A) from the reference 
site. We count in E, any dipoles not included in the volume bounded by 
the inner and outer surfaces. It is convenient to let the interior surface be 
spherical. 



Figure 7 Calculation of the field in a spherical cavity in Charge on ring = 

a uniformly polarized medium. 2.irasinB.adB.PcosB 

Lorentz Field, E, 

The field E,  due to the polarization charges on the surface of the fictitious 
cavity was calculated by Lorentz. If 0  is the polar angle (Fig. 7 )  referred to the 
polarization direction, the surface charge density on the surface of the cavity is 
-P cos 0 .  The electric field at the center of the spherical cavity of radius a  is 

4%- 
( c G S )  E ,  = /or(a-~)(2%-o sin @)(a  ~ o ) ( P  cos B ) (  cos 0 )  = -P ; 

3  (16)  

This is the negative of the depolarization field E ,  in a polarized sphere, so that 
E ,  + E, = 0 for a sphere. 

Field of Dipoles Inside Cavity, E, 

The field E, due to the dipoles within the spherical cavity is the only term 
that depends on the crystal structure. We showed for a reference site with 
cubic surroundings in a sphere that E,  = 0 if all the atoms may be replaced by 
point dipoles to each other. The total local field at a cubic site is, from 
(14)  and (16), 

This is the Lorentz relation: the field acting at an atom in a cubic site is the 
macroscopic field E of Eq. (7 )  plus 4?rP/3 or P / ~ E ,  from the polarization of the 
other atoms in the specimen. Experimental data for cubic ionic crystals sup- 
port the Lorentz relation. 
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DIELECTRIC CONSTANT AND POLARIZABILITY 

The dielectric constant of an isotropic or cubic medium relative to vac- 
uum is defined in terms of the macroscopic field E: 

Remember that x,, = 43-r,yCGs, by definition, but esI = cCGS. 
The susceptibility (9) is related to the dielectric constant by 

P E - 1  (CGS) , y = ~ = - .  
4 a  ' 

In a noncubic crystal the dielectric response is described by the components 
of the susceptibility tensor or of the dielectric constant tensor: 

The polarizability a of an atom is defined in terms of the local electric 
field at the atom: 

p = aE~ocd . (21) 

where p is the dipole moment. This definition applies in CGS and in SI, but 
as* = The polarizability is an atomic property, but the dielectric 
constant will depend on the manner in which the atoms are assembled to form 
a crystal. For a nonspherical atom a will be a tensor. 

The polarization of a crystal may be expressed approximately as the prod- 
uct of the polarizabilities of the atoms times the local electric field: 

where N, is the concentration and aj the polarizability of atomsj, and El,,(j) is 
the local field at atom sites j. 

We want to relate the dielectric constant to the polarizabilities; the result 
will depend on the relation that holds between the macroscopic electric field 
and the local electric field. We give the derivation in CGS units and state the 
result in both systems of units. 



If the local field is given by the Lorentz relation (17), then 

and we solve for P to find the susceptibility 

By definition = 1 + 47rx in CGS; we may rearrange (23) to obtain 

(CGS) - - - 
€ + 2  

the Clausius-Mossotti relation. This relates the dielectric constant to the 
electronic polarizability, but only for crystal structures for which the Lorentz 
local field (17) obtains. 

Electronic Polaritability 

The total polarizability may usually be separated into three parts: elec- 
tronic, ionic, and dipolar, as in Fig. 8. The electronic contribution arises from 
the displacement of the electron shell relative to a nucleus. The ionic contri- 
bution comes from the displacement of a charged ion with respect to other 
ions. The dipolar polarizability arises from molecules with a permanent elec- 
tric dipole moment that can change orientation in an applied electric field. 

Total polarizability (real part) 

I 
UHF to Ultra- 

ImicroWaveS 1 i m r a d  1 1 violet 1 

Figure 8 Frequency dependence of the several contributions to the polarizability. 
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In heterogeneons materials there is usually also an interfacial polarization 
arising from the accumulation of charge at structural interfaces. This is of little 
fundamental interest, but it is of considerable practical interest because com- 
mercial insulating materials are usually heterogeneo~is.~ 

The dielectric constant at optical frequencies arises almost entirely from 
the electronic polarizability. The dipolar and ionic contributions are small at 
high frequencies because of the inertia of the molecules and ions. In the opti- 
cal range (24) reduces to 

here we have used the relation n2 = e,  where n is the refractive index. 
By applyng (25)  to large numbers of crystals we determine in Table 1 em- 

pirical values of the electronic polarizabilities that are reasonably consistent 
with the observed values of the refractive index. The scheme is not entirely 
self-consistent, because the electronic polarizability of an ion depends 
somewliat on the environment in which it is placed. The negative ions are 
highly polarizable because they are large. 

Table 1 Electronic polarizabilities of atoms a n d  ions, i n  cm3 

Pauling 0.201 0.029 0.008 0.003 0.0013 

0'- F - Ne NaC ~ g ~ +  AP+ Si4+ 
Pauli~rg 3.88 1.04 0.390 0.179 0.094 0.052 0.0165 
JS-(TKS) (2.4) 0.858 0.290 

S2- CI- Ar Ki Ca2+ Se3+ Ti4+ 
Pauling 10.2 3.66 1.62 0.83 0.47 0.286 0.185 
JS-(TKS) (5.5) 2.947 1.133 (1.1) (0.19) 

se2- Br- Kr Rbt S?' y3 + Zr4+ 
Pauling 10.5 4.77 2.46 1.40 0.86 0.55 0.37 
JS-(TKS) (7.) 4.091 1.679 (1.6) 

Te2- I- Xe Csf Ba2+ ~ . 3 +  Ce4' 
Pauling 14.0 7.10 3.99 2.42 1.55 1.04 0.73 
JS-(TKS) (9.) 6.116 2.743 (2.5) 

Values from L. Pauling, Proc. K. Soc. London A114, 181 (1927); S. S.  Jaswal and T. P. 
Sharma, J. Phys. Chern. Solids 34, 509 (1973): and J. Tessman, A. Kahn, and \V. Shhackley, Phys. 
Rev 92, 890 (19.53). The TKS polarizabilities are at the frequcncy of the D lines of sodium. The 
valucs arc in CGS; to convert to SI, multiply by 9 X 

'For rcfcrc~~ces see D. E. Aspnes, Am. J .  Phys. 50, 704 (1982) 



Clossicol Theory of Electronic Polarizability. AII electron bound har- 
monically to an atom will show resonance absorption at a frequency wo = 

(Plm)'", where p is the force constant. The displacemcnt x of the electron 
occasioned by the application of a field El,, is given by 

so that the static electronic polarizability is 

The electronic polarizability will depend on frequency, and it is shown in 
the following example that for frequency w 

but in the visible region the frequency dependence (dispersion) is not usually 
very important in most tramparent materials. 

EXAMPLE:  Frequency dependence. Find the frerlue~rt:y dependence of the elec- 
tronic polarizalrility of an electror~ having tlre resorrarlce frequency wn, treating the sys- 
tem as a simple harrnonic oscillator. 

The equation of motion in the local electric field El,, sin wt is 

d2x nt- + moix  = -eEl,, sin wt , 
dt2 

so that, for x = x, sin wt, 

m(-w2 + wi)x, = -eEl,,, 

The dipole mnment has the amplit~~de 

from which (28) follows 

In quantum theory the expression corresponding to (28) is 

(CGS) 

whercf;, is called the oscillator strength of the electric dipole transition be- 
tween the atomic states i and j. Near a transition the polarizability changes 
sign (Fig. 8). 
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STRUCTURAL PHASE TRANSITIONS 

It is not uncommon for crystals to transfor111 fro111 one crystal structure to 
another as the temperature or pressure is varied. The stablc s t r~~cture  A at 
absolute zero generally has the lowest accessible internal energy of all the pos- 
sible structures. Even this selection of a structure A can he varied with appli- 
cation of pressure, because a low atomic volllme will favor closest-packed or 
even metallic structures. Hydrogen and xenon, for example, becor~ie rnetallic 
under extreme pressure. 

Some other structiire B may have a softer or lower frequency phonon 
spectrum than A. As the temperature is increased the phonons in B will be 
more highly excited (higher thermal average occupancies) than the phonons in 
A. Recanse the entropy increases with the occupancy, the entropy of B will be- 
come higher than the entropy of A as the temperature is increased. 

It is thereby possible for the stable structure to transfonn fro111 A to B as 
the temperature is increased. The stable structure at a temperature T is deter- 
n~ined by the minimum of the free energy F = U - TS. There will be a transi- 
tion from A to B if a temperature T, exists (below the nlelting point) such that 

FA(T,) = FLAT,). 
Often several structures have nearly the same intcrnal energy at absolute 

zero. The phonon dispersion relations for the structures may, however, be rather 
different. The phonorl energies are sensitive to the mrmber and arrangement of 
nearby atoms; these are the quantities that change as the structure is changed. 

Sorne structural phase transitions have only small effects on the macro- 
scopic physical properties of the material. However, if the transition is influ- 
enced by an applied stress, the crystal may yield nlechanically quite easily near 
the transition temperature because the relative proportions in the two phases 
will change under stress. Some other structural phase transitions may have 
spectacular effects on the macroscopic electrical properties. 

Ferroelectric transitions are a subgroup of structural phase transitions, a 
subgroup marked by the appearance of a spontaneous dielectric polarization in 
the crystal. Ferroelcctrics are of theoretical and technical interest bccause 
they often have nni~si ial l~ high and unusually temperature-dependent values 
of the dielectric constant, the piezoelectric effect, the pyroclcctric effect, and 
clectro-optical effects, including optical frequency doubling. 

FERROELECTRIC CRYSTALS 

A ferroelectric crystal exhibits an electric dipolc moment even in the ab- 
sence of an external electric field. In the ferroclectric state the center of posi- 
tive charge of the crystal does not coincide with the center of negative charge. 

The plot of polarization versus electric field for the ferroelectric state 
sltows a hysteresis loop. A crystal in a normal dielectric state usually does not 



Temperature ("C) 

Figure 9 The temperature variation of (a) thc dielectric constant E, (b) the pyroelectlic coeffi- 
cient dPldT, and ( c )  the specific heat c,, of PhTiO,. (After Remeika and Class.) 

show significant hysteresis when the electric field is increased and then re- 
versed, both slowly. 

Ferroelectricity usually disappcars ahove a certain temperature called the 
transition temperature. Above the transition the crystal is said to be in a para- 
electric state. The term paraelectric suggests an analogy with paramagnetism: 
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there is usually a rapid drop in the dielectric constant as the tenlperature 
increases. 

In some crystals the ferroelectric dipole nlonlent is not changed by an 
electric field of the maximum intensity which it is possible to apply before 
causing electrical breakdown. In these crystals we are often able to observe a 
change in thr spontaneoi~s moment when the temperature is changed (Fig. 9). 
Such cvstals are called pyroelectric. Lithium niobate, LiNbO,, is pyroelec- 
tric at room temperature. It has a high transition terr~perature (2; = 1480 K) 
and a high saturation polarizatio~~ (50 pC/c~n2). It can be "poled," which 
means giver1 a rerriarlerlt polarization, by an electric field applied over 1400 K. 

Classi$cation of Ferroelectric Crystals 

We list in Tablc 2 somc of the crystals commonly considered to be ferroelec- 
tric, along with the transition temperature or Curie point T, at which the crystal 
changes from the low-temperature ~olarized state to the high-tttlnperaturel-terrl~erature 
unpolarized state. Thermal motion tends to destroy the ferroelectric order. 
Some ferroelectric crystals lrave no Curie point because they melt before leaving 
the ferroelectric phase. The table also includes values of the spontaneous polar- 
ization P,?. Ferroelectric crystals may be classified into two main groups, order- 
disorder or displacive. 

One may dcfinc thc character of the transition in terms of the dynamics of 
the lowest frequency ("soft") optical phonon modes. If a soft mode can propa- 
gate in the crystal at the transition, then the transition is displacive. If the soft 
mode is only diffusive (non-propagating) t l~ere  is really not a phonon at all, 

Table 2 Ferroelectric crystal6 

To obtain the spontaneous polarization P, in the CGS unit of esu cm-" multiply the 
valuc givcn in PC. cm-2 by 3 X lo3. 

'I-. in K P,. in fiC: cm ', at T K 

KDP type KH,PO, 123 4.75 1961 
KD,PO, 213 4.83 [I801 
RbH,PO, 147 5.6 [go] 
KH2hs0, 97 5.0 

- 
[781 

GeTe 670 
TGS t p e  Tri-glycinr sulfate 322 2.8 [291 

Tri-glycine selenate 295 3.2 12831 
Perovskites BaTiO,, 408 26.0 12961 

KNbO? 708 30.0 15231 
PbTiO, 765 >50 [296] 
T.iTa0, 938 50 
LiNbO, 1480 71 [296l 



but is only a large amplitude hopping motion between the wells of the order- 
disorder system. Many ferroelectrics have soft modes that fall between these 
two extremes. 

The order-disorder class of ferroelectrics includes crystals with hydrogen 
bonds in which the motion of the protons is related to the ferroelectric 
properties, as in potassium dihydrogen phosphate (KH,PO,) and isomorphous 
salts. The substitution of deuterons for protons nearly doubles T,, although the 
fractional change in the molecular weight of the compound is less than 2 
percent: 

KH,P04 KD,PO, KH,AsO, KD,As04 
Curie temperature 123 K 213 K 97 K 162 K 

This extraordinarily large isotope shift is believed to be a quantum effect in- 
volving the mass-dependence of the de Broglie wavelength. Neutron diffraction 
data show that above the Curie temperature the proton distribution along the 
hydrogen bond is symmetrically elongated. Below the Curie temperature the 
lstribution is more concentrated and asymmetric with respect to neighboring 
ions, so that one end of the hydrogen bond is preferred by the proton over the 
other end, giving a polarization. 

The displacive class of ferroelectrics includes ionic crystal structures 
closely related to the perovskite and ilmenite structures. The simplest ferro- 
electric crystal is GeTe with the sodium chloride structure. We shall devote 
ourselves primarily to crystals with the perovskite structure, Fig. 10. 

Consider the order of magnitude of the ferroelectric effects in barium 
titanate: the observed saturation polarization P, at room temperature (Fig. 11) 

Figure 10 (a) The crystal structure of barium titanate. The prototype crystal is calcium titanate 
(perovskite). The structure is cubic, with ~ a ' +  ions at the cube corners, 02- ions at the face cen- 
ters, and a Ti4+ ion at the body center. (b) Below the Curie temperature the structure is slightly 
deformed, with Ba2+ and Ti4+ ions displaced relative to the 02- ions, thereby developing a dipole 
moment. The upper and lower oxygen ions may move downward slightly. 
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Temperature ('C) 

Figure 11 Spontaneous polarization projected on cube edge of barium titanate, as a function of 
temperature. (After W J. Merz.) 

is 8 X lo4 esu cm-'. The volume of a cell is (4 X = 64 X cm3, SO 

that the dipole moment of a cell is 

(CGS) p (8 X lo4 esu cm-')(64 X lo-" ~ m - ~ )  5 X lo-'' esu cm ; 

If the positive ions Ba2+ and Ti4+ were moved by 8 = 0.1 k with respect to the 
negative 0'- ions, the dipole moment of a cell would be 6e8 -̂. 3 X lo-'' esu 
cm. In LiNbO, the displacements are considerably larger, being 0.9 k and 0.5 k 
for the lithium and niobum ions respectively, giving the larger P,. 

DISPLACNE TRANSITIONS 

Two viewpoints contribute to an understanding of a ferroelectric displacive 
transition and by extension to displacive transitions in general. We may speak of 
a polarization catastrophe in which for some critical condition the polarization 
or some Fourier component of the polarization becomes very large. Equally, we 
may <peak of the condensation of a transverse optical phonon. Here the word 
condensation is to be understood in the Bose-Einstein sense (TP, p. 199) of a 
time-independent displacement of finite amplitude. This can occur when the 
corresponding TO phonon frequency vanishes at some point in the Brillouin 
zone. LO phonons always have higher frequencies than the TO phonons of the 
same wavevector, so we are not concerned with LO phonon condensation. 



In a polarization catastrophe the local electric field caused by the ionic 
displacement is larger than the elastic restoring force, thereby giving an asym- 
metrical shift in the positions of the ions. Higher order restoring forces will 
limit the shift to a finite displacement. 

The occurrence of ferroelectricity (and antiferroelectricity) in many 
perovskite-structure crystals suggests that this structure is favorably disposed 
to a displacive transition. Local field calculations make clear the reason for the 
favored position of this structure: the 0'- ions do not have cubic surround- 
ings, and the local field factors turn out to be unusually large. 

We give first the simple form of thc catashophc thcoly, supposing that the 
local field at all atoms is eqnal to E + 47rP/3 in CGS or E + P/3<, in SI. The 
theoty given now leads to a second-order transition; the physical ideas can be car- 
ried over to a first-order transition. In a second-order transition there is no latent 
heat; the order parameter (in this instance, the polarization) is not discorltiriuous 
at the transition temperature. In a first-order transition there is a latent heat; the 
order parameter changes discontinuously at the transition temperature. 

We rewrite (24) for the diclcctric constant in thc form 

where a, is the electronic plus ionic p~larizabilit~ of an ion of t,ype i and N ,  is 
the number of ions i per unit volume. The dielectric constant becomes infinite 
and permits a finite polarization in zero applied field when 

This is the condition for a polarization catastrophe. 
The value o f t  in (30) is sensitive to small departures of Z N,a, from the 

critical value 3/4z-. If we write 

(CGS) (4~/3)8N,(u, = 1 - 3s , (32) 

where s < 1, the dielectric constant in (30) becorries 

E = ~ / s .  (33) 

Slippose near the critical temperatures varies linearly with temperature: 

s = (T - T,)/< , (34) 

where (is a constant. Such a variation of s or X N,a* might come from normal 
thermal expansion of thc lattice. The dielectric constant has the form 

close to the ohserved temperature variation in the paraelectric state, Fig. 12. 
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loo' in (K)-1 
T - T ,  

Figure 12 Dielectric constant versus 1/(T - TJ in the paraelectric state (T > T,) of perovskites, 
after G. R~lpprecht and R.  0. Bell. 

Soft Optical Phonons 

The Lyddane-Sachs-Teller relation (Chaptcr 14) is 

The static dielectric constant increases when the transverse optical phonon fre- 
quency decreases. When the static dielectric constant ~ ( 0 )  has a high value, 
such as 100 to 10,000, we find that w, has a low value. 

When w, = 0 the crystal is unstable and ~ ( 0 )  is infinite because there is no 
effective restorirlg force. The ferroelectric BaTi03 at 24OC has a TO mode at 
12 cm-', a low frequency for an optical mode. 

If the transition to a ferroelectric state is first order, we do not find w,. = 0 
or ~ ( 0 )  = w at the transition. The LST relation suggests only that e(0) extrapo- 
lates to a singularity at a temperature To below T,. 

The association of a high static dielectric constant with a low-frequency 
optical mode is supported by experiments on strontium titanate, SrTiO,. 
According to the LST relation, if the reciprocal of the static dielectric constant 
has a temperature dependence l/<(O) (T - To), then the square of the 
optical mode frequency will have a similar temperature dependence: 
02, a (T - To), if w, is independent of temperature. The result for w$ is 
very well confirmed by Fig. 13. Measurements of w, versus 1' for another 
ferroelectric crystal, SbSI, are shown in Fig. 14. 



Temperahlre, K 

Figure 13 Plot of the square of the frequency of the zero wavevector transverse optical mode 
against temperature, fur SrTiO,, as ubserved in ncutron diffraction cxpcriolents by Cowley The bro- 
ken line is the reciprocal of the dielectric constant from the mea~nrem~nts  of Mitsni and Westphal. 

0 I I I I I I I 
160 140 120 100 80 60 40 20 0 

IT- T C ,  in K 

Figure 14 Decrease of a transverse phonon frequency as the Curie temperature is appruachcd 
from below, in the ferroelectric clystal antimony sulphoiodide, SbSI. (After Raman scattering 
experiments by C. H. Peny and D. K. Agrawal.) 

Landau Theory of the Phase Transition 

A ferroelectric with a first-order phase transition between the ferroelec- 
tric and the paraelectric state is distinguished by a discontirluous change of the 
saturation polarization at the transition temperature. The transition hctween 
the normal and superconducting states is a second-ordcr transition, as is the 
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transition hetween the ferromagnetic and paramagnetic states. In these transi- 
tions the degree of order goes to zero without a discor~tir~uous change as the 
temperature is increased. 

\'e can obtain a consistent formal thermodylamic theory of thc behavior 
of a ferroelectric crystal by considering thc form of the expansion of the en- 
ergy as a lunction of the polarization P. \Ve assnme that the ~ a n d a u '  free en- 
ergy density fi in one dimension may he expanded formally as 

where the coefficients g, depend on the temperature. 
The series does not contain terms in odd powers of P if the unpolarized 

crystal has a center of inversion syrrlnletry, but crystals are known in which odd 
powers are i~nportant. Power series expansio~ls of the Gee energy do not al- 
ways exist, for nonanalytic terms are known to occur. especially when very near 
a transition. For example, the transition in KH,P04 appears to have a logarith- 
mic singularity in the heat capacity at the transition, which is not classifiable as 
either first or second order. 

The value of P in thermal equilibrium is given by the minimum of k as a 
function of P; the value of k at this minirnurn defines the Helniholtz free en- 
ergy F ( T , E ) .  The equilibriu~r~ polarization in an applied electric field E satis- 
fies the extrernurrl condition 

In this section uTe assume that the specimen is a long rod with the external ap- 
plied field E parallel to the long axis. 

To obtain a ferroelectric state we must suppose that the coefficient of the 
term in P%n (37)  passes through zero at some temperature To: 

g, = y(T - To) > (39) 

whcrc y is taken as a positive constant and T,  may be equal to or lower than 
the transition temperature. h small positive value of g, means that the lattice is 
"soft" and is close to instability. A negative value of g, means that the unpolar- 
ized lattice is unstable. The variation of g, with temperature is accounted for 
by thermal expar~sior~ and other effects of anharillonic lattice interactions. 

Second-Order Transition 

If g4 in (37)  is positive, nothing new is added by the term in g,, and this 
may then he neglected. The polarization for zero applied electric field is found 
from (38): 

'In TP. see pp. 69 and 298 for a discussion of the Landau function. 



TITc - 
Figure  15 Spontaneous polarization versus temperature, for a second-order phase transition. 

Figure  16 Teniperaturc variation 01 the polar-axis static dielectric constant of LiTaO, (After 
Glass.) 

so that either P, = 0 or P: = (y/g4)(T0 - T) .  For T 2 To the only real root of (40) 
is at P, = 0, because y and g4 are positive. Thus To is the Curie temperature. For 
T < To the minim~im of the Landau free energy in zero applied field is at 

IPS 1 = ( Y ~ ~ . J ' ~ ( T o  - T)'I2 , (41) 

as plotted in Fig. 15. The phase transition is a second-order transition because 
the polarization goes cor~tir~uousl~ to zero at the transition temperature. The 
transition in LiTaO? is an exanlple (Fig. IF)  of a second-ordcr transition. 
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First-Order Transition 

The transition is first order if g4 i11 (37) is negative. We must now retain g6 
and take it positive in order to restrain k from going to minus infinity (Fig. 17). 
The equilibrium condition for E = 0 is given hy (38): 

so that either P, = 0 or 

At  the transition temperature T, the free energies of the paraelectric and 
ferroelectric phases will be equal. That is, the value of k for P, = 0 will be equal 
to the value of k at the nli~li~nu~rl given by (43). In Fig. 18 we show the charac- 
teristic variation with temperature of P, for a first-order phase transition; 

Figure 17 Landau free energy function versus (polariaation)2 in a fxst-order transition, at reprc- 
sentative ternperaturas. At T, thc Landau function has equal minima at P = 0 and at a finite P as 
shown. For T below T,  the ahsolnte minimum is at larger valucs of P; as T passes through T, there 
is a discontinuous change in the position of the absolute minimum. The arrows mark the minima. 

Figure 18 Calculated values 
of the spontaneous polar- 
ization as a function of tem- 
perature, with parameters as 
for barium titanate. (After 
W. Cochran.) 



contrast this with the variation shown in Fig. 15 for a second-order phase tran- 
sition. The transition in BaTiO, is first order. 

The dielectric constant is calculated from the equilibrium polarization in 
an applied electric field E and 1s found from (38) .  In equilibrium at tcmpera- 
tures over the transition, the terms in P4 and P%ay he neglected; thus E = 

y(T - T O E  or 

(CGS) E(T > T,) = 1 + 4 d / E  = 1 + 4.rr/y(T - To) , (44)  

of the for111 of (36).  The result applies whether the transition is of the first or 
second order, but if second order we have To = T,; if first order, then To < ?;. 
Equation (39) defines To, but T, is the transition temperature. 

Applied field 
Ferrodistnrtive 

Antidistortive 

yloelectric 

Ferroelectric 

@ @ Charged atoms or poups 

0 IJncharged atnrns or groups 

Figure 19 Schematic representation of fundamental types nf stroctr~ral phase transitinna from a 
centrospmetric prototype. (After Lines and Glass.) 
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A ferroelectric displacement is not the only type of instability that may 
develop in a &electric crystal. Other deformations occur, as in Fig. 19. These 
deformations, even if they do not give a spontaneous polarization, may be ac- 
companied by changes in the dielectric constant. One type of deformation is 
called antiferroelectric and has neighboring lines of ions displaced in oppo- 
site senses. The perovskite structure appears to be susceptible to many types of 
deformation, often with little difference in energy between them. The phase 
diagrams of mixed perovshte systems, such as the PbZr0,-PbTiO, system, 
show transitions between para-, ferro-, and antiferroelectric states (Fig. 20). 
Several crystals believed to have an ordered nonpolar state are listed in Table 3. 

Ferroelectric Domains 

Considcr a ferroelectric crystal (such as barium titanate in the tetragonal 
phase) in which the spontaneous polarization may be either up or down the c 
axis of the crystal. A ferroelectric crystal generally consists or  regions called 
domains within each of which the polarization is in the same direction, but in 
adjacent domains the polarization is in different directions. In Fig. 21 the po- 
larization is in opposite directions. The net polarization depends on the differ- 
ence in the volumes of the upward- and downward-directed domains. The 

PbZrO, Mole percent PbTiO, PhTiO, 

Figure 20 Ferroelectric F, antiferroelectric A, and paraelectric P phascs of the lead zirconate-lead 
titanate solid solution system. The subscript T denotes a tetragonal phase; C a cubic phase; R a 
rho~nboliedrd phasc, of u41ich there are high-temperature (HT) and low-temperature (LT) forms. 
Near the rhomhhedral-tetragon ~ h a s e  boundaries one finds \,cry high piezoelectric coupling 
coefficients. (After Jaffe.) 



Table 3 Antiferroelectric crystals 

Crystal 
Trans~t~on temperature to 
ant~ferroelectnc state, in K 

From a compilation by Walter J. Merz 

(a) (b) 

Figure 21 (a) Schematic drawing of atomic displacements on either side of a boundary between 
domains polarized in opposite directions in a ferroelectric crystal: (b) view of a domain structure, 
showing 180" boundalies between domains polarized in opposite directions. 

crystal as a whole will appear to be unpolarized, as measured by the charge on 
electrodes covering the ends, when the volumes of domains in opposite senses 
are equal. The total dipole moment of the crystal may be changed by the 
movement of the walls between domains or by the nucleation of new domains. 

Figure 22 is a series of photomicrographs of a single crystal of barium 
titanate in an electric field normal to the plane of the photographs and parallel 
to the tetragonal axis. The closed curves are boundaries between domains 
polarized into and out of the plane of the photographs. The domain bound- 
aries change size and shape when the intensity of the electric field is altered. 
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Figure 22 Ferroelectric domains on the face of a single crystal of barium titanate. The face is 
normal to the tetragona! or c axis. The net polarization of the crystal as judged by domain volumes 
is increased markedly as the electric field intensity parallel to the axis is increased from 550 
volts/cm to 980 V/cm. The domain boundaries are made visible by etching the crystal in a weak 
acid solution. (R. C. Miller.) 

Piezoelectricity 

All crystals in a ferroelectric state are also piezoelectric: a stress Z applied 
to the crystal will change the electric polarization (Fig. 23). Similarly, an elec- 
tric field E applied to the crystal will cause the crystal to become strained. In 
schematic one-dimensional notation, the piezoelectric equations are 

(CGS) P = Z d + E x ;  e = Z s + E d ,  (45) 

where P  is the polarization, Z the stress, d the piezoelectric strain constant, 
E  the electric field, ,y the dielectric susceptibility, e  the elastic strain, and s the 
elastic compliance constant. To obtain (45) in SI, replace x by cox. These rela- 
tions exhibit the development of polarization by an applied stress and the de- 
velopment of elastic strain by an applied electric field. 

A crystal may be piezoelectric without being ferroelectric: a schematic ex- 
ample of such a structure is given in Fig. 24. Quartz is piezoelectric, but not 
ferroelectric; barium titanate is both. For order of magnitude, in quartz d = 

cm/statvolt and in barium titanate d  = cm/statvolt. The general defi- 
nition of the piezoelectric strain constants is 

where i - x, y, z and k = xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 
values of dtk given in mN, multiply by 3 X lo4. 

The lead zirconate-lead titanate system (called the PZT system), Fig. 20, 
is widely used in polycrystalline (ceramic) form with compositions of very high 
piezoelectric coupling. The synthetic polymer polyvinylidenfluoride (PVF2) is 
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(b) 

Figure 23 (a) Unstressed ferroelectric crystal and (b) stressed ferroelectric crystal. The stress 
changes the polarization by AP, the induced piezoelectric polarization. 

Figure 24 (a) The unstressed crystal has a threefold symmetry axls The arrows represent dipole 
moments; each set of three arrows represents a planar group of ions denoted by A $ - ,  with a 
B3- ion at each vertex. The sum of the three dipole moments at each vertex 1s zero. (b) The crystal 
when stressed develops a polarization in the direction indicated. The sum of the dipole moments 
about each vertex is no longer zero. 

five times more strongly piezoelectric than crystalline quartz. Thin stretched 
films of PVF, are flexible and as ultrasonic transducers are applied in medicine 
to monitor blood pressure and respiration. 

SUMMARY 
(In CGS Units) 

The electric field averaged over the volume of the specimen defines the 
macroscopic electric field E of the Maxwell equations. 

The electric field that acts at the site rJ of an atom j is the local electric field, 
El,,. I t  is a sum over all charges, grouped in terms as El0,(q) = E, + E, + 
E, + E3(rJ), where only E3 varies rapidly within a cell. Here: 
E, = external electric field; 
El  = depolarization field associated with the boundary of the specimen; 
E, = field from polarization outside a sphere centered about rJ; 
E,(q) = field at r, due to all atoms inside the sphere. 
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The macroscopic field E of the Maxwell equations is equal to E ,  + El ,  
which, in general, is not equal to Eloc(ri). 

The depolarization field in an ellipsoid is E,, = -N,$,, where N,,, is the 
depolarization tensor; the polarization P is the dipole moment per unit vol- 
ume. In a sphere N = 4 ~ 1 3 .  

The Lorentz field is E,  = 4 ~ P l 3 .  

The polarizability a of an atom is defined in terms of the local electric field 
as p = aEl,,. 

The dielectric susceptibility x and dielectric constant E are defined in terms 
of the macroscopic electric field E as D = E + 4wP = EE = ( 1  + 47rx)E, 
or x = PIE. In SI, we have x = PIE&. 

An atom at a site with cubic symmetry has El,, = E + (4wI3)P and satisfies 
the Clausius-Mossotti relation ( 2 4 ) .  

Problems 

1.  Polaritability of atomic hydrogen. Consider a semiclassical model of the ground 
state of the hydrogen atom in an electric field normal to the plane of the orbit 
(Fig. 25), and show that for this model a = a;, where a, is the radius of the un- 
perturbed orbit. Note: If the applied field is in the x direction, then the x compo- 
nent of the field of the nucleus at the displaced position of the electron orbit must 
be equal to the applied field. The correct quantum-mechanical result is larger than 
this by the factor g. (We are speaking of a, in the expansion a = a, + alE + . . ..) 
We assume x 4 a,. One can also calculate al on this model. 

Figure 25 An electron in a circular orbit of radius an 
is displaced a distance x on application of an electric 
field E in the -x direction. The force on the electron 
due to the nucleus is e2/ai in CGS or e 2 / 4 ~ c a i  in SI. 
The problem assumes x an. 



2. Polariaability of conducting sphere. Show that the polarizability of a conduct- 
ing metallic sphere of radius a is a = a3. This result is most easily obtained by not- 
ing that E = 0 inside the sphere and then using the depolarization factor 4 ~ 1 3  for a 
sphere (Fig. 26). The result gives values of a of the order of magnitude of the ob- 
served polarizabilities of atoms. A lattice of N conducting spheres per unit volume 
has dielectric constant E = 1 + 47rNa3, for Nu3 < 1. The suggested proportionality 
of a to the cube of the ionic radius is satisfied quite well for alkali and halogen 
ions. To do the problem in SI, use 5 as the depolarization factor. 

3. Effect of air gap. Discuss the effect of an air gap (Fig. 27) between capacitor 
plates and dielectric on the measurement of high dielectric constants. What is the 
highest apparent dielectric constant possible if the air gap thickness is of the 
total thickness? The presence of air gaps can seriously distort the measurement of 
high dielectric constants. 

4 .  Zntelfacial polarization. Show that aparallel-plate capacitor made up of two par- 
allel layers of material-one layer with dielectric constant E ,  zero conductivity, and 
thickness d, and the other layer with E = 0 for convenience, finite conductivity u, 

Figure 26 The total field inside a conduchng sphere is zero. If 
a field E, is applied externally, then the field E, due to surface 
charges on the sphere must just cancel E,, so that E, + El = 0 
within the sphere. But E, can be simulated by the depolariza- 
tion field -4?rP/3 of a uniformly polarized sphere of polariza- 
tion P. Relate P to E, and calculate the dipole moment p of the 
sphere. In SI the depolarization field is -P/~E,. 

v 

Figure 27 An air gap of thickness qd is in series Air 
in a capacitor with a dielectric slab of thickness d. qd f 0 
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and thickness qd-behaves as if the space between the condenser platcs were 
filled with a homogeneous dielectric with dielectric constant 

where w is the a~~gular  freqnency. Valucs of ceir as high as lo4 or lo5 caused largely 
by this Maxwell-Wagner riiechanism are sometimes found, but the high values are 
always accompa~~iecl by largr ac losses. 

5. Polarization of sphere. A sphere of dielectric constant E is placed in a uniform ex- 
ternal electric field E,. (a) What is the vnlrirne avcrage electric field E in the sphere? 
(b) Show that the polarization in the sphere is P = ,yEo/[l + ( 4 ~ x / 3 ) ] ,  where ,y = 

( E  - 1 ) / 4 ~ .  Hint: You do not need to calculate El,, in this problem; in fact it is con- 
fusing to do so, because s and ,y are defined so that P = xE. We require E, to be un- 
changed by insertion of the sphere. We can produce a fxcd Eo by placing positive 
charges on one thin plate of an insulator arid negative charges on an opposite plate. If 
the plates are always far from the sphere, the field or the plates will remain un- 
changed when the sphere is inserted between them. The results abovc are in CGS. 

6. Ferroelectric criterion for atoms. Consider a systenl of hvo neritral atoms sepa- 
rated by a fured distance a, each atom having a polarizability a. Find the rclation 
between a and a for such a system to be ferroelectric. Hint: The dipolar field is 
strongest along the axis of the dipole. 

7.  Saturation polarization at Curie point. In a first-order transition the equilibrium 
condition (43)  with T set equal to T ,  gives one equation for the polarization P,(T,). 
A further condition at the Curie point is that F(P,, T,) = $(o, T,). (a) Corrlbirli~lg 
these two conditions, show that P:(T,) = 3Ig4l/4g,. (b) Using this result, show that 
T,  = To + 3&16yg6. 

8. Dielectric constant below transition temperature. In terms of the parameters 
in the Landau frcc energy expansion, show that for a second-order phase transition 
tlir dielectric constant below the transition temperature is 

This result may he cnmparcd with (44)  above the transition. 

9. Soft modes and lattice transformations. Sketch a monatomic linear lattice of 
lattice constant a. (a) Add to cach of six atoms a vector to indicate the direction of 
the displacement at a givcn timc caused by a longitudinal phonon with wavevector 
at the zone bonndary. (b) Skctch the c~ystal structure that results if this zone 
boundary phonon becomes nnstablc (o + 0) as the crystal is cooled through T,. 
(c) Sketch on orie graph the essential aspccts of the longitudinal phonon dispersion 
relation for the rnorratornic lattice at T wcll above T, and at T = T,. Add to the 
graph the same irrforrrratinn for phonons in the new structure at T well below T,. 

10. Ferroelectric linear array. Consider a linc of atoms of polarizability a and sepa- 
ration a. Show that the array can polarizc spontaneously if a 2 a3/4Zn 3 ,  where 
the sum is over all positive integers and is given in tables as 1.202. . . . 
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Figure 1 Dangling bonds from the (111) surface of a co~~alently honded diamnnd c ~ ~ h i c  structure. 
(Aftcr &I. Pruiton, Surfocephysics, Clarendon, 1975.) 



Reconstruction and Relaxation 

The surface of a crystalline solid in vacuum is generally defined as the 
few, approximately three, outermost atomic layers of the solid that differ sig- 
nificantly from the bulk. The surface may be entirely clean or it may have for- 
cign atoms deposited on it or incorporated in it. Thc bulk of the crystal is 
called the substrate. 

If the surface is clean the top layer may be either reconstructed or, 
sometimes, unreconstructed. In unrcconstn~cted surfaces the atomic arrange- 
ment is in registry with that of the hidk except for an interlayer spacing change 
(called multilayer rclaxation) at the top surface. 

The shrinking of the interlayer distance between the first and second layer 
of atoms with respect to subsequent layers in the bulk is a rather dominant 
phenomenon. The surface may be thought of as an intermediate between a di- 
atomic molecule and the bulk structure. Because the interatomic distances in 
diatomic molecules are much smaller than in the hulk, there is a rationale for 
the surface relaxation. This may be contrasted with reconstruction where the 
relaxation of atoms ylelds new surface primitive cells. In relaxation the atoms 
maintain their structure in the surface plane as it was (according to the projec- 
tion of the bulk cell on the surface); only their distance from the bulk changes. 

Sometimes in metals, but most often in nonmetals, the atoms in the 
snrface layer form superstructures in which the atoms in the layer are not in 
registry with the atorns in correspo~iding layers in the substrate. This is surface 
reconstruction; it car1 be a consequence of a rearrangement of broken covalent 
or ionic bonds at the surface. Under sllch conditions the atoms at the surface 
burich into rows with alternately larger and smaller spacings than in the bulk. 
That is, for some crystals held together by valence bonds, creation of a surface 
would leave unsaturated bonds dangling into space (Fig. 1). The energy may 
then he lowered if neighboring atoms approach each other and form bonds 
with their otherwise unused valence electrons. Atomic displacements can be 
as large as 0.5 A. 

Reconstruction does not necessarily require formation of a superstruc- 
ture. For example, on GaAs (110) surfaces a rotation of the Ga-As bond leaves 
the point group intact. The driving force is electron transfer from Ga to As, 
which fills the dangling bonds on As and depletes them on Ga. 

Surfaces of planes nominally of high indices may be built up of low index 
planes separated by steps one (or two) atoms in height. Such terrace-step 
arritngeme~~ts are iniportant in evaporation and desorption because the attach- 
ment energy of atoms is often low at the steps and at kinks in the steps. The 
chemical activity of such sites may be high. The presence of periodic arrays of 



steps may he detected by double and triple beams of diffraction in LEED (see 
below) experiments. 

SURFACE CRYSTALLOGRAPHY 

The surface structure is in general periodic only in two dimensions. The 
surfacc structure can be the structure of foreign rriaterial deposited on the 
substrate or it can bc the selvage of the pure substrate. I11 Chapter 1 we used 
the term Bravais lattice for the array of equivalent points in two or in three di- 
mensions, that is, for diperiodic or triperiodic striicturrs. In thc physics of sur- 
faces it is common to speak of a two-dimensional lattice. Flirther, the area 
unit niay be called a mesh. 

We showed in Fig. 1.7 four of the five nets possible for a diperiodic struc- 
ture; the fifth net is the general oblique net, with no special syrn~netry relation 
between thc mcsh basis vectors a,, a,. Thus the five distinct nets are the 
oblique, square, hexagonal, rectangular, and ccntcrcd rectangular. 

The substrate net parallel to the surface is ilsed as thc rcfcrcnce net for 
the description of the surface. For example, if the surface of a ciihic snhstratc 
crystal is the (111) surface, the substrate net is hexagonal (Fig. 1.7b), and the 
surface net is referred to these axes. 

Thc vectors cl,  c2 that define the mesh of the surface structure may be ex- 
pressed in terms of the reference net al ,  a2 by a matrix operation P: 

Provided that the included a~lgles of the two meshes are equal, the short- 
hand notation due to E. A. Wood may be used. In this notation, which is 
widcly used, the relation 01 the mesh cl,  c2 to the reference mesh a,, a2 is ex- 
pressed as 

in terms of the lengths of the mesh basis vectors and the angle a of relative ro- 
tation R of the two meshes. If a = 0, the angle is omitted. Examples of the 
Wood notation are given in Fig. 2. 

The reciprocal net vectors of the surface mcsh may be written as ci, c;, 
defined by 

Here the 27r (or 1) i~ldicates that two corlver~tior~s are in use. The definitions 
(3) used in Fig. 3 may be compared with the definitions in Chapter 2 of the 
reciprocal lattice vcctors of a triperiodic lattice. 
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fcc(ll l) ,  hcp(0001) 

(a! 

Figure 2 Surface nets of adsorhed atoms. The circles reprcsent atoms in the top layer of the sub- 
strate. In (a) the designation fcc(ll1) means the (111) face of an fcc stmcturc. This Lace deter- 
mines a r e f ~ r m c e  net. The liues rcprcsent ordered overlayers, with adatoms at the intersections of 
hvo lines. The intersection points represent diperiodic ncts (lattices in hvo dimensions). The des- 
igration p(l X 1) in (a) is a primitive mesh unit for which the basis is identical with the basis of 
the reference net. In (b) the c(2 X 2) mesh unit is a centered mesh with basis vectors twice as long 
as those of the reference net. Atomic adsorption on nwtals takes place most often into those sur- 
face sites (hollow sites) that maximize the number of nearest-neighhor aton~s on thc substrate. 
(After Van Hove.) 

The reciprocal net points of a diperiodic net may be thought of-when we 
are in three dimensions-as rods. The rods are infinite in extent and normal to 
the surface plane, where they pass through the reciprocal net points. It may be 
helpful to think of the rods as gcncrated by a triperiodic lattice which is ex- 
panded without limit along one of its axes. Then the reciprocal lattice points 
along this axis are moved closer together and in the limit form a rod. 

The ~isefulness of the rod concept comes out with the Ewald sphere 
construction explained in Fig. 2.8. Diffraction occurs everywhere the Ewald 
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(a) red-space; and (b) reciprocal-space diagrams. (After 

Figure 4 Ewald sphere construction for diffraction of incident wave k by a square net, when k is 
parallel to one axis of the mesh. The back scattered beams in the plane of the paper are k;, kb, kb, 
k';. Diffracted beams out of the plane of the paper will also occur. The vertical lines are the rods of 
the reciprocal net. 

sphere intercepts a reciprocal net rod. Each diffracted beam is labelled with 
the indices hk of the reciprocal net vector 

g=hc ;  + kc; (4) 

forming the beam. 
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Figure 5 LEED patterns frolri a Pt(l l1i  crystal surface for incident electron energies of 51 and 
63.5 eV The diffraction angle is greater at the lower energy (After G. A. Somorjai, Chemistq in 
two dimensions: sulface.~, Cornell, 1981.) 

Reciprocal netrods 

Screen 

Nearly flat ~ w a l d  sphere 

(a) . - 
Crystal 

(b) 
Figure 6 The RHEED method. In (a) the high-energy incident electron beam at a glancing 
angle to the crystal surface is associated with an Ewald sphere of large radius, so large that the snr- 
face is nearly flat in relation to the separation between adjacent rods of the reciprocal net. The 
formation of diffraction lines on a plane screen is shown in (b). (After Prutton.) 

Low energy electron diffraction (LEED) is illustrated by Fig. 4. The 
electron energy is typically in the range 10-1000 eV. With this arrangement 
Davisson and Germer in 1927 discovered the wave nature of the electron. An 
experimental pattern is shown in Fig. 5. 

Reflection High-Energy Electron Diffraction. In the RHEED method a 
beam of high-energy electrons is directed upon a crystal surface at grazing 



incidence. By adjustment of the angle of incidence one can arrange the normal 
component of the incoming wavevector to be very small, which will minimize 
the penetration of the electron beam and enhance the role of the crystal 
surface. 

The radius k of the Ewald sphere for 100 keV electrons will be -lo3 k', 
which is much longer than thc shortest reciprocal lattice vector 2 d a  = 1 kl. 
It follows that the Ewald sphere will be nearly a flat surface in the central scat- 
tering region. The intercept of the rods of the reciprocal net with the nearly 
flat sphere will be nearly a line when the beam is directed at grazing inci- 
dence. The experimental arrangement is shown in Fig. 6. 

SURFACE ELECTRONIC STRUCTURE 

Work Function 

The work function W of the uniform surface of a metal is defined as the 
diffcrcncc in potential energy of an electron between the vacuum level and 
the Fermi level. The vacniim level is the energy of an clcctron at rest at a point 
sufficiently far outside the surface so that the electrostatic image force on the 
electron may be neglected-more than 100 A from the surface. The Fermi 
level is the electrochemical potential of the electrons in the metal. 

Typical values of electron work functions are given in Table 1. The orien- 
tation of the exposed crystal face affects the value of the work function 

Table 1 Electron work functionsa 

(Values obtained by photoemission, except tungsten obtained by field emission.) 
Element Surfacc ulane Work function, in eV 

"After H. D. IIagstrum. 



17 Surface and Interface Physics 495 

because the strength of the electric double layer at the surface depends on 
the concentration of surface positivc ion cores. The double layer exists 
because the surface ions are in an asymmetrical environment, with vacuum 
(or an adsorbed foreign atom layer) on one side and the substrate on the 
other side. 

The work fnnction is equal to the threshold energy for photoelectric emis- 
sion at absolute zero. If liw is the energy o l  an incident photon, then the 
Einstein equation is fiw = W + T, where T is thc kinetic energy of the emitted 
electron and W is the work [unction. 

Themionic Emission 

The ratc of emission of thermionic electrons depends exponentially on the 
work fiinction. The derivation follows. 

We first find the electron concentration in vacuum in equilibrium 
with electrons in a metal at temperature ?(=k,T) and chemical potential p. 
We treat the electrons in the vacuum as an ideal gas, so that their chemical 
potential is 

by TP, Chapter 5. Here 

ny = 2 ( r n ~ / 2 d i ' ) ~ ~  , 

for particles of spin 1/2. 
Now fiat - p = \q by tlie definition of the work function W. Thus, 

from (5 ) ,  

n = ny exp( -W/T) . (7) 

The flux of electrons that leaves the metal surface when all electrons are 
drawn off is equal to the flux incident on the sinface from outside: 

by TP(14.95) and (14.121). Here E is the mean speed of the electrons in the 
vacuum. The electric charge flux is el,, or 

Je = (r2m/2n2fi3)exP(W/r) . (9) 

This is called the Richardson-Dushman equation for thermionic emission. 

Surface States 

At the free surface of a semiconductor there often exist surface-bound 
electronic states with energies in the forbidden gap between the valence and 
conduction bands of the bulk semiconductor. We can obtain a good impression 
of the nature of tlie surface states hy considering the wave functions in the 



weak binding or two-component approximation of Chapter 7, in one dimen- 
sion. (The wave functions in three dimensions will have extra factors 
exp[i(k,y + k,z ) ]  in the y, z plane of the surface.) 

If the vacuum lies in the region x > 0, the potential energy of an electron 
in this region can be set equal to zero: 

In the crystal the potential cnrrgy has the usual periodic form: 

In onc dimension G = n d a ,  where n is any integer, including zero. 
In the v a c ~ l ~ ~ r n  the wavc fi~nction of a bound surface state must fall off 

exponentially: 

By the wave equation thc cncrgy of the state referred to the vacuum level is 

Within the crystal the two-component wave function of a bound surface 
state will have the form, for x < 0, 

by analogy with (7.49), but with the addition of the factor exp(yx) wl~ic l~  senres 
to bind the electron to the surface. 

M7c now come to an important consideration that restricts the allowed val- 
ues of the wavevector k. If thc statc is bound, there can be no current flow in 
the x direction; normal to the snrface. This condition is assnred in q11ant11m 
mechanics if the wave function can be written as a real function of x, a condi- 
tion already satisfied by the exterior wave function (12). But (14) can be a real 
function or~ly if k = $G, so that 

This is real providcd c* (~G)  = c(-;G). Thus k, for a surlace state does not 
have a contin~l~~rn of values, hilt is limitcd to discrctc states associated with 
Brillouin zone boundaries. 

The state (15) is damped exponentially in the crystal. The constants s, q 
are related by the condition that $ and d$/dx are continuous at x = 0. The 
binding energy E is deternrined by solving the two-corrlponent secular equa- 
tion analogous to (7.46). The plot of Fig. 7.12 is helpful in this connection. 
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Tangential Surface Transport 

We have seen that there may exist surface-hound electronic states with en- 
ergies in the forbidden gap between the valence and conduction bands of the 
substrate clystal. Thcsc states may be occupied or vacant; their existencc mrist 
affect the statistical mechanics of the problem. This means that thc states mod- 
ify the local eqtiilihrium concentration of electrons and holes, as expressed as a 
shift of the chemical potential relative to the band edgcs. Recaiise the chemical 
potential is independent of position in an equilihriiim system, the energy bands 
must be displaced or bent, as in Fig. 7. 

The thickness and carricr concentration in the surface layer may be 
changed by applying an electric field normal to the surface. The effect of an 
external field is utilized in the metal-oxide-semico~iductor field-effect transis- 
tor (MOSFET). This has a metal electrode just outside the scrniconductor 
surface and insulated from it by a layer of oxide. A voltagc, the gate voltage Vg, 
is applied between the nietal and semiconductor that modulates the n,, the 
surface charge density per unit area: 

where C, is the capacitance pcr unit area between the metallic gate and the 
se~niconductor. This surface charge layer forms the corlducting pathway of the 
MOSFET. The conductance of a surface layer of length L and width W 
between two electrical contacts is: 

where p is the carrier mobility. The carrier density n,, and hence the conduc- 
tance, is controlled by the gate voltage. This three-terminal electronic valve is 

Figure 7 Baud bending near a semiconductor surface that can give a highly conducti~lg aurfacc 
region. (a) Inversion layer on an r~-t)ye semiconductor. For the bending as shonn, the hole con- 
ccntration at the surface is far larger than the electnm conce~~trat ion in the interior. (b) Accumula- 
tion layer on an 7'-typc sclniconductor, with an electron concentration at the aurhce that is Car 
higher than in the interior. 
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a principal component in microelectronic systems. The clcctronic states occu- 
pied by the carriers at the surface are quantized along the direction normal to 
the interface, as treated in Problem 2. 

MAGNETORESISTANCE IN A TWO-DIMENSIONAL CHANNEL 

The static magnetocondi~ctivity tcnsor in 3D was found in Problerr~ 6.9. 
Here we translate that result to a 2D surface conductance channel in the n-y 
plane, with the static magnetic field in the z direction, normal to thc MOS 
layer. Llie assurne the surface density of electrons is n,  = AIIL! The snrface 
conducta~lce is defined as the volurr~e conductivity times the layer thickness. 
The surface current density is defined as the current crossing a line of unit 
length in thc surface. 

Thus, with (6.43) and (6.65) thc surface tensor conducta~lce components 
become 

where u,, = n,e2r/m and a, = eB/mc in CGS and eB/m in SI. The following dis- 
cussion is written in CGS only, cxccpt where oh~ns  are used. 

These results apply specifically in the relaxation time approximation used 
in Cl~apter 6. When O,T S 1, as for strong magnetic ficld and low tempera- 
tures, the surface conductivity components approach the limits 

The limit for uly is a ger~eral property of free electrons in crossed electric 
E ,  and magnetic fields B;. We establish the result that such electrons drift in 
thc x direction with velocity c,  = cEy/B,. Consider the electrons from a 
Lorentz framc that movcs in the x direction with this velocity. By electrornag- 
netic theory- there is in this frame an clcctric ficld E ;  = -v,B,lc that will can- 
cel the applied field E,  for the above choice of r;,. k'iewcd in the laboraton. 
frame, all electrons drift in the x direction with velocity v, in addition to any 
velocity co~npor~erlts they had before Ey was applied. 

Thus j, = uryEy = r',eun = (n,ec/B)E,, so that 

as in (17). The cxpcriments measure the voltage V in the y directior~ and the 
current I in the x direction (Fig. 8). Here I, = j,LY = (ri,ec/B)(EyLy) = 

(n,cc/B)Vy. The IIall resistance is 

We see thatj, can flow with zero E,, so that the effective conductance j,/E, 
can be infinite. Yaradoxically, this limit occurs only when a,, and a,, are zero. 
Consider the tensor relations 
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In the Hall effect geometry j, = 0, so that E, = (ux,lu,,)E,, with uzy = -uyz. 
Thus 

and in the limit a,, = u,, = 0 the effective conductance is infinite. 

Integral Quantized Hall Effect (IQHE) 

The results of the original measurements' under quantum conditions of 
temperature and magnetic field are shown in Fig. 9. The results are remarkable: 
at certain values of the gate voltage the voltage drop in the direction of current 
flow goes essentially to zero, as if the effective conductance were infinite. 
Further, there are plateaus of the Hall voltage near these same values of gate 
voltage, and the values of the Hall resistivity V& at these plateaus are accu- 
rately equal to (25,813linteger) ohms, where 25,813 is the value of hle2 
expressed in ohms. 

The IQHE voltage minima VPp may be explained on a model that is, how- 
ever, oversimplified. Later we give a general theory. Apply a strong magnetic field 
such that the separation fiw, %- k,T It is meaningful to speak of Landau levels 
that are completely filled or completely empty. Let the electron surface concen- 
tration (proportional to the gate voltage) be adjusted to any of the set of values 
that cause the Fermi level to fall at a Landau level: from (9 33) and (9.34), 

where s is any integer and n, is the electron surface concentration. 
When the above conditions are satisfied, the electron collision time is 

greatly enhanced. N o  elastic collisions are possible from one state to another 
state in the same Landau level because all possible final states of equal energy 
are occupied. The Pauli principle prohibits an elastic collision. Inelastic colli- 
sions to a vacant Landau level are possible with the absorption of the necessary 
energy from a phonon, but there are very few thermal phonons of energy 
greater than the interlevel spacing by virtue of the assumption hw, 8- k,T. 

'K. von Klitzing, 6. Dorda, and M. Pepper, Phys. Rev. Lett. 45,494 (1980). 
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Figure 9 In the original IQHE measurements a magnetic field of 180 kG (18 T) points out of the 
paper. The temperature is 1.5 K. A constant current of 1 pA is made to flow between the source 
and the drain. Voltages Vp, and V, are plotted versus the gate voltage V,, which is proportional to 
the Fermi level. (After K. von Klitzing, G. Dorda, and M. Pepper.) 

The quantization of the Hall resistance follows on combining (18a) and (21): 

pH = h/se2 = 2?r/sccu , (22) 

where a is the fine structure constant e2/?ic 1/137, and s is an integer 

IQHE in Real Systems 

The measurements (Fig. 9) suggest that the above theory of the IQHE 
is too good. The Hall resistivity is accurately quantized at 25,813/s ohms, 
whether or not the semiconductor is of very high purity and perfection. The 
sharp Landau levels (Fig. 10a) are broadened in the real crystal (Fig. lob), but 
this does not affect the Hall resistivity. The occurrence of plateaus in the Hall 
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Figure 11 Geometry for Laughlin's 
thought-experiment. The 2D electron sys- 
tem is wrapped around to form a cylinder. 
A strong magnetic field B pierces the 
cylinder everywhere normal to its surface. 
A current I circles the loop, giving rise to 
the Hall voltage VH and a small magnetic 
flux Q through the loop. 
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C 
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resistance, evident in the UH curve of Fig. 9, is not expected in ideal systems 
because partially filled Landau levels will exist for all gate voltages except 
those for which the Fermi level exactly coincides with a Landau level. Yet the 
experiments show that a range of Vg values gives the exact Hall resistance. 

Laughlin2 interpreted the results for real systems as the expression of the 
general principle of gauge invariance. The argument is subtle and somewhat 
reminiscent of the flux quantization in a superconductor in Chapter 10. 

In Laughlin's thought-experiment the 2D electron system is bent to form a 
cylinder (Fig. 11) whose surface is pierced everywhere by a strong magnetic 
field B normal to the surface. The current I (former I,) circles the loop. The 
magnetic field B acts on the charge carriers to produce a Hall voltage VH (for- 
mer V,,) perpendicular to the current and to B ;  that is, V, is developed be- 
tween one edge of the cylinder and the other. 

The circulating current I is accompanied by a small magnetic flux rp that 
threads the current loop. The aim of the thought-experiment is to find the 

Fermi 

A A A A Mobility level * 
+- 
+- 
Lr 
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'R. B. Laughlin, Phys. Rev. B 23, 5632 (1981); see also his article in the McGraw-Hill 
year-book of science and technology, 1984, pp. 209-214. A review is given by H. L. Stormer and 
D. C. Tsui, Science 220,1241 (1983). 

3 ; ho, ; ho, ; fro, 3 h 4  
Localized states 

(a) (b) 

Figure 1 0  Density of states in a 2D electron gas in a strong magnetic field. (a) Ideal 2D crystal. 
(h) Real 2D crystal, with impurities and other imperfections. 



relation between I and V,. \lie start with the electromagnetic relation that re- 
lates I to the total energy U of a resistanceless system: 

The value of I can now be found froin the variation SU of the electronic energy 
that accompanies a small variation 6 p  of the flux. 

The carricr statcs divide into hvo classes: 

Localized states, which are not contin~lorls around thc loop. 
Extended states, continuous around the loop. 

Localized and extended states cannot coexist at the same energy, according to 
our present understanding of localization. 

The two classes of states respond differently to the application of the flux 
cp .  The localized states are unaffected to first order because they do 11ot en- 
close any significant part of cp .  To a localized state a change in cp looks like a 
gauge transformation, which cannot affect thc energy of the state. 

The extended states enclose 9, and their energy may be changed. How- 
ever, if the magnetic flux is varied by a flux quantum, 6 p  = hcle, all extended 
orbits are identical to those before the flux quantum was added. The argument 
here is identical to that for the flux quantization in the superconducting ring 
trcatcd in Chapter 10, but with the 2e of the Cooper pair replaced bye. 

If the Fcrmi level falls within the localized states of Fig. lob, all extended 
states (Landau levels) below the Fermi level will be filled with electrons both 
before and after the flux change Sp.  However, during the change an integral 
number of states, generally one per Landau level, enter the cylinder at onc 
edge and leave it at the opposite edge. 

The number must be integral because the system is  physically identical 
before and after the flux change. If the transferred state is transferred while 
occupied by one electron, it contributes an euergy change eV,; if N occupied 
states are transfcrrcd, the energy change is NeVH. 

This electron transfcr is the only way the degenerate 2D electron system 
can change its energy. \tle can l~nderstand thc effect by looking at a model sys- 
tem without disorder in the Landau gauge for the vector potential: 

A = -By% . (24) 

-40 it~crease SA that corresponds to the flux increase S q  is equivalent to a dis- 
placement of an extended state by SAIB in the y direction. By the Stokes theo- 
rem and the definition of the vector potential we have S p  = L,SA. Thus 6 9  
causes a motion of the entire electron gas in the y direction. 

By SU = NeV, and 6 9  = hde ,  we havc 
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so that the Hall resistance is 

Fractional Quantized Hall Effect (FQHE). A quantized Hall effect has 
been reported for similar systems at fractional values of the index s, by 
working at lowcr temperatures and higher magnetic fields. In the extreme 
quantum limit the lowest Landau level is only partially occlipied, and the inte- 
gral QHE treated above should not occur. It has heen ~ b s e r v e d , ~  however, that 
the IIall resistance PH is quantized in units of 3h/e2 when the occupation of the 
lowest Landau level is 113 and 213, and p,, vanishes for these occupations. Sim- 
ilar breaks have been reported for occupations of 2/5, 315, 4/(5, 
and 217. 

p-n JUNCTIONS 

A p-n junction is made from a single crystal ~r~odified in two scparate re- 
gions. Acceptor impurity atoms are incorporated into one part to produce the 
p region in which the majority carriers are holes. Donor impurity atoms in the 
other part produce the n mgon in which the majority carriers are electrons. 
The interface region may be less than cm thick. Away from the junction 
region on the p side there are ( - )  ionized acceptor impurity atoms arid an 
equal concentration of lree holcs. On the n side there are (+) ionized donor 
atorris and an equal concentration of free electrons. Thus the majority carricrs 
are holes on thc p side and electrons on the rr, side, Fig. 12. 

Holes concentrated on the p side would like to diffusc to fill the crystal 
uniformly. Electrons would like to diffuse from the n side. But diffusion will 
upset the local electrical neutrality of the system. 

A small charge transfer by diffusion leaves behind on the p side an excess 
of ( - )  ionized acceptors and on the n side an excess of (+)  ionized donors. 
This charge double laycr creates an electric field directed from n t o p  that in- 
hibits diffusion and therehy maintains the separation of the two carrier types. 
Because of this double layer the electrostatic potential in the crystal takes a 
jump in passing through the region of the junction. 

In thermal equilibrium the chemical potential of each carrier type is 
everywhere constarit in the crystal, even across the junction. For holes 

k,T hi p ( r )  + eq(r) = constant (27a) 

3 ~ .  C .  TSII~, H. L. Sturrner, and A. C. Gossard, Phys. Hev Lett. 48. 1.562 (1982); .4. 41. Clrallg 
et al., Phys. Rev. Lett. 53, 997 (1984). For a &scussion of the theory see R. Laughlin in 6. Rar~rr 
et d., eds., Tco-dinrensional systems, heterostructures, and wpsrluitices, Springer, 1984. 
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Figure 12 (a) Variation of the hole and elec- 
tron concentrations across an unbiased (zero (a) 
applied voltage) junction. The carriers are in 
thermal equilibrium with the acceptor and 
donor impurity atoms, so that the product pn of 
the hole and electron concentrations is constant 3 
throughout the crystal in conformity with the B 
law of mass action. (b) Electrostatic potential $ 
from acceptor (-) and donor (+) ions near the 2 
junction. The potential gradient inhibits diffu- 
sion of holes from the p side to then side, and it 5 
inhibits diffusion of electrons from the n side to 
the p side. The electric field in the junction re- 
gion is called the built-in electric field. (b) 

across the crystal, where p is the hole concentration and cp the electrostatic 
potential. Thus p is low where cp is high. For electrons 

kBT In n(r) - ecp(r) = constant , (27b) 

and n will be low where cp is low. 
The total chemical potential is constant across the crystal. The effect of 

the concentration gradient exactly cancels the electrostatic potential, and the 
net particle flow of each carrier type is zero. However, even in thermal equi- 
librium there is a small flow of electrons from n to p where the electrons end 
their lives by combination with holes. The recombination current J,,, is bal- 
anced by a current of electrons which are generated thermally in the p re- 
gion and which are pushed by the built-in field to the n region. Thus in zero 
external applied electric field 

for otherwise electrons would accumulate indefinitely on one side of the barrier. 

A p-n junction can act as a rectifier. A large current will flow if we apply a 
voltage across the junction in one direction, but if the voltage is in the opposite 
direction only a very small current will flow. If an alternating voltage is applied 
across the junction the current will flow chiefly in one direction-the junction 
has rectified the current (Fig. 13). 
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Figure 13 Rectiticdtiul~ charactcris- 
tic of a p-71 junction in germanium, 
after Shockley. 

For back voltage bias a negative voltage is applied to the p region and a 
positive voltage to the r2 region, thereby incrcasing the potential difference be- 
tween the two regions. Now practically no electrons can climb the poteritial 
energy hill from the low sidc of the barrier to the high side. The rrcombina- 
tion current is rcduccd hy the Boltzmann factor: 

I,,,(\' back) = J,,(O) exp (-P[v~/~,T) . (29) 

Thr Roltzmann factor controls the nulnber of electrons with cnongh energy to 
get over the barrier. 

The thermal generation current ol" electrons is not particularly affected by 
the back voltage because the gencration electrons flow downhill (fro111 p to n )  
anjway: 

J,,,(V back) = J,,,(O) . (30) 

W7e saw in (28) that J,,(O) = -J,,(O); thus the ger~eratioli current dominates 
the rccomhination current for a back bias. 

When a forward voltage is applied, the reco~nbination current increases 
because the potential energy barrier is lowcrcd, thereby enabling more elec- 
trons to flow fro111 the n side to the p sidc: 

Again thc grneration current is unchanged: 



The hole current flowing across the junction behaves similarly to the elec- 
tron current. The applied voltage which lowers the height of the barrier for 
electrons also lowers it for holes, so that large numbers of electrons flow from 
the n region under the same voltage conditions that produce large hole cur- 
rents in the opposite direction. 

The electric currents of holes and electrons are additive, so that the total 
forward electric current is 

where I, is the sum of the two generation currents. This equation is well satis- 
fied for p-n junctions in germanium (Fig. 13), but not quite as well in other 
semiconductors. 

Solar Cells and Photovoltaic Detectors 

Let us shine light on a p-n junction, one without an external bias voltage. 
Each absorbed photon creates an electron and a hole. When these carriers dif- 
fuse to the junction, the built-in electric field of the junction separates them at 
the energy barrier. The separation of the carriers produces a forward voltage 
across the barrier: forward, because the electric field of the photoexcited carri- 
ers is opposite to the built-in field of the junction. 

The appearance of a forward voltage across an illuminated junction is 
called the photovoltaic effect. An illuminated junction can deliver power to 
an external circuit. Large area p-n junctions of silicon are used as solar panels 
to convert solar photons to electrical energy 

Schottky Barrier 

When a semiconductor is brought into contact with a metal, there is formed 
in the semiconductor a barrier layer from which charge carriers are severely de- 
pleted. The barrier layer is also called a depletion layer or exhaustion layer. 

In Fig. 14 an n-type semiconductor is brought into contact with a metal. 
The Fermi levels are coincident after the transfer of electrons to the conduc- 
tion band of the metal. Positively charged donor ions are left behind in this re- 
gion that is practically stripped of electrons. Here the Poisson equation is 

(CGS) div D = 4 m e  
'< %,.>. , < + -  
(SI) div D = ne/~, ,  , (34) 

where n is the donor concentration. The electrostatic potential is determined by 

(CGS) d2cp/dx2 = -4melc 

which has a solution of the form 

(CGS) cp = -(2me/e)x2 
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Figure 14 Rectifying barrier between a metal and an n-type semiconductor. The Fermi level is 
shown as a broken line. 

The origin of x has been taken for convenience at the right-hand edge of 
the barrier. The contact is at -xb, and here the potential energy relative to the 
right-hand side is -ecpo, whence the thickness of the barrier is 

With E = 16; ecpo = 0.5 eV; n = 1016 ~ m - ~ ,  we find xb = 0.3 pm. This is a some- 
what simplified view of the metal-semiconductor contact. 

HETEROSTRUCTURES 

Semiconductor heterostructures are layers of two or more different semi- 
conductors grown coherently with one common crystal structure. Heterostruc- 
tures offer extra degrees of freedom in the design of semiconductor junction 
devices, because both the impurity doping and the conduction and valence 
band offsets at the junction can be controlled. Because of this freedom many 
devices that utilize compound semiconductors incorporate heterostructures. 
Examples include semiconductor lasers in CD players and high-speed devices 
for cell-phone systems. 

A heterostructure may be viewed as a single crystal in which the occu- 
pancy of the atomic sites changes at the interface. As an example, one side of 
the interface can be Ge and the other side GaAs: both lattice constants are 
5.65 A. One side has the diamond structure and the other side the cubic zinc 
sulfide structure. Both structures are built up from tetrahedral covalent bonds 
and fit together coherently as if they were a single crystal. There are a few 
edge dislocations (Chapter 21) to relieve the strain energy near the interface. 

The band gaps, however, are different, and this difference is the source of 
the real interest in the heterostructure, apart from the technical virtuosity in 



Normal Staggered Broken gap 

Figure 15 Three types of band edge offsets at hetero-interfaces. The forbidden gaps are shown 
shaded. The offset called normal occurs, for example, in GaAsI(A1,Ga)As. The "broken-gap" offset 
occurs in the GaSbIInAs heterojunction. 

forming the structure. The band gaps are 0.67 eV for Ge and 1.43 eV for GaAs, 
at 300 K. The relative alignment of the conduction and valence band edges of- 
fers several possibilities, as shown in Fig. 15. Calculations suggest that the top 
of the valence band E,  in Ge should lie about 0.42 eV higher than in GaAs. The 
bottom of the conduction band E, in Ge should lie about 0.35 eV lower than in 
GaAs, so that the offsets are classified as normal in the scheme of Fig. 15. 

Band edge offsets act as potential barriers in opposite senses on electrons 
and holes. Recall that electrons lower their energy by "sinking" on an energy 
band diagram, whereas holes lower their energy by "floating" on the same dia- 
gram. For the normal alignment both electrons and holes are pushed by the 
barrier from the wide-gap to the narrow-gap side of the heterostructure. 

Other important semiconductor pairs used in heterostructure are 
AlAs/GaAs, InAs/GaSb, GaP/Si, and ZnSe/GaAs. Good lattice matching in the 
range 0.1-1.0 percent is often accomplished by use of alloys of different ele- 
ments, which may also adjust energy gaps to meet specific device needs. 

n-N Heterojunction 

As a practical example, consider two n-type semiconductors with a large 
offset of the two conduction bands, as sketched in Fig. 16a for a semiconduc- 
tor pair with a normal band line-up. The n-type material with the higher con- 
duction band edge is labeled with a capital letter as N-type, and the junction 
shown is called an n-N junction. The electron transport properties across the - - 
junction are similar to those across a Schottky barrier. Far from the interface 
the two semiconductors must be electrically neutral in composition. However, 
the two Fermi levels, each determined by the doping, must coincide if there is 
to be zero net electron transport in the absence of an external bias voltage. 

These two considerations fix the "far-off" conduction band edge energes 
relative to the Fermi level, as in Fig. 16b. The combination of a specified band 
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Figure 16 (a) Two semiconductors not in contact; the absolute band edge energies are labeled E, 
for the conduction band edge and E,  for the valence band edge. An "absolute energy" means re- 
ferred to infinite distance. The Fermi levels in the two materials are determined by the donor con- 
centrations, as well as by the band structure. (b) The same semiconductors as a heterojunction, so 
that the two parts are in diffusive equilibrium. This requires that the Fermi level (F.L.) be inde- 
pendent of position, which is accomplished by transfer of electrons from the N-side to the n-side 
of the interface. A depletion layer of positively ionized donors is left behind on the N-side. 

offset (determined by the host material composition) at the interface and the 
distant band energes (determined by the Fermi level) can be reconciled only 
if the bands bend near the interface, as in the figure. The necessary band 
bending is created by space charges consequent to the transfer of electrons 
from the N-side to the lower n-side. This transfer leaves behind on the N-side 
a positive donor space charge layer, which through the Poisson equation of 
electrostatics is the source of the positive second derivative (upward curva- 
ture) in the conduction band edge energy on that side. 

On the n-side there is now a negative space charge because of the excess 
of electrons on that side. The layer of negative space charge gves a negative 
second derivative (downward curvature) in the conduction band edge energy. 
On the n-side the band as a whole bends down toward the junction. This dif- 
fers from the usual p-n junction. The downward bending and the potential 
step form a potential well for electrons. The well is the basis for the new physi- 
cal phenomena characteristic of heterostructure physics. 

If the doping on the n-side (low E,) is reduced to a negligible value, there 
will be very few ionized donors on that side in the electron-rich layer. The mo- 
bility of these electrons is largely limited only by lattice scattering, which falls 
off sharply as the temperature is lowered. Low-temperature mobilities as high 
as lo7 cm2 v-ls-' have been observed in GaAs/(Al, Ga)As. 

If now the thickness of the N-side semiconductor is reduced below the de- 
pletion layer thickness on that side, the N material will be entirely depleted of 
its low-mobility electrons. All of the electrical conduction parallel to the inter- 
face will be carried by the high-mobility electrons on the n-side, equal in num- 
ber to the number of ionized N-side donors, but spatially separated from them 
by the potential step. Such high-mobility structures play a large role in solid 



state studies of 2D electrorl gases and also in new classes of high-speed ficld 
effect transistors for computer applications at low temperatures. 

SEMICONDUCTOR LASERS 

Stimulated enlission of radiation can occur in direct-gap semiconductors 
from the radiation emitted when electrons recombine with holes. The electron 
and hole concentrations created by illumi~lation are larger than their equilib- 
rium concentrations. The recombination times for the excess carriers are 
I I I U ~ I  longer than the times for the condrlction electrons to reach thermal 
equilibriurr~ with each other in the conduction hand, and for the holes to reach 
ther~nal equilibrium with each other in the valence hand. This steady-state 
condition for the electror~ and hole populations is described hy separate Fcnni 
levels pc and p, for the two bands, called quasi-Fermi levels. 

With p, and po rrfcrred to their band edges, the condition for population 
inversion is that 

P ~ > c L , + ~ ~  . (38) 

For laser action the quasi-Fermi levels must he separated by Inore than the 
hand gap. 

Population inversion and laser action can be achieved by forward bias of 
an ordinary GaAs or InP junction, but almost all practical injection lasers em- 
ploy the donblc hcterostructure proposed by H. Kroemer (Fig. 17). IIere the 
lasing semicondiictor is cmbcdded between two wider-gap semiconductor re- 
gions of opposite doping, creating a quantum well that confiries bot11 electrons 
and I~oles. An example is GaAs embedded in (A1,Ga)iis. In such a structure 
there is a potential barrier that prevents the oottlow of electrons to the p-type 
region, and an opposite potential barrier that prevents thc outflow of holes to 
the n-type region. 

Thc value of pc in the optically active layer lines up with g, in the n con- 
tact; similarly, pU lincs up with pP in the p contact. Iri\~ersion can be achieved if 
we apply a bias voltage largcr than the voltage equi\.alent of the active layer 
energy gap. The diode wafer providcs its own electromagnetic cavity, for the 
reflectivity at the crystal-air interface is high. Crystals are usually polished to 
provide two flat parallel surfaces; the radiation is emitted in the plane of the 
heterojunctions. 

Crystals with direct band gaps are required normally for junction lasers. 
Indirect gaps involve phonons as well as photons; carriers recombine less effi- 
ciently heca~~sc. of competing processes, and no laser action has been observed 
in indirect gap semicondi~ctors. 

Gallium arsenide has been widely stildied as thc optically active layer. It 
emits in the near infrared at 8383 or 1.48 eV; the exact wavclcngth dcpends 
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Figure 17 Double heterostmcture injection laser Electrons flow from the right into the optically- 
active layer, where they form a degenerate electron gas. The potential harrier provided by the 
wide energy gap on the p side prevents the electrons from escaping to the left. Holes flow from 
the left into the active layer, hut cannot escape to the right. 

on temperature. The gap is direct (Chapter 8). In a heterojunction the system 
is very efficient: the ratio of light energy output to dc electrical energy input is 
near 50 percent, and the differential efficiency for small changes is up to 90 
percent. 

The wavelength can be adjusted over a wide range in the alloy system 
GaJnl-,PyAsl_y, so that we can match the laser wavelength to the absorption 
minimum of optical fibers used as a transmission medium. The combination of 
double heterostructure lasers with glass fibers forms the basis of the new light- 
wave communication technology that is rapidly replacing transmission of sig- 
nals over copper lines. 

LIGHT-EMITTING DIODES 

The efficiency of light-emitting diodes is now at the point of exceeding in- 
candescent lamps. Consider a p-n junction with a voltage source V splitting 
the two chemical potentials pn and pCLp by eV, as in Figure 18. Electrons from 
the n side are injected into the p side, and holes from the p side are injected 
into the n side. These injected carriers annlhilate each other across the junc- 
tion, thus generating photons if the quantum efficiency is unity. 



Distance 

6) 
Figure 18 Electron-hole recombination into photons, across a p-n junction 

The generation or recombination process will be much stronger in a 
direct-gap semiconductor (Fig. 8.5a) than in an indirect gap semiconductor 
(Fig. 8.5b). In a direct-gap semiconductor such as GaAs, the band-to-band 
photons are absorbed in-;distance -1 pm, which is strong absorption. The 
direct-gap ternary semiconductor GaAsl-, P, gives light tuned to shorter 
wavelengths as the composition variable x is increased. This composition was 
made by Holonyak into one of the first p-n diode lasers and into the first visi- 
ble-spectrum (red) LED. Blue-emitting heterostructures have now been 
made, such as In,Gal-,N - Al,Gal-,N. 

The performance of LEDs has increased markedly over the years, from 
about 0.1 lumens/watt in 1962 to about 40 lumens/&tt in 2004; compared 
with 15 lumens/watt for a standard white unfiltered incandescent lamp. To 
quote Craford and Holonyak, "We are entering an entirely new era in lighting 
(illumination) with an ultimate form of lamp-a direct-gap 111-V alloy p-n 
heterostructure." 
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(a) (h) 
Figure 19 The diffraction pattern from a single line of lattice constant a in a monochromatic 
x-ray beam perpendicular to the line. (a) The condition for constructive interference is a cos 0 = nA, 
where n is an integer. (h) For given n the diffracted rays of constant A lie on the surface of a cone. 

Problems 

1.  Diffraction from a linear array and a square array. The diffraction pattern of a 
linear structure of lattice constant a is explaineda in Fig. 19. Somewhat similar 
structures are important in molecular biology: DNA and many proteins are linear 
helices. (a) A cylindrical film is exposed to the diffraction pattern of Fig. 19b; the 
axis of the cylinder is coincident with the axis of the linear structure or fiber. De- 
scribe the appearance of the diffraction pattern on the film. (b) A flat photographic 
plate is placed behind the fiber and normal to the incident beam. Sketch roughly 
the appearance of the diffraction pattern on the plate. (c) A single plane of atoms 
forms a square lattice of lattice constant a. The plane is normal to the incident x-ray 
beam. Sketch roughly the appearance of the diffraction pattern on the photographic 
plate. Hint: The diffraction from a plane of atoms can be inferred from the patterns 
for two perpendicular lines of atoms. (d) Figure 20 shows the electron diffraction 
pattern in the backward direction from the nickel atoms on the (110) surface of a 
nickel crystal. Explain the orientation of the diffraction pattern in relation to the 
atomic positions of the surface atoms shown in the model. Assume that only the sur- 
face atoms are effective in the reflection of low-energy electrons 

'Another viewpoint is useful: for a linear lattice the diffraction pattern is described by the 
single Laue equation a . Ak = 2mq, where q is an integer. The lattice sums which led to the other 
Laue equations do not occur for a linear lattice. Now a . Ak = constant is the equation of a plane; 
thus the reciprocal lattice becomes a set of parallel planes normal to the line of atoms. 
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Figure 20 (a) Backward scattering pattern of 76 eV electrons incident normally on the (110) face 
of a nickel crystal; a model of the surface is shown in (b). (Courtesy of A. U. MacRae.) 

2. Surface subbands in electric quantum limit. Consider the contact plane be- 
tween an insulator and a semiconductor, as in a metal-oxide-semiconductor transis- 
tor or MOSFET. With a strong electric field applied across the Si0,-Si interface, 
the potential energy of a conduction electron may be approximated by V(x) = eEx 
for x positive and by V(x) = m for x negative, where the origin of x is at the inter- 
face. The wavefunction is 0 for x negative and may be separated as +(x,y,z) = u(x) 
exp[i(k,,y + k,z)], where u(x) satisfies the differential equation 

With the model potential for V(x) the exact eigenfunctions are Airy functions, but 
we can find a fairly good ground state energy from the variational trial function x 
exp(-ax). (a) Show that ( E )  = (h2/2m)a2 + 3eEIZa. (b) Show that the energy is a 
minimum when a = (3eEm/2h2)1'3. (c) Show that = 1.89(fi2/2m)113 (3eE12)213. 
In the exact solution for the ground state energy the factor 1.89 is 
replaced by 1.78. As E is increased the extent of the wavefunction in the x direction 
is decreased. The function u(x) defines a surface conduction channel on the semi- 
conductor side of the interface. The various eigenvalues of u(x) define what are 
called electric subbands. Because the eigenfunctions are real functions of x the 
states do not carry current in the x direction, but they do carry a surface channel 
current in the yz plane. The dependence of the channel on the electric field E in the 
x direction makes the device a field effect transistor. 

3. Properties of the two-dimensional electron gas. Consider a two-dimensional elec- 
tron gas (2DEG) with twofold spin degeneracy but no valley degeneracy. (a) Show 
that the number of orbitals per unit energy is given by: D(E) = m l ~ h ~ .  (b) Show that 
the sheet density is related to the Fermi wavevector by: n, = kgI27r. (c) Show that, in 
the Drude model, the sheet resistance, i.e., the resistance of a square segment of the 
ZDEG, can be written as: R, = (h/e?/(k,e) where t? = vp7 is the mean free path. 
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Figure 1 Schematic and scanning electron microscope (SEM) image of a gate electrode pattern 
on a GaAsIAIGaAs heterostructure used to create a quantum dot of complex shape in the underly- 
ing two-dimensional (2D) electron gas. (Courtesy of C. Marcus.) 



The previous chapter addressed solids with spatial confinement at the 
nanometer scale along one direction: surfaces, interfaces, and quantum wells. 
These systems were effectively two-dimensional, which we define as extended 
in two directions but of nanometer scale in the third. Only a small number of 
quantized states-often only one-are occupied in the confined direction. In 
this chapter we discuss solids confined in either two or three orthogonal direc- 
tions, creating effectively one-dimensional (ID) or zero-dimensional (OD) 
nanostructures. Important 1D examples are carbon nanotubes, quantum 
wires, and conducting polymers. Examples of OD systems include semiconduc- 
tor nanocrystals, metal nanoparticles, and lithographically patterned quantum 
dots. Some examples are shown in Figs. 1 to 3. We will almost exclusively focus 
on nanostructures that are created from confined periodic solids. Nonperiodic 
nanostructures are of great interest in other fields, such as molecular assem- 
blies in chemistry and organic macromolecules in biology. 

The techniques for the creation of nanostructures can be divided into two 
broad categories. Top-down approaches use lithographic patterning to struc- 
ture macroscopic materials at the nanoscale, such as the metallic electrodes 
on top of a semiconductor heterostructure shown in Fig. 1. Bottom-up ap- 
proaches utilize growth and self-assembly to build nanostructures from atomic 
or molecular precursors. A CdSe nanocrystal grown in solution is shown in 
Fig. 2. It is typically difficult to create structures smaller than 50 nm with 

Figure 2 Model and transmission electron lnicroscope (TEM) image of a CdSe nanocrystal. 
Individual rows of atoms are clearly resolved in the TEM image. (Courtesy of A. P. Alivisatos.) 



Figure 3 Atomic force microscope (AFM) ili~age of.1 pair of crossed carbon nanotuhes contacted 
by Au electrodes patterned by electron beam lithography. (Image courtesy of M. S. Fuhrer.) Also 
shown is a model of the nanotube cross region, showing the honeycomb lattice of the graphene 
sheets that form the nanotube walls. (Courtesy of P. Avouris.) 

top-down techniques, while it is often difficult to create structures larger than 
50 nm by bottom-up techniques. A major challenge of nanoscience and tech- 
nology is to combine these approaches and develop strategies to reliably create 
complex systems over all length scales, from the molecular to the macroscopic. 
Figure 3 shows one example, where 100-nm-wide lithographic electrodes make 
contact to 2-nm-wide carbon nanotubes grown by chemical vapor deposition. 

When the extent of a solid is reduced in one or more dimensions, the 
physical, magnetic, electrical, and optical properties can be dramatically al- 
tered. This makes nanostructures a subject of both fundamental and practical 
interest; their properties can be tailored by controlling their size and shape on 



the nanometer scale. One class of effects is related to the large ratio of number 
of surface atoms to bulk atoms in a r~anostructure. For a spherical nanoparticle 
of radius R composed of atorrls with an average spacing a, thc ratio is given by 

For R = Ga - 1 nm, half of the atoms are on the surface. The large surface 
area of nanoparticles is advantageous for applications in gas storage, where 
molcculcs are adsorbed on the surfaces, or in catalysis, wl~ere reactions occur 
on the surface of the catalyst. It also has dra~rlatic effects on the stability of thc 
nanoparticle. The cohesive energy is dra~natically lowercd because atoms on 
the surcace are inco~npletely bonded. Yanoparticlcs therefore melt at temper- 
atures far below the melting temperaturc of the corresponding bulk solid. 

The fundamental electronic and vibrational excitations of a nanostructure 
also become quantized, and these excitations determine many of the most irnpor- 
tant properties of the nanostructured material. These quantization phenomena 
will be the primary subject of this chapter. Typicdl5 they are important in the 
1-100-nanometer size range. 

IMAGING TECHNIQUES FOR NANOSTRUCTURES 

The development of new techniques to image and probe nanostructures 
has been essential to the evolutior~ of the field. For periodic 3D structures, the 
diffraction of electrons or X-rays can be used to determine structure in rccip- 
rocal space, which can then be inverted to find the rcal-space atomic arrange- 
rnents, as discussed in Chapter 2. For individual nanoscale solids, diffraction is 
only of limited utility for both fundamental and practical reasons. The solid's 
small size intcrn~pts the periodicity of the lattice, blurring rllffraction peaks, 
and also produces a very small scattered signal. 

Real-space probes that can directly determine the properties of the nano- 
structure are therefore very valuable. These probes use thc interaction of a 

typically an electron or photon, with the object under study, to create 
an image. The techniques fall into two major classes, which we will refer to as 
focal and scanned probc. 

In focal microscopy, the probe particle is focused by a series of lenses onto 
the sample. Figure 4 shows a schematic. The ultimate resolution of the system 
is limited by the wavelike nature of the particle through the Heisenberg Un- 
certainty Principle, or, equivalently, diffraction. This smallest fcature spacing 
d that can be resolved is given by 

where h is the wavelength of the probe and P = sin 8 is the numerical 
aperture defined in Fig. 4. Achieving nanoscale resolution rcqnires using par- 
ticles with srnall wavelengths and maximizing the nnmerical aperture. 



1 Source 

Figure 4 Schematic diagram of a focal mi- 
croscope. A beam emitted from a source is 
focused onto the sample by a series of lenses. 
An equivalent focal system can be used to 
focus particlelwaves emitted from the sample 
onto a detector. 

In scanned probe microscopy, by contrast, a tiny probe is brought close to 
the sample and scanned over its surface. The resolution of the microscope is 
determined by the effective range of the interaction between the probe and 
the structure under study, rather than by the wavelength of the probe particle. 

In addition to imaging, scanned and focal probes provide information 
about the electrical, vibrational, optical, and magnetic properties of individual 
nanostructures. Of particular importance is the electronic structure, expressed 
in the density of states. For a finite-sized system, the density of states is a se- 
ries of delta functions 

D(E) = Z ~ ( E  - E,) , 
I 

(3) 

where the sum is taken over all the energy eigenstates of the system. For 
extended solids, the density of states can be represented by a continuous func- 
tion, but for a nanostructure the discrete sum form is necessary along the con- 
fined directions. This quantized density of states determines many of the most 
important properties of nanostructures, and it can be directly measured using 
the techniques described below. 

Electron Microscopy 

A very powerful focal tool is the electron microscope. A collimated beam 
of electrons is accelerated by high voltages and focused through a series of 
electrostatic or magnetic lenses onto the sample under study. 

In transmission electron microscopy, or TEM, the electron beam trav- 
els through the sample and is focused on a detector plate in much the same 



way as the image is focused onto the eyepiece of an optical microscope. The ul- 
timate resolving power d is set by the wavelength of the accelerated electrons 

where V is the accelerating voltage (measured in volts). For typical accelerat- 
ing voltages (100 kV), the theoretical resolving power is therefore subatomic. 
Other effects, such as imperfections in the lenses, keep the TEM resolution well 
above this limit, hut d-  0.1 nm has been acllieved. Figure 2 shows a TEM 
irnage of a semiconductor nanocrystal, where rows of atoms are clearly resolved. 

,4 major limitation of TEM is that the electron beam must penetrate the 
sample, making it impossible to examinc stn~ctnres on solid substrates. This 
problem is overcome in the scanning electron microscope (SEM). In an 
SEM, a high-energy (100 V to 100 kV), tightly focused electron beam is scanned 
over the sample. The numhcr of hackscattered electrons and/or the secondary 
electrons generated by the beam that emerge from the sample depends on the 
local composition and topography of the sample. These electrons are collected by 
an electron detector, and an image is fornled by plotting this detector signal as a 
function of the beam location. This powerful technique can be used on most 
kinds of samples, but it typically has a lower resolution (>1 nm) than the TEM. 
Figure 1 is an SEM irnage of metallic electrodes on a GaAsIAlGaAs substrate. 

In addition to imaging, the SEM beam can be used to expose an electron- 
sensitive material and draw small features in a technique known as electron 
beam lithography. The ultimate resolution (<10 urn) is very high, but it is a 
slow process because the patterns must be drawn pixel by pixel. It is therefore 
used primarily in research, prototyping, and optical mask fahrication. 

Optical Microscopy 

The optical microscope is the prototypical focal instrument. Using visi- 
ble light and a high numerical aperture ( P  = I ) ,  the highest obtainable resolu- 
tion is 200400 nm. For direct imaging, optical microscopy thcrcfore only 
reaches the edge of the nanoscale realm. However, inany of the optical spectro- 
scopies discussed in Chapter 15 have been successfully adapted to study 
individual nanostructures. These include elastic light scattering, absorption, 
luminescence, and Raman scattering. Measurements of a single nanostructure, 
or even a single molecule, are possible if only one is in the field of view of the 
microscope. 

Here we briefly review the emission and absorption of electromagnetic 
radiation by matter in a manner suitable for applications to nanostnictures. 
Within the electric dipole approximation, Fermi's golden rule gives the transition 
rate between an initial state i and a higher energy statcj due to absorption: 



Transitions therefore occur between states that have a nonzero dipole matrix 
element and whose energies differ Ly the absorbed photon energy hw. Simi- 
larly, the emission rate from statej to i is given by 

2 I+,= (~n-/fi)l(jle~.rli)l  - E; + hw) + (4rrw;/c2)l{jlrli)12 , (6) 

where wji = (8, - ei)/fi and a is the fine striicturc constant. The first and sec- 
ond terms represent stimulated and spontaneous emission, respectivcly. 

By summing over all possible states, these relations can be used to calcll- 
late the total power u'E2 absorbed frorr~ tlle electromagnetic field and hence 
the real part of the conductivity: 

where ii is a unit vector pointing in the direction of the electric field. The 
absorption is proportional to the joint density of all initial and final states sepa- 
rated by an energy hw, weighted by the dipole matrix elemcnt and thc occupa- 
tion factors of the states. The Fermi functions inmcate that absorption only 
occurs when the initial state i is filled and the final statej is empty. 

The above relations show that absorptio~l and emission can be used to 
probe the rlectronic energy level spectra of nanostructures. Measurerr~erlts can 
readily he performed on macroscopic collections of no~nina l l~  identical narios- 
tructures, hrlt the effects of inhomogcnous broadening due to the variation in 
the properties of the individual nanostnlct~lres are significant. Furthermore, 
sometimes only a few or even a single nanostructure is a\-ailahle for measnre- 
rnent. Optical measurements that probe single nanostructures have therefore 
proven to be particularly valuable. 

Figure 5 shows an example of spor~taneous emission, or  fluorescence, from 
individual optically excited semiconductor quantu~n dots. The ernission occurs 
from the lowcst cner,g state in the conduction band to the highest energy state 
in the valence band. The linewidths of the emission lines from single nanocrys- 
tals are very narrow, bnt they are distributed over a rangc of energies due to 
variations in the nanocrystal size, shape, and local environment. Meas~lremmts 
of an ensemble therefore show a broad peak that does not accurately reflect the 
properties of a single nanocrystal. 

In addition to their use in probing nanostructures, optical focal systerms 
arc also widely used for microfabrication. In projection photolithography, a 
pattern on a mask is projected onto a photosensitive resist using optical 
elements. Following exposure and development of the resist, the pattern is 
transferred into the material of interest by etching or deposition through the 
resist stencil. Optical lithography is the basis for the mass-fabrication of 
microelectronic and microrrlechanical systems. By using wavelengths into the 
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Figure 5 Left: Image of the fluorescence from individual CdSe nanocrystals dilutely distributed 
on a surface at T = 10 K. Right: Spectra of the fluorescence of a number of different individual 
nanocrystals. In each spectrum, the high-energy peak is the primary transition between the lowest 
electronic state in the conduction band and the highest energy state in the valence hand. The 
lower energy peaks are associated transitions involving the emission of an LO phonon. Variations 
in the nanocrystal size and local electronic environment shift the positions of the peaks. The broad 
peak is the spectrum obtained for an ensemble of nominally identical nanoclystals. (After 
S. Empedocles et al.) 

deep-UV, devices with features of 100 nm are in commercial production. Fur- 
ther improvements using Extreme UV light or even X-rays are possible, but 
the masks and focusing elements become more and more challenging to fabri- 
cate and control. 

Scanning Tunneling Microscopy 

The most famous scanned probe instrument is the scanning tunneling 
microscope (STM), schematically shown in Fig. 6. Its invention was a break- 
through in the field of nanoscience. In an STM, a sharp metal tip, preferably 
one with a single atom protruding from the end, is brought to within a 
nanometer of the conducting sample to be studied. The position of the tip is 
controlled with picometer precision using piezoelectric materials that expand 
or contract in response to electrical signals from a control system. A voltage 
bias V is applied to the sample, and a tunneling current I flowing between 
the tip and the sample is measured. The current is proportional to 3, the 



Figure 6 Schematic of a scanning tunneling microscope (STM). Ilihen operated in feedback 
mode, the piezos scan the tip over the sample and maintain a constant tunneling current between 
the tip and the sample. (Courtesy of D. LePage.) Lower: STM image of a carbon nanotube. (Cour- 
tesy of C. Dekker.) 

tunneling probability through the gap between the tip and sample. The 
tunneling probability is exponentially sensitive to the tunneling distance. In 
the WKB approximation, 

where z is the distance between the tip and sample and 4 is the effective bar- 
rier height for tunneling. For typical parameters, a 0.1-nm change in the tip 
position leads to an order of magnitude change in 3. 

When the STM operates in feedback mode, I is maintained at a con- 
stant value by changing the tip height z. The STM thus tracks the surface 
topography, and very small changes in the height of the surface can be detected 



Figure 7 A "quantum corral" of mean radius 7.1 nm was formed by moving 48 Fe atoms on a Cu 
(111) surface. The Fe atoms scatter the surface state electrons, confining them to the interior of 
the corral. The rings in the corral are the density distribution of the electrons in the three quan- 
tum states of the corral that lie close to the Fermi energy. The atoms were imaged and moved into 
position by a low-temperature, ultra-high vacuum scanning tunneling microscope. (Image cour- 
tesy of D. M. Eigler, IBM Research Division.) 

(<1 pm). This is illustrated in Fig. 6, where an STM image of a carbon 
nanotube is shown. The STM can also be used to manipulate individual atoms 
on a surface. An example is shown in Fig. 7, where the STM tip is used to con- 
struct a "quantum corral" by pushing Fe atoms on a Cu (111) surface into 
a ring. 

The STM tunneling current I as a function of bias V can give spatial and 
spectroscopic information about the quantum states of a nanostructure. At 
zero temperature, the derivative of the current with respect to voltage is 

It is proportional to the density of states at the tunneling electron energy 
eF + eV, weighted by the electron probability density of those states at the 
STM tip position r,. 

For the quantum corral, the electrons in the 2D surface state of Cu are re- 
flected by the Fe atoms, creating a discrete set of states in the interior of the 
corral. The observed ripples in the image in Fig. 7 are due to the modulations 
of the probability density l+,(rt)l2 of these localized states near the tunneling 
electron energy. Images at different bias voltages yield the spatial structure of 
quantized states at different energies. 



Atomic Force Microscopy 

The atomic force microscope (AFM) was developed soon after the STM. 
It is a much more flexible technique than STM and can be used on both con- 
ducting and insulating samples. However, it typically has poorer resolution. An 
AFM measures the force between the tip and the sample, rather than the tun- 
neling current. A sharp tip is mounted on the end of a millimeter-sized can- 
tilever, as shown in Fig. 8. A force F exerted on the tip by the sample deflects 
the cantilever by Az: 

where C is the force constant of the cantilever. The displacement of the can- 
tilever is measured as a function of tip position, often by using the back of 
the cantilever as a reflector for a laser beam (Fig. 8). Motion of the reflector 
changes the path of the laser beam, which is detected using a photodiode array; 
picometer-scale displacements can easily be measured. Since a typical value of 
the force constant is C = 1N/m, pN-scale forces can be transduced. Forces well 
below 1 fN have been measured under special circumstances. 

The simplest mode of operation is contact mode, where the tip is dragged 
along in contact with the surface and the cantilever deflection is measured. 
This gives a measure of the sample topography, but it can damage the sample. 
Noncontact or intermittent-contact imaging modes are less invasive, and they 
also can give information about the long-range forces between the sample and 
the tip. In these techniques, the cantilever oscillates just above the sample 
due to an applied driving force of amplitude F,  near the cantilever resonance 

Figure 8 (a) Schematic of an atomic force microscope (AFM). Deflections of the cantilever are 
measured by a photodetector registering the position of a laser beam that reflects off the top of 
the cantilever. (Courtesy of Joost Frenken.) Inset: SEM image of an AFM tip. The effective 
radius of curvature of the tip can he less than 10 nm. 
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frequency o,. Modeling the cantilever as a driven simple harmonic oscillator, 
the magnitude of the cantilever response at a frequency o is given by 

where Q, the quality factor of the oscillator, is the ratio of the energy stored 
in the cantilever to the enerm dissipated per cycle. Note that on-resonance, 
w = o, ,  the response is Q tirnes larger than at low frequencies, making the 
dctcction of small forces possible. 

The parameters charactcrixing the oscillating cantilever are sensitive to 
any forces that occur between the tip and the sample. These forces can he van 
der Waals, electrostatic, magnetic, or many others. Thc interaction shifts the 
resonance frequency w,  andlor modifies Q. This change is recorded and uscd 
to construct an image. For example, in tapping mode imaging, the tip 'taps' the 
surface during the closest approach of the oscillation cycle, causing both a fre- 
qucncy shift and additional dissipation. The nanotube device shown in Fig. 3 is 
imagcd in tapping mode. 

Another important technique is Magnetic Force Microscopy (MFM), 
briefly discussed in Chapter 12. The tip is coated with a magnetic material 
so that it has a magnetic moment p normal to the surface of the sample. It 
then feels a force due to variations in local magnetic fields produced by the 
sample 

where 2, is the tip's equilibrium position and Az is the displacement during the 
oscillation. The term p(aB/az) produces a static deflection of the cantilever, 
but does mot alter the oscillation frequency or the damping. The term 
p(a2~laz2)Az, OII the other hand, has the form of a force constant change 6C, 
since it is linear in the displacenlent Az of the cantilever. It therefore shifts the 
resonance frcqucncy of the cantilever. Monitoring this frequency shift 
produces an image. Gradicnts of other local force fields can be similarly 
measured. 

There are many other scanned probe techniqnes. Ncar-ficld scanning 
optical ~nicroscopy (NSOM) creates optical images with a resolution below 
the diffraction limit by using a scanned subwavelength aperture through 
which photons 'tunnel'. Scanning capacitance microscopy (SCM) measures 
capacitancc variations between the tip and the sample as a function of posi- 
tion. This ever-growing family of techniques is increasingly used to character- 
ize objects ranging from individual molecllles to Si transistors in integrated 
circuits. 



ELECTRONIC STRUCTURE OF 1D SYSTEMS 

The quantized electro~lic states of nanostructures deterrr~ir~e their electri- 
cal and optical properties, and they influence the physical and chemical prop- 
erties as well. To descrihe these states, we take as our starting point the band 
structure of the bulk material. An effective mass approximation is used tbr thc 
electronic dispersion of a given hand, and the associated wavefiinctions are 
treated as plane waves. These are simplifications; the bands are not always par- 
abolic, and the true eigenstates are Bloch states, not plane waves. However, 
these assumptions greatly simplify the ~nathenlatics and are qualitatively (and 
often quantitatively) correct. We will also often neglect the Coulomb interac- 
tions hctwccn clcctrons. However, thcre are many cases in the physics of 
nanostructi~res where electron-electron interactions cannot bc ignored, as dis- 
cussed later in this chapter. 

One-dimensional ( ID)  Subbands 

Consider a nanoscale solid in the geometry of a wire. Its dirnensions along 
the r and y are nanoscale, but it is continuous in z .  The energies and eigen- 
states of such a wire arc: given by 

E = eiZj + fi2k2 / 2 m  ; +(x,y,z) = +i,j(x,y)eikz , (13) 

where i a n d j  are the quantum numbers labeling the eigenstates in the r,y 
plane and k is the wavevector in the z direction. For the rectangular wire 
shown i11 Fig. 9, E , ~  and +,J ((~,y)  are just particle-in-a-box energies and eigen- 
states discussed in Chapter 6. 

The dispersion relation consists of a series or 1D subbands, each corre- 
sponding to a different transverse energy state E,,,. The total density of elec- 
tronic states D(E) is the sum of thc dmsity of statcs of thc individual subhands: 

where Did(&) is given by 

k - i z , r z , ~ [  rn ]lb - Di,,(s) = -- - - -- 
dk dE 

4L for 6 > cSi 
2n 2f i2 (& - E , ~ )  hvif (15) 

= 0 for E < E , ~  

The first factor of two in the middle expression is due to spin degeneracy and 
the second from incltiding both positivc and ncgativc values of k. I11 thc right 
expression, v , ,~  is the velocity of the electron in the i,j suhhand with kinetic 
energy E - E ~ ~ .  Note that the density of states diverges as (E - E,,~)-'~' at each 
subband threshold. These are called van Hove singularities. This behavior 
stands in contrast to three dimensions, where D(E) goes to zero at low energies 
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Figure 9 Schematic of a rectangular quasi-one-dimensional wire, along with the dispersion rela- 
tions and the dens~ty of states of the 1D subbands. The peaks in the density of states at the sub- 
band thresholds are called Van Hove singularities. The probability density for the i = 2, j = 1 state 
is shown as a gray scale on the cross section of the wire. 

(Chapter 6), and two dimensions, where D(E) steps up a constant value at the 
bottom of each 2D subband (Prob. 17.3) 

Spectroscopy of Van Hove Singularities 

The Van Hove singularities described by (15) affect the electrical and opti- 
cal properties of 1D systems. Here, we discuss the case of a semiconducting 
carbon nanotube, whose band structure is calculated in Prob. 1 and shown in 
Fig. 10a. Van Hove singularities are seen in scanning tunneling spectroscopy, 
as shown in Fig. lob. Peaks in the differential conductance, which is propor- 
tional to the density of states by (9), are observed at bias voltages correspond- 
ing to the energies of these singularities. 

The optical absorption and emission of semiconducting nanotubes are also 
dominated by these singularities, since they depend on the initial and final 
density of states by (5)-(7). Figure 10c shows the photoluminescence intensity 
of a collection of carbon nanotubes as a function of the wavelength of the ex- 
citing and emitted light. The absorption of the incident light is enhanced when 
the energy matches E,, - E,,, the energy difference between the 2nd Van Hove 
singularities in the conductance and valence bands. The electrons and holes 
relax quickly to the bottom of the first subband, where they recombine, 
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Figure 10 (a) The density of states for a semiconducting carbon nanotube as a function of 
energy. The Van Hove singularities are seen in the STM tunneling spectra of a nanotube shown in 
(b). In (c), the emission intensity is plotted as a function of the emission wavelength and the exci- 
tation wavelength. Peaks in the intensity are observed when the absorption and emission energies 
correspond to those shown in the diagram (a). Different peaks correspond to nanotnbes with 
different radii and chirality. [After Bachilo et al. (a and c) and C. Dekker (b).] 



producing luminescence with energy - E , ~ .  Peaks are therefore observed 
when the emitted and absorbed light simultaneously match the energies be- 
tween the 1st and 2nd van Hove singularities, respectively. Different peaks in 
the emission intensity in the plot correspond to nanotubes of varying diame- 
ters and chiralities. 

1D Metals-Coulomb Interactions and Lattice Couplings 

In a quasi-one-dimensional metal, electrons fill up individual 1D sub- 
bands, with the Fermi energy and the total number of subbands occupied de- 
termined by the electron density. For a strictly 1D metal, there is only one 
(spin-degenerate) subband occupied. In this case, if there are nlD carriers per 
unit length: 

The Fermi surface of a 1D metal consists of just two points, at +k, 
and -kF, as shown in Fig. 11. This is quite different from the Fermi surfaces 
in 3D and 2D free-electron metals, which consist of a sphere and a circle, 
respectively. Two consequences of this unusual Fermi surface are discussed 
below. 

Coulomb interactions cause scattering among electrons near the Fermi en- 
ergy. For 3D metals, scattering is strongly suppressed near &, by the restrictions 
of energylmomentum conservation combined with the Pauli exclusion principle. 
At an energy E measured relative to E,,  IT,, = ( 1 1 ~ ~ )  (E/&,)~, where 117, is the 

Figure 11 Electronic structure of a 1D metal near the Ferlni energy. The Fermi surface consists 
of two points at + k,. The scattering of electrons from filled states 1 and 2 to empty states 3 and 4 
conserves energy as long as the energy difference is the same between 1 and 3 and between 2 and 
4. Momentum is simultaneously consewed because the energy is locally linear ink. 



classical scattering rate. By the uncertainty principle, this prod~ices an iincer- 
tainty in thc energy of the electron: 

8 ~ ( 3 ~ )  =  IT,, - ( ~ L / T ~ ) ( E / E ~ ) ~  . (17 )  

As the energy becomes small (measured relative to E ~ ) ,  the uncertai~ity ~ I I  the 
energy goes to zero as the second power of E .  The uncertainty 6.3 is therefore 
guaranteed to be small in conlparison to .s sufficiently close to 8,. This ensures 
that the quasiparticles near the Fermi surfacc arc wcll dcfincd. 

Thc case of one dimension is shown in Fig. 11. Energy and momentum 
conservation are eqriivalent in this case since for small s the energy is locally 
linear in the momentum change Ak = k-k,: 

Referring to Fig. 11, energy conservation requires that for an electron in state 
1 at energy E to scatter to state 3,  a si~nultaneous scattering of an electron from 
state 2 to 4 must occur. The only restriction is that the final state encrgy 3 bc 
positive and less than E .  This gives a rcduction factor I/%, - ( l / r 0 )  (sIsFJ, and, 
from the uncertainty principle, 

Since the uncertainty is linear in s, there is no guarantee that 8 s  will be 
smaller than E as E + 0. The fundamental assu~r~ption behind Fermi liquid 
theory, that weakly interacting quasiparticles exist as E + 0, is therefore not 
guaranteed in I D .  In fact, the ground state of the interacting I D  clcctron gas 
is believed not to be a Fermi liquid, but rather a Luttingcr liquid whose low- 
energy excitations are collective in nature. Thc cxcitations are more analogous 
to phonons or plasmons-a collective motion of many objects-than isolated 
electrons moving independently of their neighbors. This collective nature has 
a number of effects. For example, tunneling into a 1D rr~etal is suppressed at 
low energies because the tunneling electron must excite the collective modes. 
In spite of this issue, the independent electron picture rerrlains a useful ap- 
proxiniatiori for the 1D electron gas. It has been successful in describing most, 
but not all, experiments on real 1 D  systems, and will bc adoptcd below. 

A second unusual propcrty of 1D metals is that they are unstable to per- 
turhations at a wavevector 2kp For example, a &stortion of the lattice at this 
wavevector will open up a bandgap in the electronic spectrum, converting the 
metal to an insulator. This is the Peierls instability treated in detail in Chapter 
14. This effect is particularly important in 1U conducting polylners such as 
polyacetylene (Fig. 12).  It has one conduction electron per carbon atom spac- 
ing a, and therefore from ( 1 6 )  kF = 7ri2n. Without any distortions, polyacety- 
lene would have a half-filled band and be a metal. However, a lattice distortion 
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Figure 12 Structure of polyacetylene. Doe to the Peierls distortion, the lattice is dimerized, with 
carbon atoms joined by douhlc bonds in the diagram closer together than those linked by single 
bonds. The Peierls distortion opens a semiconducting gap o l  approximately 1.5 e17. 

at 2k ,  = nla, corresponding to a wavelength 2a, opens up a gap at the Fermi 
cnergy. This corresponds to a dimerization of the lattice. This dimerization 
produces alternating single and double bonds along the chain and turns poly- 
acetylene into a se~r~iconductor with a bandgap of 1.5 e\! 

Polyacetylene and related semiconducting polymers can be made into 
field-effect transistors, light-emitting diodes, and other semiconducting de- 
vices. They can also he doped chemically, producing metallic behavior with 
conductivities comparable to traditional metals. However, they retain the me- 
chanical flexibility and ease of processing characteristic of polymers. Their dis- 
covew has led to a revolution in flexible plastic elcctronics. 

A 

The Peierls distortion is large in polymers because their backbone consists 
of a single atomic chain, \vhich can casily distort. Other 1D systems such as 
nanotubes and nanowires arc much stiffer, and the Peierls transition is not ob- 
served at experimentally relevant temperatures. 

ELECTRICAL TRANSPORT IN 1D 

Conductance Quantization and the Landauer Formula 

A 1D channel has a finite current-carrying capacity for a given voltage ap- 
plied across its ends. It therefore llas a finite conductance even if there is no 
scattering in the wire. Cor~sider a wire with one siihband occupied connecting 
two larger reservvirs with a voltage difference V between them, as shown in 
Fig. 13. The right-going states will be populated up to an electrochemical po- 
tential pi and left-going states will he populated up to fi2, where p, - p2 = qV 
and 9 = -e for clcctrons and + e  for holes. The net current flowing throngh 
the channel due to the excess right-moving carrier density An is then 

D,(s)qV 
I = Anqv = - 

243% 2 vq2\r = -v L 4O=hz; h '  

where DR(&), the density of states of right-moving carriers, is '/2 the total den- 
sity of states given in (15). 



Figure 13 (a) The net current propagating between two reservoirs for an applied bias voltage dif- 
ference V, - V,. (b) Schematic representation of transmission probability 3 and reflection proba- 
bility !I? from a barrier in the channel, where 3 + !I? = 1. 

Remarkably, in 1D the velocity exactly cancels with the density of states to 
create a current that depends only on the voltages and fundamental constants. 
The two-terminal conductance I/V and resistance V/I are then 

A perfectly transmitting one-dimensional channel has a finite conductance 
whose value is the ratio of fundamental constants. This is called the conduc- 
tance quantum GQ; its inverse is called the resistance quantum RQ. While 
derived here in the effective mass approximation, it is true for a 1D band of 
arbitrary dispersion. 

The quantization of conductance is dramatically illustrated in the data in 
Fig. 14. A short quasi-1D channel is formed between two regions of a 2D elec- 
tron gas in a GaAs/AlGaAs heterostructure. As the carrier density of the chan- 
nel is increased, the conductance increases in discrete steps of height 2e2/h. 
Each step corresponds to the occupancy of an additional 1D subband in the 
wire. Conductance quantization is also observed in atomic-scale bridges be- 
tween macroscopic metals. 

If the channel is not perfectly conducting, the overall conductance is the 
quantum of conductance times the probability 3(+) for electron transmission 
through the channel (Fig. 13): 
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Gate voltage (volts) 

Figure 14 Conductance quantization in a short channel electrostatically defined in a GaAsI 
AlGaAs heterostmcture at different temperatures. A negative gate voltage Vg applied to the metal- 
lic gates on the s~lrface of the sample depletes the carriers in the underlying two-dimensional 
electron gas, creating a narrow channel. The channel is fully depleted of carriers at Vp = -2.1V 
Individual 1D subbands become occupied with increasing VR, with each new subband adding a 
conductance of 2e'llz. (Courtesy of H. Van Houten and C. Beenakker.) 

This equation is often called the Landauer Formula. For a quasi-1D system 
with multiple channels, we sum over the contributions of each channel, since 
conductances in parallel add: 

where i, j label the transverse eigenstates. For example, for N perfectly 
transmitted channels in parallel, 9 = N, as for the data in Fig. 14. 



At finite temperatures or biases, the Fermi-Dirac energ); distributions f  of 
thc clcctrons in thr left and right lcads must hc takcn into account: 

m 

I ( s ,V ,n  = (%/h j  1 blip - rb7j - f n ( s j ] 3 ( r )  . (24)  
-a 

The net current is simply the difference behveen the left- and right-moving 
currents, intcgratcd ovrr all mcrgics. 

The Landauer formula (22)  directly relates the resistance of a system to the 
transmission properties of the channel. Let us rewrite the resistance for the 
one-channel case in the following way: 

where A = 1 - 3 is thc rcflcction corfficicnt. Thc rcsistancc of the device is 
the sum of the first term, the quantized contact resistance, and the second term, 
the resistance due to scattering from barriers in the channel. The latter term is 
zero for a perfect conductor. Below we consider an application of the Landauer 
formula to the proble~ri of two barriers in series. We treat this ill both the colier- 
ent and incoherent limits o l  electron propagation between the barriers. 

Two Barriers in Series-Resonant Tunneling 

Consider two barriers in series separated by a distance L, with transmis- 
sion/reflection amplitudes t,, r, and t,, r,; as shown in Fig. 15. These ampli- 
tudes are complex: 

To calculate the transmission probability 3 t l~rougl~ t l ~ e  entire double barrier 
structure, we need the corresponding tra~lsrrlissio~l amplitude. For an incident 
wave from the left whose amplitude is 1, the amplitudes defined in Fig. 15 arc 
givcn by 

where p = 2kL is the phase that an clcctron with kinctic energy h2k2/2m accll- 
mulates propagating the distance 2L on a round trip between the barriers. 
Combining these to solve for the transmitted amplitude yields: 

The tra~is~nission t l~rougl~ the double barrier is then 

3 = I C i Y  = 
It, l"t2 IZ 

l+  lrl 121r2 l2 - 21r1 I Ir2 lcos(va) 

where p* = 2 7 ,  + cp,, + cp, 
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Figure 15 Resonant tunneling through two identical barriers in series separated by a length L. 
The upper diagram shows the transmission amplitudes between and outside the barriers for a 
unity amplitude incident wave. The transmission resonances at the energies of the quasibound 
states between the barriers are shorn. 

This is plotted in Fig. 15. Note the round-trip phase accumulation cp* includes 
the phase shifts associated with reflections from the barriers. 

The transmission probability (29) is greatly enhanced when cos(q~*) ap- 
proaches unity, because the denominator becomes small. This occurs for the 
resonance c o d t i o n  

where n is an integer. This is a general property of waves, and is due to the 

constructive interference of many pathways through the sample. This can be 
m 

easily seen by rewriting (28) using the series expansion 1/(1 - x) = 2 xm: 
m=O 

The mth order in the expansion corresponds to a path with m round trips be- 
tween the barriers. On resonance, these paths add in phase to yield a strongly 
enhanced transmission. 

Consider the special case where the barriers are the same: t l  = t,. We 
then have 

The transmission on resonance through a symmetric double-barrier structure 
is 1, even if the transmission through each of the individual barriers is small. 



This is called resonant tunneling. Ollresonance, the denominator of (29) is of 
order unity for opaque barriers, and the transmission is ronghly the product of 
the transmission coefficients of each of the two barriers in series: 3 - ltll"t212. 

The resonance condition 9* = 2 m  corresponds to the energies of the 
quasibound electronic states confined between the two barriers. For very 
opaque walls, this is just the particle-i~i-a-box quantizatiorl condition: kL = ml. 

We derived the resonant tunneling condition for a one-dimensional case, but it 
is a general result. The transmission through a confincd clcctron systcm is 
strongly enhanced at energies corresponding to the hound-state energy levels 
of the confined electrons. This is also evident from the STM tunneling expres- 
sion (9); quasibound states produce peaks in the differential conductance. 

For the case of opaque barriers, lt,l~It,l2 91, the cosine term in the de- 
nominator of (29) can be expanded, as shown in Prub. 3, yielding the familiar 
Breit-W7igner form for a resonance: 

4rJ-2 A< 
'(&) -- ( r L  +r2)' + 4(& & , , ) 2  

where r. = - It ' . 
J 2Tr J 

(33) 

The resonances are thus Lorentzian peaks with a width in energy of r = 

r, + r2 determined by the energy level spacing A& and the tra~~s~rlission prob- 
abilities through the two barriers. This is just the uncertainty principle broad- 
ening of the level due to the finite lifetime of the double-barrier bound state. 

Incoherent Addition and Ohm's Law 

If we instead treat the electron classically, we add probabilities rather than 
amplitudes. This is valid if the electron effectively loses track of its phase be- 
tween the barriers due to, for example, inelastic scattering from phonons. This 
corresponds to replacing (27) by 

I n 1 2 = l t 1 1 2 + j r l / Z / h 1 2 ;  h 2 = a 2 r 2 ;  I ~ i ~ = l a 1 ~ 1 t ~ ~ .  (34) 

This gives 

Some elementary manipulations (Proh. 4) yield 

The resistance is just the sum of the quantized contact resistance and the 
intrinsic resistances of the indwidual barriers (see Eq. 25). This is Ohm's law- 
resistors in series add. It is valid if interference effects can be neglected. 

Equation (36) allows us to connect to the Drude Iormula. Consider a process 
that gives a backscattering rate l/rh This backscattering could rcsult from either 
an elastic scattering process such as impilrity scattering or from an inelastic 



process such as phonon scattering. For propagation over a small distance dL, the 
reflection probability d% (@ 1) is 

This gives a contribution to the resistance, yielding a resistivity: 

= t l ~ l d ~  = (h/2e2)lCb . (38) 

This is equal to the 1D Drude resistance a;; = (nlDe2r1m)-', as shown in 
Prob. 4. Ignoring interference effects, the resistances of individual segments 
add ohmically, giving 

R = R ~ + ( ~ / % " ) L / ~ ~ )  . (39) 

Localization 

Now consider when two barriers are connected in series, hut coherence is 
not neglected. However, we average over all possihle phases, corresponding to 
an average over different energies. From Eq. (29), the average resistance is 

Notably, the phase-averaged resistance (40) is larger than the resistance in the 
incoherent limit (36). 

To understand the scaling with length associatcd with (40), consider a long 
conductor of length L consisting of a series of only elastic (phase-prese~ng)  
scatterers cl~aracterized by an elastic backscattering length C , .  Assume that the 
conductor has a large rcsistance (R), so that 31 = 1 and 3 4 1. For a small 
additional length dL, there will be an additional reflection and transmission 
d31 = dLlC,, as in (37), and d9 = 1 - d31. Combining these according to the 
prescription of (40), and assuming that d31 4 1, gives 

or equivalently, 

( d ~ )  = ( ~ ) ( 2 d ~  I C,) 

Separating variables and integrating both sides of the eqnation yields 

(R) = (h / 2e2) exp(2L 1 tz) . (43) 

Remarkably, the resistance grows exponentially with the length of the sample, 
rather than linearly as in an ollrnic conductor. This bchavior is a result of localiza- 
tion. Due to quar~tu~rl interference among the states scattered by disorder, the 
states become localized on a size scale 8 - C,, where 6 is called the localization 



length. There are no extended states that traverse the cntirc lcngth of thc con- 
ductor, so the resistance is exponentially large. A similar result holds for quasi-1D 
systems, but with a localization length 5 - Ne,, where N is the number of 1D 
subbands occupied. 

At very low temperatures, only coherent scattering processes occur arid 
thc rcsistance is exponentially large by (43). At finite temperatures, electrons 
retain their phase memory only over thc phase coherence length P, due to their 
interaction with other degrees of freedom such as phonons or electrons. This 
length typically is a power-law function of temperature, Y ,  = AT-", since the 
number of electronic and vibrational excitations present is a power law in T The 
resistance of each phase coherent segment can be approximated by (43) with t ,  
replacing L. The resistance of each phase coherent segrrlerlt decreases rapidly 
with increasing temperature (as the exponential of a power law in T). This 
dramatically decreases the overall rcsistancc, which is the (incoherent) series 
combination of L/ t ,  such phase coherent sections. At a siifficiently high tcm- 
perature where t!, 5 e,, all phase coherence is lost between scattering events 
and the ohmic expression (36) is applicable. 

A related issue is the nature of the electronic states in 2D and 3D systems 
in the presence of disorder. In 2D, it is believed that, for riorliriteractiiig elec- 
trons, all states are also localized by disorder. I11 3D, on the other hand, a criti- 
cal amount of disorder is required to localize the states. The subject of local- 
ization continlies to he of great fundamental intrrest and controversy, 
particularly when the effects of coulomb interactions between the electrons 
are included. 

Voltage Probes and the Buttiker-Lundauer Formalism 

In many measurements, Inore than two probes are connected to a conduc- 
tor. Some are used as voltage probes (which draw no nct cl~rrcnt from the 
sample) and others as current probes, as shown in Fig. 16. Biittiker extended 
the Landauer formalism to deal with this multiprobe case. Define 31nm' as 
the total transmission probability for an electron leaving contact in to arrive 
at contact n, including the contributions from all the 1D channels. For a 
current probe n with N,, channels, the electrochemical potential of the contact 
is fixed by an applied voltage, and the net current that flows through the con- 
tact is 

This is just the current flowing out of the contact rrlirius the currents flowing in 
that originated from each of the other contacts. Note that N ,  = z3'"2'"). which ,,! 
can be easily obtained from (44) by considering the equilibrium case where all 
the voltages are equal arid all the currents are zero. 



Figure 16 Schematic representation of a multiterminal conductor. Contacts 1 and 2 are current 
probes; contact 3 is a voltage probe. The transmission probability from contact 1 to 2 and from 
1 to 3 is schematically indicated. 

For a voltage probe, the potential V, adjusts itself so that no net current 
flows (I" = 0): 

2 3(nm)vm 
Vn = n i f n  

2 CJ(n,m) 
(45) 

m f n  

The electrochemical potential measured by the probe is the weighted average - 
of the electrochemical potentials of the different contacts, where the weight- 
ing coefficients are the transmission probabilities. - 

Equations (44-45) have a number of surprising consequences. Since the 
measured currents and voltages depend on 3("."), the details of the path that 
an electron takes in traversing the sample influences the resistance. A voltage 
probe can disturb the paths, and the measured voltage can in turn be affected 
by transmission through all parts of the sample. Below we present three exam- 
ples that illustrate these properties. 

Consider a voltage probe connected to the center of an otherwise ballistic 
1D conductor, as shown in Fig. 16. Assume that electrons leaving from probe 1 
either arrive at probe 2 or 3, but none are directly backscattered. The voltage 
read by probe 3 is then 

where for the last step we assumed that the voltage probe couples symmetri- 
cally to the left and right moving channels, 3(3.1) = 3 ( 3 , 2 ) .  The voltage mea- 
sured in the channel is just the average of the voltage of the two contacts. 

The current flowing out of contact 1 is given by: 

where (46) has been employed in the second step. Note that the presence of 
the voltage probe decreases the transmission below the unity value of a perfect 



Figure 17 Four-terminal Hall resistance measurements of submicron junctions of different 
shapes. In the junction shown schematically in the upper left, the Hall resistance is negative at 
small B and positive at large B. The reason is indicated in the diagram; at small B, the electrons 
bounce off the wall into the "wrong" probe. (After C. Ford et al.) 

channel. Some of the electrons scatter into the voltage probe, are re-emitted, 
and then return to contact 1. This shows that voltage probes are in general in- 
vasive; they influence what they measure unless they only couple very weakly 
to the system. 

Figure 17 shows a measurement of the Hall resistance of two nanoscale 
crosses patterned in a high mobility 2D electron gas whose geometries are 
shown in the insets. The junction region is ballistic, meaning that there is no 
scattering from disorder, only from the sample walls. The measured Hall resis- 
tance is not of the form B/n,e, where n, is the sheet carrier concentration, as 
expected for a macroscopic 2D electron gas, but has instead a number of 
notable features. Most surprisingly, the Hall voltage is of the opposite sign at 
low B compared to high B for the sample shown in the upper left inset. This 
can be easily understood from the shape of the classical electron paths 
sketched on the figure. At high B, the Lorentz force preferentially deflects the 
electron into the upper electrode, giving the expected sign of the Hall voltage. 
At low B, however, the electron bounces off the boundary of the conductor 
and arrives at the lower electrode, reversing the sign of the measured Hall 
voltage. For a small multiprobe conductor, the resistance is a measure of the 
electron trajectories through the sample and not simply related to intrinsic 
material properties like the electron density. 

Equations (44-45) can be used to treat arbitrarily complex microscopic (or 
even macroscopic) conductors. It has been widely used to describe measure- 
ments on small disordered metal samples at low temperatures as a function of 
magnetic field B. These samples have many transverse channels and contain 
impurities. The elastic scattering length 4, is less than the sample dimensions, 



but the phase coherence length 4, is greater. Electrons therefore propagate 
diffusively, but phase-coherently, through the sample. This is called the meso- 
scopic regime. In a semiclassical picture, the transmission amplitude between 
two probes n and m corresponds to the sum of many different classical paths 
through the sample: 

Note that the phase associated with each path amplitude a] contains a contri- 
bution from the magnetic vector potential A, as described in Appendix G. 
Since 3 ( n 3 m )  = It(n,m)12, quantum interference among different conducting path- 
ways through the sample modulates the transmission. 

An interesting example is shown in Fig. 18. On the left, the four-terminal 
resistance of a nanoscale metallic wire is shown. Aperiodic fluctuations are 
seen in the conductance versus magnetic field B. These fluctuations are due to 
modulations of the interference between the many diffusive paths linking the 
contacts. Since there are many paths, the result is an essentially random varia- 
tion. These modulations are referred to as conductance fluctuations. 

When an additional loop is added that is outside the region between the con- 
tacts, as shown on the right of Fig. 18, the conductivity G qualitatively changes. A 
periodic modulation with magnetic field is seen. Ths  is due to the Abaronov- 
Bohm effect. The vector potential modulates the quantum interference between 
those electron paths that encircle the ring and those that do not. For simplicity, 
consider the interference between just two such paths with transmission ampli- 
tudes al and a2 (Fig. 18) in the absence of a magnetic field. At finite B, 

In the last step we have employed Stokes's theorem, where Q, is the magnetic 
flux going through the loop and hc/e is the magnetic flux quantum (h/e in SI). 
With increasing flux, the transmission though the wire oscillates with the pe- 
riod of one flux quantum. This effect is closely related to the superconducting 
flux quantization discussed in Chapter 10, except that the charge appearing in 
the flux quantum here is e, not 2e, since the carriers here are electrons, not 
Cooper pairs. 
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Figure 18 Upper: SEM micrographs of two vertical Au wires with current and voltage probes at- 
tached. In the device on the right, an extra loop has been added outsidc the regio~i betwee11 the 
probes. Thc diagram to the right shows two paths, one that encircles the ring and one that does 
not. Lower left: Conductance versus magnetic field for the left sample. Aperiodic conductance 
fluctuations are seen due to quantum interfercncc bctwee~i tlie conducting paths through the 
sample. Lower right: Periodic oscillations are ohserved associated with the Aharonov-Bohm effect 
for paths enclosing the loop nominally outside the region between the contacts, showing the non- 
local nature of diffusive coherent transport in mcsoscopic systerris. (After R. Webb.) 

It is remarkable that the addition of a loop outside of the region between 
the voltage contacts changes the measured properties. Resistances in the 
mesoscopic regime are nonlocal. Electrons coherently diffuse throughout the 
entire sample while journeying between contacts, arid their phase remembers 
the joiirney. 
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ELECTRONIC STRUCTURE OF OD SYSTEMS 

Quantized Energy Levels 

A system of electrons fully confined in all three dimensions will have dis- 
crete charge and electronic states, as do atonis and molecules. They are often 
called artificial atoms or quantum dots to reflect the importance of quantiza- 
tion phenomcna on their properties. 

As a simple example, consider an electron in a spherical potential well. 
Due to the spherical sym~netry, the Hamitonian separates into angular and ra- 
dial parts, giving eigenstates and eigenenergies: 

where Yf,,(O,+) are the spherical harrnouics and R,,,Jr) are the radial wave- 
functions. The energy levels and radial wavefunctions depend on the details of 
the particular confining potential. For an infinite spherical well, where V = 0 
for r < R and is infinite othenvise, 

The function jl(x) is the lth spherical BesseI function and the coefficient P,:l 
is the nth zero ofjfix). For example, Po." = T (IS), = 4.5 (IP) ,  = 5.8 
( ID) ,  Pl,o = 2~ (2S), and = 7.7 (2P). The labels in parentheses arc the 
atornic notations for the states, which have the usual degeneracies associated 
with spin and angular momentum orientation. 

Semiconductor Nanocrystals . 
A semiconductor r~anocrystal such as the one shown in Fig. 2 can, to a 

good approximation, be described by the spherical model given above. Both 
the electron states in the condiiction band and the liole states in the valence 
band are quantized. For a CdSe nanoparticle, the conduction hand effective 
rnass m: = 0.13 m, and the electron energy levels arc c,,, = (2.9 eV/R2) 
(~n,i/Po,o)', where R, the radius of the nanoparticle, is expressed in nanometers. 
For R = 2 nm, the spacing between t h e  lowest two energy levels is 
E ~ , ~ - E ~ , ~ =  0.76 eV. 

The 1s electron state increases in energy with decreasiug K ,  while the I S  
hole state decreases. The handgap therefore grows and can be tuned over a 
wide range by changing R. This is shown in Fig. 19, where thc ahsorption 
spectra of CdSc nanocrystals of different sizes are presented. For the smallest 
radii, the threshold for absorption shifts by nearly 1 eV from its bulk value. A 
similar shift is seen in the err~ission spectrum. The optical spectra of nanocrys- 
tals can be tuned continuously across the visible spectrum, malong them use- 
ful in applications from fluorescent labeling to light-emitting diodes. 
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Figure 19 Optical absorption spectra for a series of CdSe nanocrystal samples of different aver- 
age radii. The lowest transition energy in the smallest nanoclystal samplc is shifted by rrearly 1 eV 
from the bulk bandgap. Two dominart tra~~sitions are labeled. (Co~lrtesy of A. P. Ali\lsatos.) 

The absorption intensity in nanocrystals becomes concentrated at thc spc- 
cific frequencies corresponding to the transitions between discrete states, as 
described by (7). An important result for the integrated absorption can be ob- 
tained from the Kramers-Kronig relations discussed in Chapter 15. From 
Eq. (15.11b), we have: 

At very high frequencies, o + GO, thc clectron's response is identical to that of 
a free electron. By (15.20), 

In addition, as w + m, the frequency s in the denominator of (52) can be ne- 
glected. Combining (52)  and (53) then gives 

A bulk semiconductor and a nanoclystal therefore have the same overall 
absorption per unit voh~mc when integrated over all frequencies. It is distrib- 
uted very differently, however. The absorption spectrum of macroscopic 



semiconductor is continuous, but in a nanocrystal it consists of a series of dis- 
crete transitions with very high absorption intensity at the transition frequen- 
cies. These strong transitions at particular frequencies have motivated re- 
searchers to create lasers that work on the quantized electronic transitions of 
quantum dots. 

Metallic Dots 

For small spherical metallic dots, such as alkali-metal clusters created in an 
atomic beam, the electrons in the conduction band fa up the quantized 
energy levels described by (50), as shown in Fig. 20a. These quantized levels af- 
fect the electrical and optical properties, and can even influence the stability of 
the dot. Small clusters can be analyzed by mass spectroscopy to determine the 
number of atoms in the cluster (Fig. 20b). Since there is one conduction elec- 
tron per atom in an alkali metal, this is also the number of electrons in the con- 
duction band. Large abundances are seen at certain "magic numbers" of atoms 
in the cluster. These result from the enhanced stability for clusters with filled 
electronic shells. For example, the 8-atom cluster peak corresponds to the fill- 
ing of the 1S (n = 1, e = 0) and the 1P (n = 1, [ = 1) shells. These filled-shell 
clusters are analogous to chemically stable filled-shell atoms (the noble gases). 

For larger or irregularly shaped metallic dots, the shell structure is de- 
stroyed. The level spacing becomes small in comparison to the shifts in the 
levels due to shape imperfections, faceting of the crystals, or disorder. While 
the details of the level spectrum are difficult to predict, the average level spac- 
ing at the Fermi energy can be estimated using (6.21) as 

AE = l/D(eF) = 2eF13N . (55) 

For a spherical Au nanoparticle with R = 2 nm, the average level spacing is 
A& - 2 meV. This is much smaller than the spacing between the lowest states 
in the CdSe nanocrystal conduction band (0:76%V?calculated earlier. Energy- 
level quantization effects are much more important in semiconductor dots 
than they are in metallic ones. This is because the energy-level spacing is 
larger for low-lying states in a 3D potential well and also because the electron 
effective mass for semiconductors is typically smaller than for metals. 

The optical properties of a small metallic dot are typically dominated 
by its surface plasmon resonance. The polarizability of a sphere is, from 
(16.11), 

(CGS) P = 
xE0 , 

1 + 457x13 ' 

where Eo is the external electric field and x is the electronic susceptibility. 
This relation was presented in Chap. 16 for the static case, but it applies at 
high frequencies as long as the dot is small enough for retardation effects to be 
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Figure 20 (a) Energy level diagram for the states in a small spherical alkali metallic cluster. The 
numbers at right of the diagram show the number of electrons required to fill successive elec- 
tronic shells. (b) Abundance spectrum of Na clusters, showing high intensities for clusters with 
completely filled electronic shells. (After W. A. de Heer et al.) 

absent. Modeling the carriers in the dot as a lossless free electron gas, the sus- 
ceptibility is, from (14.6), 

(CGS) ~ ( o )  = -ne2/mw2 ; (57) 

Combining (56) and (57) gives 
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where wl, is the plasma frequency of the bulk metal. The polarization diverges 
at a frequency: 

Ws = Or /v5 (59) 

This is the surface plasrriorl resonance frcqnency for a sphere. It shifts the bulk 
plasma resonance for metals like An and Ag from the UV into the visiblc por- 
tion of the spectrum. The rcst~lt (59) is independent of particle sizc. rn reality, 
however, the optical properties do depend so~riewliat on size dne to retar- 
dation effects at larger radii and losses and intraband transitions at smaller 
radii. 

Liquids or glasses contair~ing metallic nanoparticles are often brilliantly 
colored due to absorption by the surface plasmon resonance. They have been 
used for hundreds of years in stained glasses. Other optical applications of 
metallic nanoparticles make use of the large electric field just outside the 
nanoparticle near resonance. In techniques like surface enhanced Raman scat- 
tering (SERS) or sccond harmonic generation (SHG), wcak optical processes 
i11 nanostructurcs near the surface of the nanoparticlc become measurable due 
to the locally high electric fields. 

Discrete Charge States 

If a quantum dot is relatively isolated electrically from its environment, it 
has a set of well-defined charge states, like an atom or niolecule. Each succes- 
sive charge state corresponds to the addition of one more electron to the dot. 
Because of the coulomb repulsion between electrons, the energy difference 
between successive charge states can be very large. It'ithin the Thomas-Fermi 
approximation (28). the electrochemical potential for adding the (N + 1)th 
electron to a dot containing A' electrons is given by: 

I*.%+, = F ~ + ~  - ecp = F,+, + h7U - a~'17~ , (60)  

where U is the coulomb interaction energy between any two electrons on the dot, 
often called the charging energy. The dimensionless number a is the rate at 
which a voltage Vg applied to a nearby mctal, typically referred to as the gate 
(see Fig. 21), shifts the electrostatic potential cp of the dot. 

In general, C' will vary for different electronic states in the dot, but we as- 
sume here it is a constant, as in a classical metal. In this case, we can describe 
the electrostatics and interactions in terms of capacitances: 

U = e2/c and a = Cg/C , (61) 

where C is the total electrostatic capacitance of the dot and Cg is the capaci- 
tance bctween the dot and the gate. The quantity e/C is the electrostatic po- 
tential shift of the dot when one electron is added. 

If the dot is in weak electrical contact with a metallic reservoir, electrons 
will tunnel or~to the dot until the electrochemical potential for adding another 
electron exceeds the elcctrochemical potential p of the rcsenroir (Fig. 21). 



Figure 21 (a) Schematic illustration of a quantum dot in tunnel contact with two metallic reser- 
voirs and capacitatively coupled to a gate. Main: Energy level diagrams illustrating the coulomb 
blockade. In (b) the gate voltage is such that the dot is stable with N electrons, so no current flows. 
In (c) the blockade is lifted when the electrochemical potential is lowered into the window be- 
tween the potentials in the leads, allowing successive charging and discharging of the dot and a net 
current flow. 

This sets the equilibrium occupancy N of the dot. The charge state can be 
changed using the gate voltage Vg. The additional gate voltage AVg required to 
add one more electron from a reservoir of fixed p is, from (60), 

Adding an extra electron to the dot requires enough energy to fill up the next 
single-particle state and also enough energy to overcome the charging energy. 

The charging energy U  depends on both the size of the dot and the local 
electrostatic environment. Nearby metals or dielectrics will screen the coulomb 
interaction and reduce the charging energy. In general, U  must be calculated for 
the specific geometly. As a simple model, consider a spherical dot of radius R 
surrounded by a spherical metal shell of radius R + d. This shell screens the 
coulomb interaction between electrons on the dot. An elementary application of 
Gauss's law (Problem 5) gives the capacitance and therefore the charging energy: 

e2 d 
(CGS) U = z m ;  (63) 

For R = 2 nm, d = 1 nm, and E = 1, the charging energy is e2/C = 0.24 eV. 
This far exceeds kgT = 0.026 eV at room temperature, indicating that thermal 



fluctuations in the charge of the dot will be strongly suppressed. It is compara- 
ble to the energy level spacing (0.76 eV) between the lowest two states in a 2-nm- 
radius CdSe dot. In contrast, it is much larger than the level spacing (2 meV) for 
a 2-nm-radius metallic dot. The addition energy of a metallic dot is therefore 
dominated by the charging energy, but in a semiconductor dot the clrarging 
energy and the level spacing are of comparable importance. 

Charging effects are destroyed if the tunneling rate between the dot and 
the electrodes is too rapid. The charge resides on the dot for a time scale of 
order 6t = RC, where R is thc resistance for tunneling to the elrctrodes. By 
the uncertainty principle, the energy level wiIl be broadened by 

The uncertainty in the energy of the electron beco~nes comparable to the 
chargng energy when R - h/e2. For resistances below this value, quantum fluc- 
tuations due to the uncertainty principle smear out the colllomb charging 
effects. The conditions for well-defined charge states of a quantum dot are then 

n * h/e2 and e2/C /C kk,T . (65) 

ELECTRICAL TRANSPORT IN OD 

Coulomb Oscillations 

At temperatures 2' < (Ll  + A&)lkg, the charging energy CT and the level 
spacing A s  coritrol the flow of electrons through a quantum dot, as shown in 
Fig. 21. Transport through the dot is suppressed where the Fermi levels of the 
leads lie between the electrochemical potential for thc N and N + 1 charge 
states (Fig. 21h). This is called the Coulomb blockade. Current can only flow 
when pe(N + 1) is lowered to lie between the Fermi levels of the left and right 
leads. Then an electron can hop on the dot from the left electrode and off the 
dot to the right electrode, resulting in current flow (Fig. 21c). This process re- 
peats with increasing V, for each new charge state. This leads to so-called 
Coulomb oscillations in the conductance as a function of shown in Fig. 22. 
If CT %-- ksT, these peaks can be very sharp. The spacing between the Coulo~nl  
peaks is determined by (62). 

Coulomb oscillations are first and foremost a result of charge quantiza- 
tion. They will occur if CT /C ksT even if the single particle level spacing is very 
small, A s  + k,T This is often thc case in metallic quantum dots. A device 
showing Coulomb oscillations is called a single electron transistor (SET), 
since it turns on and off periodically as the occupancy of thc dot is changed 
by e. This effect is qnite remarkable, and can be used as an ultrasensitive 
electrometer. It detects electric fields much as a SQUID (Chap. 10) detects 
magnetic fields. One is based on the quantization of charge, the other on the 
quantization of flux. 



Figure 22 Conductance oscillations versns gate voltage Vp measured in a quantum dot formed in 
a gated GaAsIAIGaAs heterostructure at T = 0.1 K. The data are plotted on a log scalc. As the gate 
voltage increases, the bamers become lnorc transparent and the peaks get hroader. The lineshape 
of thc peak in (b)  is determined hy thermal broadening alone, while the one in (c) also reflects the 
intrinsic Rreit-Wigner lineshape. (Adapted from Foxman et al.) 

SETS can also be used to make single electron turnstiles and pumps. Oscil- 
lating voltages at a frequency f applied to the gates of a properly designed 
quantum dot system can shuttle a single electron through dot per cycle of the 
oscillation. This results in quantized current flowing through the dot: 

Such devices are under investigation as current standards in metrology. 
For the quanturn dot in Fig. 22, the level spacing A& B kBT The Nth 

Coulomb oscillation then corresponds to resonant tunneling through a single 



Figure 23 (a) Schematic of a 2D circular quantum dot formed in a GaAsIAIGaAs heterostmc- 
ture. (b) The differential conductance dlldV as a function of both gate voltage and source drain 
bias, plotted as a gray scale. The white diamond regions correspond to different charge states of 
the dot. A larger charging energy is observed for N = 2 and 6 electrons on the dot, corresponding 
to filled electronic shells. The additional lines on the diagram correspond to excited energy levels 
of the dot. (Courtesy of L. Kouwenhoven.) 

quantized energy level EN. The coulomb oscillations in this case are analogous 
to the theoretical resonant tunneling peaks described by (29) and shown in 
Fig. 15. A crucial difference from (29) is that the positions of the coulomb 
peaks are determined by both the level spacing and the coulomb charging 
energy (62). The lower right panel of Fig. 22 shows a fit of one coulomb peak 
to the Breit-Wigner form for resonant tunneling (33). 

The I-V characteristics of a quantum dot are in general complex, reflect- 
ing the interplay of the charging energy, the excited state level spacing, and 
the source-drain bias voltage. In Fig. 23, measurements of the first few elec- 
trons added to a small, 2D circular dot are shown. The differential conduc- 
tance dI/dV is represented using a gray scale as both the gate voltage and the 



source drain bias are varied. Each of the lines seen corresponds to tunneling 
through an individual quantum state of the dot. The white diamonds along the 
ITg axis, indicating dIldV = 0, correspond to the Coulomb blockade. Each 
successive chamond corresponds to anothcr clcctron on the dot. The point at 
which different diamonds touch along the axis are thr Coulomb oscillations 
where the charge state of the dot changes. The height of thc diamond corre- 
sponds to eV,,, = e 2 / c  + A s ,  t11e maximum voltage that can he applied with- 
out current flowing in a given charge state. The diamonds corresponding to 
N = 2 and N = ' arc noticeably larger than neighboririg diamonds, indicating 
a larger adchtion energy for adding the third and seventh electron to the dot. 

This dot can be effectively modeled hy a 2D harmonic oscillator confining 
potential U(x,  y) = ~ r n w z ( x z  + yZ ) ,  with energy levels: 

where i and j are nonnegative integers. This levcl spectrum can be used in 
conjunction with ( 6 2 )  to find the addition energies that determinc the sizes of 
the diamonds in the figure. The first electron fills the spin-degenerate gronnd 
statc cnergy level .coo. The second electror~ fills the same quantum state, but 
with opposite spin, at a gate voltage AVg, = L1/ac: after the first electron is 
added. The third electron fills one of the degenerate states sol or s10 after a 
AVg, = ( U  + fiw)/ae. The next thrcc clcctrons fill the rest of these states, each 
spaced in gate voltage by U/ae .  The seventh electron fills one of the degener- 
ate states s l l ,  szO,  or cO2, after a gate voltage AVg, = ( U  + Rw)lae.  This simple 
model correctly predicts the larger addition energies for the 3rd and 7th 
electrons seen in the experiment. The addition energy is larger by the level 
spacing when the extra electron is added to a new energy level above a filled 
electronic shell (N = 2 and N = 6). 

Spin, Mott Insulators, and the Kondo Effect 

Consider a quantum dot that is occupied hy an odd number of electrons in 
the blockaded region, as shown in Fig. 24.  The highest single particle cnergy 
level of the dot is doubly degenerate and an electron can either reside in a 
spin-up or spin-down state. The addition of a second electron of opposite spin 
is allowed by the Pauli exclusion pri~lciple but is energetically prohibited by 
the coulomb interaction between the electrons. This is analogous to the Mott 
Insulator where a half-filled band is insulating because coulomb interactions 
prohibit double-occupancy of the lattice sites hy clcctrons. 

The dot therefore has a spin-'/, magnetic moment with two dcgcnerate 
configurations, spin up and spin down, in the absence of coupling to the leads. 
If coupling to the leads is included, however, this degeneracy is lifted at low 

- ~ 

temperatures. The ground state is a quantu~n superposition of the two 
spin config~irations, with transitions between them accomplished by a virtual 
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Figure 24 The Kondo effect in a quantum dot. For an unpaired spin on the dot, a virtual process 
(h) can occur that converts the spin up (a) to the spin down (c) state and transfers an electron from 
one side of the dot to the other. The ground state of the system is a coherent superposition on the 
initial and final states shown, creating a spin singlet between the spin on the dot and the spins in 
the leads. This is called the Kondo effect, and produces a narrow peak of width -k,T, in the den- 
sity of states at EF in addition to the original broadened level of width T, as shown in (d). 

intermediate state involving an exchange of electrons with the leads, as is illus- 
trated in Fig. 24. This is known as the Kondo effect. The local moment pairs 
with electrons in the metallic electrodes to create a spin singlet. This occurs 
below a temperature known as the Kondo temperature TK:  

where r is the level width defined in (33 )  and E, is indicated in Fig. 24 
(E,, < 0).  A peak in the density of states of the dot of width kBTK appears at the 
Fermi energy due to the admixture of states in the electrodes at an energy EF. 

The Kondo temperature is very small unless the coupling r to the leads is 
large, since the process involves a virtual intermediate state. 



Because the Kondo effect involves exchange of electrons with the leads, it 
causes transmission through the dot even in the blockaded region, as illus- 
trated in Fig. 24a+. For symmetric harriers and T < T,, the transmission 
coefficient through the Kondo resonance can be unity, just as for resonant tun- 
neling. This effect has been seen in transport through qilantum dots and in 
STM measurements of magnetic impurities on metal surfaces. The Kondo ef- 
fect was first observed in metals containing magnetic impurities. The forma- 
tion of a spin singlet hetwecn the magnetic impurities and the conduction 
electrons enhances the scattering of the electrons. This will be discussed fur- 
ther in Chap. 22. 

Cooper Pairing in Superconducting Dots 

In a small metallic dot made of a superconductor, there is an interest- 
ing competition between single electron charging and the Cooper pairing 
of electrons. m7ith an odd number of elcctrons residing on the dot, there is 

Figure 25 Measnremnnt of coulomb oscillations in a superconducting metallic dot with dccreas- 
ing temperature. A crossover from e-periodic oscillations to 2s-periodic oscillations is seen as the 
temperature is lowered due to the Cooper pairing of electrons on the dot. (After M. Tinkham, 
J. M. Hergmrnther, and J. 6. Lu.) 



necessarily an unpaired electron. If the Cooper pair binding energy 2A is 
larger than the charging energy U,  it is energetically favorable to add an elec- 
tron to the dot, paying the energy U in order to gain the pairing energy 2A. 
The odd-charge states are thus energetically unfavorable. Electrons will be 
added to the dot in Cooper pairs, and the Coulomb oscillations will be 2e- 
periodic. This is shown in Fig. 25. This is a re~narkable rnanifcstation of Cooper 
pairing. 

VIBRATIONAL AiiD THERMAL PROPERTIES 

To treat the vibrational propcrties of nanostructures, we will begin from a 
continuunl description of the elastic properties. This is analogous to employ- 
ing the band structure as the starting point to describe the electronic proper- 
ties. It is a good approximation for all but the smallest of nanostr~ictiires. 

In general, the components of stress and strain in a solid are related by a 
matrix. A stress along one axis will produce a strain along that axis, but it will 
aIso produce strains along other axes. For example, a cube stretched along one 
axis will typically contract somewhat along the orthogonal axes. To si~rlplify the 
discussion below, we will ignore the off-diagonal elements and treat the stress- 
strain matrix as diagonal and isotropic. In other words, strains will only occnr 
along the direction of the stress and the magnitude will be independcnt of the 
axis direction. For a more complete treatrrlent, we refer the rcader to advanced 
texts on mechanics. 

Quantized Vibrational Modes 

Just as the electronic degrees of freedom are quantized, the vibrational 
frequencies become discrete in a 1D or OD solid. The continuous low- 
frequency modes associated with the acoustic modes, w = o,K, becomc instead 
a series of discrete frequencies o,. The exact frequencies and wavevectors 
depend in detail on the shape and boundary conditions of'the solid. 

An illustrative example is the vibrations aronnd the circumference of a 
thin cylinder of radus K and thickness h < A, as shown in Fig. 26. In Fig. 26a, 

(a) (b) (c) 

Figure 26 Funda~ne~ital  vibrational modes of a thin-walled cylinder. Image (a) is a longitudinal 
compressional mode, (h) is the radial breatlring mode (RBM), and (c! is a transverse mode. 



a quantized longitudinal acoustic mode is schematically illustrated. The al- 
lowed frequencies can be found by applying periodic b o n n d a ~  conditions 
around the circumference of the cylinder: 

Another mode, called the radial breathing mode (RBM), is shown in 
Fig. 26b. The radius of the cylinder uniformly expands and contracts, producing 
circumferential tension and compression. From elasticity theory, the elastic 
energy associated with a strain e for an isotropic medium is given by 

where Y is the elastic (Young's) modulus. The strain in the cylindcr for a radius 
change d r  is e = dr/K, yielding 

where V is the volume of the cylinder. Equation (71) has the form of a Hooke's 
law spring energy, wherc the spring constant is give11 by YV/R2. The vibrational 
frequency is then 

where in the last step we have defined a longitudinal sound velocity uL = m. 
The final class of quantized modes around the circumference, correspond- 

ing to transverse acoustic modes, are shown in Fig. 26c. Their wavevectors and 
frequencies are given by 

Note the frequency scales like K;. The origin of this behavior will he discussed 
further below. 

Qnantizcd vibrational modes can be measured in a variety of ways. One 
technique widely used to probe the vibrational structure of individual 
nanoscale objects is Raman spectroscopy (see Chap. 15). Raman spectroscopy 
of single nanotubes is shown in Fig. 27. For a nanotube, tiL = 21 km/s, and the 
energy of the radial breathing mode is, from (721, 

The measured values are in good agreement with this expression. As a 
result, measurements of the RBM can be used as a diagnostic to infer the 
radius o i a  nanotube. 
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Figure 27 Raman spectra of individual carbon 
nanotubes. The radial breathing mode frequencies 
are labeled in the main panel, along with the struc- 
tural assignments (n, m). Note: 160 cm-' - 20 meV 
(After A. Jorio et al.) 

Transverse Vibrations 

We now address the phonons propagating in the direction of the axis of a 
long, thin object, such as the cylinder discussed in the previous section or a 
thin, solid beam (Fig. 28). The longitudinal phonons are similar to the 3D 
case, with a dispersion o = uLK where K is the continuous wavevector. How- 
ever, there is a fundamental modification of the transverse phonons at wave- 
lengths longer than the thickness h of the beam. Instead of shearing, as in a 
bulk transverse phonon, the solid bends, as shown in Fig. 28a. This is the 
classical problem of transverse flexural waves on a beam. The energy of bend- 
ing comes from the longitudinal compression/stretching of the solid along the 
innerlouter arcs of the bend. The linear wavevector dependence w, = uTK 
characteristic of a bulk solid is changed to hspersion quadratic in K, as we 
show below. 

Consider a transverse standing wave on a solid rectangular beam of 
thickness h, width w, and length L whose displacement is given by y(z,t) = yo 
cos(Kz - ot). The strain at a given point inside the beam is given by the local 
curvature and the distance t from the center line of the beam (Fig. 28a): 

e = -(a2ylaz2)t = P y t  . (74) 

The total energy associated with this strain is again given by (70): 

where (y2) is averaged over one period of the oscillation. This again gives an 
effective spring constant and, from steps analogous to (70-72), an oscillation 
frequency: 

wr = u L h ~ 2 ~ ~  . (76) 



Figure 28 (a) Stresses in a bent beam, showing the inner portion under compression while the 
outer portion is under tension. (b) SEM micrograph of a series of suspended Si beams of varying 
lengths L and the measured resonance frequency as a function of L. The line is a £it to the func- 
tional form f = B/L2, where B is a constant. (After D. W. Carr e t  al.) 

Note that the frequency depends on the longitudinal sound velocity and not 
the transverse sound velocity, since the mode is now essentially compressional 
in nature. It is no longer linear in K since the effective restoring force grows 
stronger with increasing curvature, i.e., increasing K. In contrast, the torsional 
mode, correspondng to a twist of the beam along its length, retains its shear 
character and, o,,, 

Transverse vibrational modes described by (76) are frequently observed in 
microscale and nanoscale beams. A set of nanoscale beams constructed in 
Si using electron beam lithography and etching is shown in Fig. 28b. The 
frequencies associated with fundamental resonance K ,  = 2vlL of these beams 
scale as 1/L2 (Fig. 28c), as expected from (76). 

Note that the modification of the dispersion relation (76) for long wave- - 
length transverse modes is not restricted to nanoscale systems. The only re- 
quirement is that the system be in the geometry of a thin beam or slab with 
transverse dimension h smaller than the wavelength, i.e., Kh < 1. For exam- 
ple, AFM cantilevers operated in the noncontact mode, as discussed above, 



are well described by this relation. The dispersion relation (76) is also related 
to the w - f? dependence seen in (73) for the class of modes shown in Fig. 
26c. Both describe the transverse flexural vibrations, one of a beam and the 
other of a thin shell. 

A revolution is underway in the fabrication of small, complex mechanical 
structures using techniques adapted from microelectronic processing. The 
beams shown in Fig. 28b are a simple example. These structures can be inte- 
grated with electronic devices, creating rr~icroelectromechanical systems 
(MEMs) and nanoelectromechanical systems (NEMs). They are being ex- 
plored for a variety of applications, including scnqing, data storage, arid signal 
processing. 

Heat Capacity and Thermal Transport 

The above relations indicate that the quantized vibrational mode energies 
are typically less than k,T at room temperature except in the very smallest 
structures. Modes along the confined directions will thus he thermally excited 
at room temperature. As a result, the lattice thermal properties of nariostruc- 
tures will he similar to their bulk counterparts. In particular, the lattice heat 
capacity and thermal co~lductivit~ will be proportional to T ~ ,  as for a 3D solid 
(Chap. 5 ) .  

At low temperatures, however, vibrational excitations of frequency o in 
the corlfi~ied directions xyill freeze out when T < hwlk,. In the case of a long, 
thin structure, the system will behave as 1D tlier~nal system at siifficiently low 
temperatures, with a set of 1D phono~l subhands analogoils to the 1D elec- 
tronic suhhands shown in Fig. 9. A calculation analogoils to the one perfomled 
in Chap. 5 for a 3D solid yields the heat capacity per 1D acoustic phorlon sub- 
band with a dispersio~l w = uk (Prob. 6): 

The thermal conductance Gth of the wire is defined as thc ratio of the net en- 
ergy flow through the wire divided by the temperatrlre difference AT between 
its ends. The thermal conductance per 1D phonon subband CjiD' is 

This result is derived in Prob. 6 using an approach analogous to the one em- 
ployed to derive the Landauer formula for conductance of a 1D channel. Note 
3 is now the transmission probability for phonons through the structure. For a 
transverse flexural  node, where o p, the result (77) is modified, but (78) is 
the same. 

Both (77) and (78) are linear in temperature, in contrast to the T3 result 
for 3D. The difference reflects the nurrllrer of modes with energies ko < k,T, 
or equivalently, with wavevectors K < kBT/hu. The number of modes scales 
like KD, where D is the dimensionality, producing T3 in 3D and T in  ID. 



Note that in the case of perfectly transmitted phonons through the chan- 
nel, the thermal conductance (78) is determined only by fundamental con- 
stants and the absolute temperature. This result is analogous to the quantized 
electronic conductance (21) of a 1D channel, which was independent of the 
electron velocity in the channel. Both the ballistic thermal conductance (78) 
and the 1D for~n of the heat capacity (77) have been observed in experiments 
on narrow wires at very low temperatures. 

SUMMARY 

Real spacc probcs can give atomic-scale images of nanostructures. 

The density of states of a ID  subband, D(E) = 4L/ho, diverges at the 
subband thresholds. These arc called van Hove singularities. 

The electrical conductancc of a 1D system is given by the Landauer formula, 
G = (2e2/h)3, where 3 is the transmission coefficient through thc sample. 

The conductance of a quasi-1D system can he strongly influenced by quan- 
tum interference among the electron paths traversing the sample, leading to 
resonant tunneling, localization, and the Aharonov-Bohm effect. 

The optical properties of a quantum dot can be tuned by changing its size 
and hence its quantized energy levels. 

Adding an extra charge e to a quantum dot requires an additional electro- 
chemical potential given by U + A&, where U is the charging energy and A s  
is the level spacing. 

The vibrational modes of a nano~neter-scale object are quantized. 

Problems 

1.  Carbon nanotube band structure. Figure 29 shows the graphene lattice with the 
primitive lattice translation vectors of length a = 0.246 nm, along with the first 
Brillouin zone. (a) Find the set of reciprocal lattice vectors G associated with the 
lattice. (b) Find the length of the vectors K and K' shown in Fig. 29 in terms of a. 

For energies near the Fermi energy and wavevectors near the K point, thc 2D 
band structure can be approximated as 

where v, = 8 X lo5 d s .  A similar approximation holds near the K' point. Consider 
a tube rolled up along the x-axis with a circumference nu. By applying periodic 
boundary conditions along the rollcd up direction, the dispersions nf the 1D sub- 
bands near the K point can bc found. (c) Show that, if n is divisible by 3, there exists 
a "massless" subband whosc cncrgy is linear in Aky. Sketch this sr~hband. These 
nanotubes arc 11) metals. (d) If n is not divisihle by 3, the s~~h l~and  structure is that 
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Figure 29 (a) The graphene lattice and 
(h) the first Brillouin zone of the 
graphene lattice showing the conical dis- 
persion of the energies near the K and K' 
points. 

as shown in Fig. 10. For the case of n = 10, find the magnitude of the semiconduct- 
ing bandgap E,, in eV and show that E ~ ~ / E ~ ~  = 2. (e) Again for the n = 10 case, show 
that the dispersion relation of the lowest electron subband is of the form of a rela- 
tivistic particle, E' = (m*c2)' + ( p ~ ) 2 ,  where v, plays the role of the speed of light, 
and find the ratio of effective mass rn" to the free electron mass m. 

2. Filling subbands. For electrons in a square GaAs wire of width 20 nm, find the 
linear electron density at which the n, = 2, n, = 2 subband is first populated in 
equilibrium at T = 0. Assume an infinite confining potential at the wire boundary. 

3. Breit-Wigner form of a transmission resonance. The purpose of this problem is 
to derive (33) from (29). (a) By expanding the cosine for small phase differences away 
from resonance, 69  = 9' - 2 m ,  find a simplified form of (29) involving only lt,I2, lt2I2, 
and 69. (b) Show that, for states in a 1D box, the following relation holds between 
small changes in the phases and small changes in the energy: S ~ l h s  = Sp/2~r, where 
AE is the level spacing. (c) Combine (a) and (b) to obtain (33). 

4 .  Barriers in series and Ohm's Law. (a) Derive (36) from (35). (b) Show that the 
1D Drude conductivity a,, = n,,e2r/m can be written as ulD = (2e2/h)tB. (Note: 
The momentum relaxation rate and the backscattering rates are related as 117 = 217, 
because the former corresponds to the relaxation from p to 0 while the latter corre- 
sponds to relaxation from p to -p.) 



5 .  Energies of a spherical quantum dot. (a) Derive the formula (63) for the charg- 
ing energy. (b) Show that, for d 4 R, the result is the same as that obtained using 
the parallel plate capacitor result, C = ecOA/d. (c) For the case of an isolated dot, 
d + m,  find the ratio of the charging energy to lowest quantized energy level. Express 
your answer in terms of the radius R of the dot and the effective Bohr radius a;. 

6. Thermal properties in ID. (a) Derive the formula (77) for the low temperature heat 
capacity ofa  single 1D phonon mode within the Debye approximation. (b) Derive the 
relation for the thermal conductance (78) of a 1D phonon mode between two reser- 
voirs by calculating the energy flow out of one reservoir at a temperature T ,  and 
subtracting the energy flow from the other reservoir at a temperature T,. Use an ap- 
proach analogous to that used to obtain (20) and (24) for the electrical conductance. 
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The terms amorphous solid, noncrystalline solid, disordered solid, glass, 
or liquid have no precise struct~iral meaning beyond the description that the 
structure is "not crystalline on any significant scale." Tlie principal structural 
order prcscnt is imposed by the approximately constant separation of nearest- 
neighbor atoms or molecules. We exclude from the present discussion disor- 
dered crystalline alloys (Chapter 22) where different atoms randomly occupy 
the sites of a regular crystal lattice. 

DIFFRACTION PATTERN 

The x-ray or neutron diffraction pattern of an amorphous material sucli as 
a liquid or a glass consists of one or more broad diffuse rings, when viewed on 
the planc normal to the incident x-ray beam. The pattern is different from the 
diffraction pattern of powdered crystalline material which shows a large num- 
ber of fairly sharp rings as in Fig. 2.17 of Chap. 2. The result tells us that a liq- 
uid does not have a unit of structure that repeats itself identically at periodic 
intervals in three dimensions. 

In a simple monatomic liquid the positions of the atoms show only a short 
range structure referred to an origin on any one atom. We never find the cen- 
ter of anothcr atom closer than a distance equal to the atomic diameter, but at 
roughly this distance we expect to find about the riuniber of nearest-neighbor 
atoms that we find in a crystalline forrn of the material. 

Although the x-ray pattern of a typical amorphous material is distinctly 
different from that of a typical crystalline material, there is no sharp division 
between them. For crystalline powder samples of smaller and smaller particle 
size, the powder pattern lines broaden continuously, and for small enough 
crystalline particles the pattern becomes similar to the amorphous pattern of a 
liquid or a glass. 

From a typical liquid or glass diffraction pattern, containing three or four 
diffuse rings, the only quantity which can be determined directly is the radial 
distribution function. This is obtained from a Fourier analysis of the experi- 
mental x-ray scattering curve, and gives directly the average number of atoms 
to be found at any distance from a given atom. The method of Fourier analysis 
is equally applicable to a liquid, a glass, or a powdered crystalline material. 

It is convenient to begm the analysis of the diffraction pattern with Eq. 
(2.43). Instead of writing it for the structure factor of the basis, we write the 
sum for all the atoms in the specimen. Further, instead of specializing the scat- 
tering to the reciprocal lattice vectors G characteristic of a crystal, we consider 
arbitray scattering vectors Ak = k' - k, as in Fig. 2.6. We do this because 



scattering from amorphous materials is not limited to the reciprocal lattice 
vectors, which in any event cannot here be defined. 

Therefore the scattered amplitude from an amorphous material is de- 
scribed by 

withf, the atomic form factor of the atom, as in Eq. (2.50). The sum runs over 
all atoms in the specimen. 

The scattered intensity at scattering vector Ak is given by 

in units referred to the scattering froni a single electron. If n denotes the anglc 
between Ak arid r,,, - r,,, then 

where K is the magnitude of Ak and r,, is the magnitude of r,,, - r,,. 
In an amorphous specimen the vector r,,, - r,, rnay take on all orientations, 

so we werage the phase factor over a sphere: 

1 
(exp(iKr cos a ) )  = tl(cus a) exp(iKrn, cos cu) 

sin Kr,, 
(4) 

- -- 
hi,,, ' 

Thus we have the Debye result lor the scattered intensity at Ak: 

Monatomic Amorphous Materials 

For atoms of ur~ly one type, we letf,,, = f, = f and separatr out from the 
surr~rnatiun (5) the terms with n = m For a spccimrn of hT atom?, 

(sin Krm)/Krm . 1 
The sum runs over all atoms rn except the origin atom m = n. 

If p(r) is the concentration of atoms at distance r from a reference atom, 
we can write ( 6 )  as 
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where R is the (very largc) radius of the specimen. Let p, denote the average 
concentration; then (7) may be written as 

R 
I ( K )  = Nf{i + ioR &- 4w2[p(r) - pn](sin Kt-)/& + (pdiX) dr 4 m  sin Kr 

0 

The second integral in (8) gives the scattering from a uniform concentration 
and may be neglected except in the forward region of very small angles; it re- 
duces to a delta function at K = 0 as R + W .  

Radial Distribution Function 

It is convenient to introduce thc liquid structure factor defined by 

S(K) = I/Np . (9) 

Note that this is not at all the same as S(Ak) in (1). From (8) we have, after 
dropping the delta function contribution, 

S(K) = I + lom dr l ~ ' [ ~ ( r )  - &](sin Kr)/Kr . (10) 

We define the radial distribution function g(r) such that 

p(r) = g(r)pn 

Then (10) becomes 

because (sin Kr)/Kr is the spherically syrnrnetric or s term in the expansion of 
exp(iK . r). 

By the Fourier integral theorem in three dimensions, 

This resi~lt allows us to calc~ilate the radial distribution function g(r) (also called 
the two-atom correlation function) from the measured structure factor S(K). 

One of the simplest liquids well suited to x-ray diffraction study is liquid 
sodium. The plot of the radial distribution 4rPp(r )  vs. r is given in Fig. 1, to- 
gether with the distribution of neighbors in crystalline sodium. 



Figure 1 (a) Radial distribution cuwe 4nPp(r) for liquid sodium, (h) verage density 
4?iPp,. (c) Distribution of neighbors in crystalline sodium. (After Tarasov and Warren.) 

Structure of Vitreous' Silica, SiO, 

Vitreous silica (fi~sed quartz) is a simple glass. The x-ray scattering curve is 
given in Fig. 2. The radial distribution curve 4n-rZp(r) vs. r is gven in Fig. 3. 
Because there are two kinds of atoms, p(r) is actually the superposition of two 
electron concentration curves, one about a silicon atorr~ as origin and one 
about an oxygen atom as origin. 

The first peak is at 1.62 A, close to the average S i -0  distance found in 
crystalline silicates. The x-ray workers conclude from thc intensity of the first 
peak that each silicon atom is tetrahedrally surrollnded hy four oxygen atoms. 
The relativc proportions of Si and 0 tell us that each 0 atom is bonded to two 
Si atoms. From the geometry of a tetrahedron, the 0-0 distance should be 
2.65 A, compatible with the distance suggested by the shoulder in Fig. 3. 

The x-ray results are consistent with the standard model of an oxide glass, 
due to Zachariasen. Figure 4 illustrates in two dimensions the irregular struc- 
ture of a glass and the regularly repeating structure of a crystal of identical 
chemical composition. The x-ray results are completely explained by picturing 
glassy silica as a random network in which each silicon is tetrahedrally sur- 
rounded by four oxygens, each oxygen bonded to two silicons, the two bonds 
to an oxygen being roughly diametrically opposite. The orientation of one 
tetrahedral group with respect to a neighboring group about the connecting 
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Figure 2 Scattered x-ray ilitcl~sity vs, scattering anglc 0, lor vitreous SiO,. (After B. E. Warren.) 

Si-0-Si bond can be practically random. There is a definite structural scheme 
involved: each atom has a definite number of nearest neighbors at a definite 
distance, but no unit of structure repeats itself identically at regular intervals 
in three dimmsions, and hence the material is not crystalline. 

It is not possible to explain the x-ray results by assuming that vitreous 
silica consists of very small crystals of some crystalline form of quartz, such as 
cristoballite. Small angle x-ray scattering is not observed, but would be ex- 
pected f r o ~ r ~  discrete particles with breaks and voids between them. The 
scheme of bonding in glass must be essentially continuous, at least for the 
major part of the material, although the schcme of coordination about each 
atom is the same in vitreous silica and in crystalline cristoballite. The low ther- 
mal conductivity of glasses at room temperature, as discussed below, also is 
consistent with the continuous random network model. 

A comparison of experimental and calculated x-ray intensity results for 
anlorphous gernlaniurn is shown in Fig. 5. The calculations are for a random 
network model and for a microcrystallite model. The latter model gives a very 



0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
r i n k  

Figure 3 Radial distribution curve for vitreous SiO,, as the Fourier transform of Fig. 2. The posi- 
tions of the peaks give the distances of atoms from a silicon or an oxygen. From the areas under 
the peaks it is possible to calculate the number of neighbors at that distance. The vertical lines in- 
dicate the first few average interatomic distances; the heights of the lines are proportional to the 
peak areas. (After B. E. Warren.) 

(a) (b) 
Figure 4 Schematic two-dimensional analogs illustrating the differences between: (a) the regularly 
repeating structure of a crystal and (b) continuous random network of a glass. (After Zachariasen.) 
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Scattering vector 4~ sin O/A in .kl 
Figure 5 Comparison of experimental (dashed curve) and calculated (solid curve) reduced inten- 
sity function for amorphous germanium. (a) Amorphous germanium compared with microciystal- 
lite model. (b) Amorphous germanium compared with random network model. (Results by 
J. Graczyk and P. Chaudhari.) 

poor agreement. The random network model is supported for amorphous sili- 
con by studies of the band gap and spectroscopic work on the 2p shell. 

GLASSES 

A glass has the random structure of the liquid from which it is derived by 
cooling below the freezing point, without crystallization. Also, a glass has the 
elastic properties of an isotropic solid. 

By general agreement, we say that a liquid on being cooled becomes a 
glass when the viscosity equals 1013 poise, where a poise is the CGS unit of 
viscosity.' This defines the glass transition temperature Tg. At temperatures 
above Tg we have a liquid; below Tg we have a glass. The transition is not a 
thermodynamic phase transition, only a transition for "practical purposes." 

'The SI unit of viscosity is 1 Nsm-', so that 1 poise = 0.1 Nsm-'. It is quite common to find 
viscosities given in cp or centipoise, being lo-' poise. 



The value 1013 poise used to define T, is arbitrary, but not unreasonable. If we 
bond a slab of glass 1 cm thick to two plane parallel vertical surfaces, thc glass 
will flow perceptibly in one year under its own weight when the viscosity drops 
below 1013 poise. (For comparison, the viscosity of the mantle of the earth is of 
the order of loz2 poise.) 

Relatively few liquids can be cooled fast enough in the bulk to form a glass 
before crystallization intervenes. Molecules of most substances have high 
enough mmobility in the liquid so that on cooling a liquid-solid melting transi- 
tion occurs a long time before the viscosity increases to 1013 poise or 1015 cp. 
Liquid water has a viscosity 1.8 cp at the freezing point; the viscosity increases 
enormously on frccxing. 

We can often make a glass by depositing a jet of atoms of a substrate 
cooled to a low temperature, a process which will sometimes produce an 
amorphous layer with glasslike properties. Amorphous ribbons of some metal 
alloys may be produced in this way in industrial quantities. 

Viscosity and the Hopping Rate 

Thc viscosity- of a liquid is related to the rate at which molecules undergo 
thermal rearrangement on a local scale, as by hopping into a vacant neighbor 
site or by interchange of two neighbor molecules. The physics of the transport 
process is somewhat different from that of viscosity in the gas phase, but the 
gas phase result gives a qualitative lower limit to the viscosity of the liquid 
phase, a limit that applies to nearest-neighbor hopping of atoms. 

The gas result (TP 14.34) is 

where 1) is the viscosity, p the density, i? the mean thermal velocity, and e the 
mean free path. In the liquid I is of the order of magnitude of the intermole- 
cular separation a. With "tpical" values p = 2 g cm-" r = lo5 cm s-'; 
a ;-. 5 X cm, we have 

as a11 estimate of the lower limit ofthe viscosity of a liquid. (Tahles in chemical 
handbooks only rarely list valucs below this.) 

\Ve givc now a very simple model of the viscosity of a liquid. In order to 
hop siiccessfillly, a molecule must surmount the potential energy barrier pre- 
sented by its neighbors in the liquid. The preceding esti~nate of the minimum 
viscosity applies when this barrier may be neglected. If the barrier is of height 
E, the molecule will have sufficient thermal energy to pass over thc barrier 
only a fraction 
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of the time. Here E is an appropriate free energy and is called the activation 
energy for the process that determines the rate of hopping. It is related to the 
activation energy for self-diffusion. 

The viscosity will be increased as the probability of successful hopping is 
decreased. Thus 

If 77 = 10'' poise at the glass transition, the order of magnitude off must be 

at the transition, using (15). The corresponding activation energy is 

If T g  = 2000 K ,  then k,Tg = 2.7 X 10-'"rg and E = 9.6 X 10-l2 erg - 6 eV. 
This is a high potential energy barrier. 

Glasses with lower values of T,  will have correspo~ldingly lower values of 
E. (Activation energies obtained in this way are often labeled as Ens,.) Materi- 
als that are glass-lormers are characterized by activation energies of the order 
of 1 eV or more; non-glass-formers may have activation encrgies of the order 
of 0.01 cv. 

When being pressed into molds or drawn into tubes, glass is used in a 
range of temperatures at which its viscosity is 1 0 9 0  10"oises. The working 
range for vitreous silica begins over 2000°C, so high that the practical useful- 
ness of the rriaterial is severely limited. In corrlrnon glass, about 25 percent of 
NazO is added as a network modifier to SiOe in order to reduce below 1000°C 
the temperature needed to make the glass fluid enough for the fbrming opera- 
tions necdcd to make electric lamp bnlhs, window glass, and bottles. 

AMORPHOUS FERROMAGNETS 

Amorphous metallic alloys are formed by very rapid quenching (cooling) 
of a liquid alloy, commonly by directing a molten stream of the alloy onto the 
surface of a rapidly rotating dnim. This process produces a continuous "melt- 
spun" ribbon of amorphous alloy in industrial quantities. 

Ferromagnetic amorphous alloys were developed because amorphous ma- 
terials have nearly isotropic properties, and isotropic materials should have es- 
sentially zero magnetocrystalline anisotropy energy. The absence of directions 
of hard and easy magnetization should result in low coercivities, low hysteresis , - 
losses, and high permeahilities. Because amorphoiis alloys are also random al- 
loys, their electrical resistivity is high. All these properties have technological 
value for application as soft magnetic materials. The trade name Metglas is at- 
tached to several of these. 



The transition metal-metalloid (TM-M) alloys are an important class of 
magnetic amorphous alloys. The transition metal component is usually about 
80 percent of Fc, Co, or Ni, with the metalloid component B, C, Si, P, or Al. 
The presence of the metalloids lowers the melting point, making it possible to 
quench the alloy through the glass transition temperature rapidly enough to 
stabilize the amorphous phase. For example, the co~uposition FesnBzo (known 
as Metglas 2605) has T, = 441°C, as compared with the melting temperaturc 
1538°C of pure iron. 

The Curie temperature of this composition in the amorphous phase is 
647 K, and the value of the magnetization M, at 300 K is 1257, compared with 
T,  = 1043 K and M, = 1707 for pure iron. The coercivity is 0.04 (3, and the 
maximum value of the permeability is 3 x 10'. Coercivities as low as 0.006 G 
have been reported for another composition. 

High coercivity materials can be produced by the same melt-spin process 
if the spin rate or quench rate is decreased to produce a fine-grained clys- 
talline phase, which may be of metastable composition. If the grain size is 
arranged to match the optimnm size for single domains, the coercivity can be 

Figure 6 Coercivity at room temperature vs, melt-spin vclocity u,~ for Sm,,,Fe,,. The madmum 
coercivity is 24 kC: and occurs at 1.65 m s-', which is helieved to correspond to s i~~g le  du~rrairr bc- 
havinr in each crystallite. At higher spin rates the coerc i~ty  decreases because the deposited ma- 
terial hecomes amorphous (more isutrupic). At lower spin ratcs the cr).stallites anneal to sizes 
above the single domain regime; domain boundaries give a Inwer coercivity. (After J .  L. Croat.) 
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quite high (Fig. 6). J. L. Croat has reported H ,  = 7.5 kG for the metastable 
alloy Nd,,,Fe,, at the optimum melt-spin velocity 5 m sC1. 

AMORPHOUS SEMICONDUCTORS 

Amorphous semiconductors can be prepared as thin films by evaporation 
or sputtering, or in some materials as bulk glasses by supercooling the melt. 

What happens to the electron energy band model in a solid without regu- 
lar crystalline order? The Bloch theorem is not applicable when the structure 
is not periodic, so that the electron states cannot be described by well-defined 
k values. Thus, the momentum selection rule for optical transitions is relaxed; 
hence all infrared and Raman modes contribute to the absorption spectra. The 
optical absorption edge is rather featureless. Allowed bands and energy gaps 
still occur because the form of the density of states vs. energy is determined 
most strongly by local electron bonding configurations. 

Both electrons and holes can carry current in an amorphous semiconduc- 
tor. The carriers may be scattered strongly by the disordered structure, so that 
the mean free path may sometimes be of the order of the scale of the disorder. 
Anderson proposed that the states near band edges may be localized and do 
not extend through the solid (Fig. 7). Conduction in these states may take 
place by a thermally-assisted hopping process, for which the Hall effect is 
anomalous and cannot be used to determine the carrier concentration. 

Two distinct classes of amorphous semiconductors are widely studied: 
tetrahedrally-bonded amorphous solids such as silicon and germanium, and 
the chalcogenide glasses. The latter are multicomponent solids of which one 
major constituent is a "chalcogen" element-sulfur, selenium, or tellurium. 

The tetrahedrally-bonded materials have properties similar to those of 
their crystalline forms, provided the dangling-bond defects are compensated 
with hydrogen. They can be doped with small amounts of chemical impurities, 
and their conductivity can be sharply modified by injection of free carriers 
from a metallic contact. By contrast, the chalcogenide glasses are largely in- 
sensitive to chemical impurities and to free carrier injection. 

Amorphous hydrogenated silicon is a candidate material for solar cells. 
Amorphous silicon is a much less expensive material than single crystal silicon. 

Figure 7 Density of electron states 
as believed to occur in amorphous 
solids, when states are non-localized 
in the center of the band. Localized 
states are shown shaded. The mobil- 
ity band edges E,, E: separate the 
ranges of energy where states are 
localized and non-localized. (After 
N. Mott and E. A. Davis.) 



Attempts at using pure amorphous silicon, however, failed because of struc- 
tural defects (dangling bonds) which were impossible to eliminate. hltroduc- 
tion of hydrogen into amorphous silicon appears to remove the undesirable 
structural defects. Relatively large proportions of hydrogen are incorporatcd, 
of the order of 10 percent or more. 

LOW ENERGY EXCITATIONS IN AMORPHOUS SOLIDS 

The low temperature heat capacity of pure dielectric crystalline solids is 
lolown (Chapter 5 )  to follow the Debye de law, precisely as expected from the ex- 
citation of long wavelength phonons. The same behavior was expected in glasses 
and other amorphous solids. However, many insulating glasses show an nnex- 
petted linear term in the heat capacity below 1 K. Iudccd, at 25 mK the observed 
heat capacity of vitreous silica exceeds the Debye phonon contribution by a fac- 
tor of 1000. Anomalous linear terms of comparable magnitude are found in all, or 
nearly all, amorphous solids. Their presence is believed to be an intrinsic conse- 
quence of the amorphous states of matter, but the details of why this is so remain 
unclear. There is strong e d e n c e  tlrat the a~lonlalous properties arise from two- 
level systems an3 not from multi-level oscillator systems; in brief, the evidence is 
that the systems can be saturated by intense phonon fields, just as a two-level 
spin system can be saturated by an intcnsc rf magnetic field. 

Heat Capacity Calculation 

Consider an amorphous solid with a concentration N of two-level systems 
at low energies; that is, with a level splitting A much less than the phonon 
Debye cutoff k,8. The partition function of one system is, with 7 = k8T, 

The thermal average energy is 

U = -:A tanh(M2.r) , 

and the heat capacity of the single system is 

Cv = kB(au/a7) = kB(&27)2 sech2(N2~) . (22) 

These results are given in detail in TP, pp. 62-63. 
Now suppose that A is distributed with uniforrrl probability in the range 

A = 0 to A = A,. The average value of Cy is 

The integral cannot be evaluated in closed form 



18 Noncrystalline Solids 

Tho limits are of special interest. For T < A,, the sechZx term is roughly 1 
from x = 0 to x = 1,  and roughly zero for x > 1. The value of the integral is 
roughly 1/3, whence 

C, = 2kgT/3h, , (24)  

for T < A,,lkJk,. 
For T a Ao, the value of the integral is roughly $ ( A , , l 2 k , ~ ) ~ ,  so that in this 

limit 

which approaches zero as T increases. 
Thus the interesting region is at low temperatures, for here by (24)  the 

two-level system contributes to the heat capacity a term linear in the tempera- 
ture. This term, originally introduced for dilute magnetic impurities in metals, 
has no connection with the usual conduction electron heat capacity which is 
also proportional to I: 

The empirical result appears to be that all disordered solids have 
N - 10" cm-3 "new type" low energy excitations uniformly distributed in the 
energy in t end  from 0 to 1 K. The anomalous specific heat can now be ob- 
tained from (24) .  For T = 0.1 K and AdkB = 1 K, 

Cr: = g ~ k ~ ( 0 . 1 )  .= 1 erg c K 3  K-I . (26)  

For cornparison, the phonon contribution at 0.1 K is, from (5 .35) ,  

-; 2.8 X lo-' erg cm-3 K-' , 

much smaller than (26) .  
The experimental results (Fig. 8) for vitreous SiOz are represented by 

where c, = 12 erg g-I K-2 and c3 = 18 erg g-' K-4. 

Thermal Conductivity 

The thermal conductivity of glasses is very low. It is limited at room tem- 
perature and above by the scale of the disorder of the structure, for this scale 
determines the mean free path of the dominant thermal phonons. At low tem- 
peratures, below 1 K, the conductivity is carried by long wavelength phouons 
and is limited by phonon scattering from the mysterious two-level systems or 
tunneling states discussed earlier for their contribution to the heat capacity of 
amorphous solids. 



As in Chapter 5, the expression for the thermal conductivity K has the form 

K = $cut , (29) 

where c is the heat capacity per unit volume, v is an average phonon ve1ocit)i 
and e is the phonon mean free path. For vitreous silica at room temperature, 

K -- 1.4 X lo-? J cm-Is-' K-' ; 

c- -1 .6Jcm 3~ ; 

(u) -- 4.2 X 10; cm s-' . 

Thus the Inean free path € - 6 X lo-' cm; by reference to Fig. 3 we see that 
this is of the order of magnitude of the disordcr of thc structure. 

Figure  8 Heat capacity of vitreous silica and soda silica glass as a function of temperature. The 
heat capacity is roughly lincar in T bclow 1 K. The dashed line represents the calculated Debye 
heat capacity of vitreous silica. 

L f  t 
+ * R  

Figure  9 Short phonon mean free path in a disordered structure. A short wavelength phonon 
that dirplaces aton1 L, as diown, will displace atom R by a much smaller distance, because of the 
phase cancellation of the upper and lower paths from L to R. The displacement of R is T + - 0, 
so that the wave incident from L is reflected at 1A. 
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This value of the phonon mean free path is remarkably small. At room 
temperature and ahove (that is, above the Debye temperature), most of the 
phonons have half-wavelengths of the order of the interatomic spacing. It is 
through phase cancellation processes, as in Fig. 9, that the mean free path is 
limited to several interatomic spacings. No other structure for fused qllartz 
will give a 6 A mean free path. The normal modes of vibration of the glass 
structure are utterly unlike plane waves. Rut the modes, as distorted as they 
are, still have quantized amplitudes and therefore may be called phonons. 

FIBER OPTICS 

Fibers of silica-based lightguides carry a high proportion of the data and 
information transmitted on the surface of the earth and under the seas. The 
optical fibers consist of a thin core (=I0 pm) of high-refractive index glass 
surrounded by a cladding. The digital data are carried by light, with a mini- 
mum attenuation near 0.20 db km-' at wavelengths near 1.55 pm, which is in 
the infrared (Fig. 10). A range of 100 km corresponds to a loss of 20 db, power 
readily supplied by an Eu3+ laser amplifier. 

The optic window of high-p~~rity glasses near this wavelength is limited on 
the low frcq~~cncy side hy phonon absorption bands and on the high frequency 
side hy Rayleigh scattering, and, ultimately, by electronic absorption. In the 

Figure 10 The transmission characteristic of communication-quality optical fibers, showing the 
attenuation in units of decibels per k111 as a function of the wavelength of light, in pm. The 
Kayleigh scattering regime is dominant on the left of the curve, except for a strong in~purity ah- 
sorption line associated with OH ions that accompany SiO,: the line is the second harmonic of a 
line at 2.7 pm known as the "water line." Tlle wavelcrrgth nlarked at 1.31 pm is used in 1994 trans- 
mission lines: it was replaced by the wavelength 1.55 pm available from Eu" i i o ~  amplifiers, 
which arc uscd cvc~y 100 km in t).pical long distance applications. The power needed to pump the 
amplifiers is snpplied hy copper wires. (Courtesy of Tingyc Li, AT&T Bell Laboratories.) 



optic window the losses are determined by the Rayleigll scattering intrinsic to 
static fluctuations in the local dielectric constant of an inhomogeneous 
medium, and the attenuation varies a s  the fourth power of the freqitency. 

It is fortunate that an excellent source is available for radiation at 1.55 pm. 
As shown in Fig. 13.24, excited (pumped) erbium Er3+ ions can amplify in an 
erbium-doped section of fiber. 

Ray l e g h  Attenuation 

The attenuation of light waves in glass is dominated at wavelengths in the 
infrared by the same scattering process, called Rayleigh scattering, that is re- 
sponsible for the blue light of the sky. The extinction coefficient, or attenua- 
tion coefficient, h, has the dimension of reciprocal length and for light scat- 
tered in a gas is given, after Rayleigh, by 

where n is the local refractive index and N is the number of scattering centers 
per unit volume. The energy flux as a function of distance has the form 
exp( -hx). 

Derivations of (30) are found in good texts on electrodynamics; the struc- 
ture of the result may be understood by a general argument: The radiant en- 
ergy scattered from a dipole element p is proportional to (dp2/dt")", and this 
accounts for the factor u4. The local polarizability a enters as a2; if there are N 
random scattering centers per unit volume, the scattered energy averaged over 
these random sources will go as N((A(~)~) ,  or ((An)')lN. Thus we have the es- 
sential factors that appear in (30). As applied to a glass, An should refer to the 
variations in polarization around each group of Si-0 honds, and satisfactory 
numerical estimates of the attenuation may he made in this way. 

Problem 

1. Metallic optic fibres? I t  has been specnlated that metallic wires can act as optic 

fibres, transmitting light ulth a lorrg delay appropriate to the high refractive index 

characteristic of metals. Unfortunately the refractive index of a t,ypical metal is 

dominated by a free-electron term in i'", so that the propagatiorr of a light wave is in 

fact highly damped in a metal. Show that in sodium at roo111 t e ~ ~ ~ p e r a t u r e  a wave of 

vacuum wavelength 10 p m  will have a damping length of 0.1 y n .  This may he con- 

trasted with the 100 km damping length found for light in high-quality glass fibres. 
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CHAPTER 20: POINT DEFECTS 

The common point imperfections in crystals are chemical impurities, 
vacant lattice sites, and extra atoms not in regular lattice positions. Linear im- 
perfections are treated under dislocations, Chapter 21. The crystal surface is a 
planar imperfection, with electron, phonon, and magnon surface states. 

Some important properties of crystals are controlled as much by imperfec- 
tions as by the composition of the host crystal, which may act only as a solvent 
or matrix or vehicle for the imperfections. The conductivity of some semicon- 
ductors is duc entirely to trace amounts of chemical impurities. The color and 
luminescence of many crystals arise from impurities or imperfections. Atomic 
diffusion may be accelerated enormously by impurities or imperfections. 
Mechanical and plastic properties are usually controlled by imperfections. 

LATTICE VACANCIES 

The simplest imperfection is a lattice vacancy, which is a missing atom or 
ion, also known as a Schottky defect. (Fig. 1). We create a Schottky defect in 
a perfect crystal by transferring an atom from a lattice site in the interior to a 
lattice site on the surface of the crystal. In thermal equilibrium a certain num- 
ber of latticc vacancies are always present in an otherwise perfect crystal, be- 
cause the entropy is increased by the presence of disorder in the structure. 

In metals with close-packed structures the proportion of lattice sites va- 
cant at temperatures just below the melting point is of the order of to 
10-! But in sorne alloys, in particular the very hard transition metal carbides 
such as Tic,  the proportion of vacant sites of one component can be as high as 
50 percent. 

The probability that a gven site is vacant is proportional to the Boltzmann 
factor for thermal equilibrium: P = exp(-EIT/kBT), where Ev is the energy re- 
quired to take an atom from a lattice site inside the crystal to a lattice site on 
the surface. If there are N atoms, the equilibrium number n of vacancies is 
given by the Boltzrnann factor 

If n < N,  then 

nlN -- exp(-E,/k,T) . 

If E, = 1 eV and T = 1000 K, then n/N = e-" .;; 
The equilibrium concentration of vacancies decreases as the tempera- 

ture decreases. The actual concentration of vacancies will be higher than the 



Figure 2 Schottky and Frenkel defects in an ionic crystal The arrows indicate the displacement 
of the ions. In a Schottky defect the ion ends up on the surface of the crystal; in a Frenkel defect 
the ion is removed to an interstitial position. 

equilibrium value if the crystal is grown at an elevated temperature and then 
cooled suddenly, thereby freezing in the vacancies (see the discussion of diffu- 
sion below). 

In ionic crystals it is usually energetically favorable to form roughly equal 
numbers of positive and negative ion vacancies. The formation of pairs of va- 
cancies keeps the crystal electrostatically neutral on a local scale. From a sta- 
tistical calculation we obtain 

for the number of pairs, where E p  is the energy of formation of a pair. 
Another vacancy defect is the Frenkel defect (Fig. 2) in which an atom is 

transferred from a lattice site to an interstitial position, a position not nor- 
mally occupied by an atom. In pure alkali halides the most common lattice va- 
cancies are Schottky defects; in pure silver halides the most common vacancies 
are Frenkel defects. The calculation of the equilibrium number of Frenkel 
defects proceeds along the lines of Problem 1. If the number n of Frenkel 
defects is much smaller than the number of lattice sites N and the number of 
interstitial sites N ' ,  the result is 

where E,  is the energy necessary to remove an atom from a lattice site to an 
interstitial position. 

Lattice vacancies are present in alkali halides when these contain addi- 
tions of divalent elements. If a crystal of KC1 is grown with controlled amounts 
of CaCl,, the density varies as if a K+ lattice vacancy were formed for each 
Ca2+ ion in the crystal. The Ca2+ enters the lattice in a normal K+ site and the 
two C1- ions enter two C1- sites in the KC1 crystal (Fig. 3 ) .  Demands of charge 
neutrality result in a vacant metal ion site. The experimental results show that 
the addition of CaCl, to KC1 lowers the density of the crystal. The density 
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Figure 3 Production of a lattice vacancy by the solution of CaC1, in KC1: to ensure electrical 
neutrality, a positive ion vacancy is introduced Into the lattice with each divalent cation Ca++. The 
two C1- ions of CaC1, enter normal negative ion sites. 

Figure 4 Three basic mechanisms of diffusion: (a) Interchange by rotation about a midpoint. 
More than two atoms may rotate together. (h) Migration through interstitial sites. (c) Atoms 
exchange position with vacant lattice sites. (After Seitz.) 

would increase if no vacancies were produced, because ca2+ is a heavier and 
smaller ion than Kt. 

The mechanism of electrical conductivity in alkali and silver halide crys- 
tals is usually by the motion of ions and not by the motion of electrons. This 
has been established by comparing the transport of charge with the transport 
of mass as measured by the material plated out on electrodes in contact with 
the crystal. 

The study of ionic conductivity is an important tool in the investigation of 
lattice defects. Work on alkali and silver halides containing known additions of 
divalent metal ions shows that at not too high temperatures the ionic conduc- 
tivity is directly proportional to the amount of divalent addition. This is not be- 
cause the divalent ions are intrinsically highly mobile, for it is predominantly 
the monovalent metal ion which deposits at the cathode. The lattice vacancies 
introduced with the divalent ions are responsible for the enhanced diffusion 
(Fig. 4c). The diffusion of a vacancy in one hrection is equivalent to the diffu- 
sion of an atom in the opposite direction. When lattice defects are generated 
thermally, their energy of formation gives an extra contribution to the heat 
capacity of the crystal, as shown in Fig. 5. 



Temperature, K 

Figure 5 Heat capacity of silver bromide exhibiting the excess heat capacity from thc Cormation 
of lattice defects. (After R. \V. Christy and A. \V. Lawson.) 

An associated pair of vacancies of opposite sign exhibits an electric dipole 
moment, with contributions to the dielectric constant and dielectric loss due to 
the motion of pairs of vacancies. The dielectric relaxation time is a measure of 
the time required for one of the vacant sites to jump by one atomic position 
with respect to the other. The dipole moment can change at low frequencies, 
but riot at high. In sodium chloride the relaxation frequency is 1000 s-' at 85'C. 

DIFFUSION 

When there is a concentration gradient of impurity atoms or vacancies in a 
solid, there will bc a flux of these through the solid. In equilibrium the impuri- 
ties or vacancies will he distributed uniformly. The net fluxJN of atoms of one 
species in a solid is related to the gradient of the concentration N of this 
species by a phenomenological relation called Fick's law: 

Here j, is the number of atoms crossing unit area in unit time; the constant D 
is the diffusion constant or diffusivity and has the units cm2/s or m2/s. The 
minus sign means that diffusion occurs away from regions of high concentra- 
tion. The form (5) of the law of diffusion is often adcquatr, but rigorously thc 
gradient of the chemical potential is the driving force for diffiision and not the 
concentration gradlent alone (TP, p. 406). 

The diffusion constant is often found to vary with temperature as 

here E is the activation energy for the process. Experiniental results on the 
diffusion of carbon in alpha iron are shown in Fig. 6. The data are represented 
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Figurc 6 Diffusion coefficient of carbon in iron, after Wert. The lugarithrn oC D is directly 
proportional to 11T. 

Tablc 1 Diffusion constants and activation energies 

Host Du li ~ o s t  Do E 
crystal Atom cm2 sC1 eV crystal Atom cm's-' eV 

by E = 0.87 cV, Do = 0.020 cmys. Representative values of Do and E are givcn 
in Tahle 1. 

To diffuse, an atom must overcome the potential encrgy harrier presented 
by its nearest neighbors. We treat the diffusion of imp~irity atoms between 
interstitial sites. The same argument will apply to the diffusion of vacant 
lattice sites. If the barrier is of height E, the atom will have sufficierit thennal 
energy to pass ovcr the barrier a fraction exp(-E/k,T) of the time. Quantum 
tunneling through the barrier is another possible process, but is usually impor- 
tant only for the lightest nuclei, particularly hydrogen. 



If v is a characteristic atomic vibrational frequency, then the probability p 
that during unit time the atom will have enough thermal energy to pass over 
the harrier is 

In unit time thc atom makes v passes at the barrier, with a probability 
exp(-E/kBT) of s~~rmoiinting the barricr on cach try. The quantity p is called 
the jump frequency. 

We consider two parallel planes of impurity atoms in interstitial sites. The 
planes are separated by lattice constant a. There are S impurity atoms on one 
plane and ( S  + a dSldx) on the otl~er. The net nurnber of atoms crossing be- 
tween the planes in unit time is = -purlS/dx. If N is the total concentration of 
impurity atoms, then S = aW per unit area o ra  plane. 

The diffusion flux may now hc writtcn as 

On comparison with ( 5 )  wc havc the result 

of the fonn (6 )  wit11 Do = vu2. 
If the impurities are charged, we may find the ionic mobility p and the 

conductivity u from the diffusivity by using the Einstein relation kBTP = q D  
from TP, p. 406: 

where N is the concentration of impurity ions of charge q. 
The proportion of vacancies is independent of temperature in the range in 

which the niimher of vacancies is dctcrmincd by thc number of divalent metal 
ions. Then the slope of a plot of In u versus l/kBT gives E,, the harrier activa- 
tion energy for the jumping of positive ion vacancies (Table 2). Diffusion is 
very slow at low temperatures. At room temperature the jump frequency is of 
the order of Is-', and at 100 K it is of the order of lo-'' s-'. 

The proportion of vacancies in the temperature range in which the cull- 
centration of defects is determined by thermal generation is given by 

where Ef is the energy of formation of a vacancy pair, according to the theory 
of Schottky or Frcnkcl dcfccts. Here the slope of a plot of In u versus l /kBT 
will be E,+ + E ~ ,  according to (10) and (12). From mcastircmcnts in diffcrcnt 
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Table 2 Activation energy E+ for motion of a positive ion vacancy 

Values of the cncra of formation of a vacancy pair, E,, are also given. The 
numbers given in parenlhcscs for the silver salts refer to interstitial silver ions. 

NaCl 
LiF 
1,iCI 
LiBr 
LiI 
KC1 
AgCl 
AgRr 

Etzcl and hlaurer 
Haven 
Haven 
Haven 
Haven 
Wagner; Kelting and Witt 
Teltow 
Cornptori 

T o r  Frenkel defect. 

temperature ranges we determine the energy of formation of a vacancy pair Ef 
and the jurrlp activation energy E , .  

The diffusion constant can bc mcasnred by radioactive tracer techniques. 
The diffusion of a h o w n  initial distribution of radioactive ions is followed as 
a function of time or distance. \7alues of the diffusion co~lstant thus deter- 
mined may he compared with values from ionic conductivities. The two sets of 
vah~es do not usually agree within the experimental accuracy, suggesting the 
presence of a diffusion rneclianism that does not involvc the transport of 
charge. For example, the diffusion of pairs of positive and negative ion vacan- 
cies does not irlvolve the transport of' charge. 

Metals 

Self-diffusion in monatomic metals most commonly proceeds by lattice va- 
cancies. Self-diffusion means the diffusion of atoms of the 111etal itself, and 
not of impurities. The activation energy for self-diffusion in copper is expected 
to he in the range 2.4 to 2.7 eV for diffusior~ through vacancies and 5.1 to 
6.4 eV for diffusion through interstitial sites. Observed valucs of the activation 
energy are 1.7 to 2.1 e\< 

Activation energies for diflusion in Li and Na can be determined from 
rrleasurements of the temperaturc dependence of the nuclear resonance line 
width. As discussed undcr magnetic resonance, the resonance line width 
narrows when the jump frequency of an atom between sites becomes rapid in 
comparison with the frequency c ~ r r e s ~ o r ~ l l i ~ l g  to the static line width. The val- 
ues 0.57 eV and 0.45 eV were determined by NMR for Li and Na. Self-diffu- 
sion rneasurenie~~ts for sodium also give 0.4 cV. 



COLOR CENTERS 

Pure alkali halide crystals are transparent throughout the visible region 
of the spectrum. A color center is a lattice defect that absorbs visible light. 
An ordinary lattice vacancy does not color alkali halide crystals, although it af- 
fects the absorption in the ultraviolet. The crystals may be colored in a number 
of ways: 

by the introduction of chemical impurities; 
by the introduction of an excess of the metal ion (we may heat the crystal in 
the vapor of the alkali metal and then cool it quickly-an NaCl crystal heated 
in the presence of sodium vapor becomes yellow; a KC1 crystal heated in 
potassium vapor becomes magenta); 
by x-ray, y-ray, neutron, and electron bombardment; and 
by electrolysis. 

F Centers 

The name F center comes from the German word for color, Farbe. We 
usually produce F centers by heating the crystal in excess alkali vapor or by 
x-irradiation. The central absorption band (F band) associated with F centers 
in several alkali halides are shown in Fig. 7, and the quantum energies are 
listed in Table 3. Experimental properties of F centers have been investigated 
in detail, originally by Pohl. 

The F center has been identified by electron spin resonance as an electron 
bound at a negative ion vacancy (Fig. 8), in agreement with a model suggested 
by de Boer. When excess alkali atoms are added to an alkali halide crystal, a 
corresponding number of negative ion vacancies are created. The valence 
electron of the alkali atom is not bound to the atom; the electron migrates in 
the crystal and becomes bound to a vacant negative ion site. A negative ion va- 
cancy in a perfect periodic lattice has the effect of an isolated positive charge: 
it attracts and binds an electron. We can simulate the electrostatic effect of 

Wavelength in A 
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D e 
d 

3 
8 

4 3 2 4  3 2 4  3 2 4  3 2 4  3 2 
Energy m eV 

Figure 7 The F bands for several alkali halides: optical absorption versus wavelength for crystals 
that contain F centers. 
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Table 3 Experimental li center absorption 
energies, in eV 

LlCl 3 1 NaBr 2 3 
NaCl 2 7 KBr 2.0 
KC1 2 2 RbBr 1.8 
RbCl 2 0 LiF 5 0 
CsCl 2 0 NaF 3 6 
LiBr 2 7 KF 2 7 

,- Figure 8 An F center 1s a negahve Ion 
vacancy w t h  one excess electron bound at n the vacancy The dlstnbutlon of the excess 

Figure 9 An FA center in KCI: one of the six Kt  ions 
which bind an F center is replaced by another alkali ion, 
here Na'. 

a negative ion vacancy by adding a positive charge q to the normal charge -q 
of an occupied negative ion site. 

The F center is the simplest trapped-electron center in alkali halide crys- 
tals. The optical absorption of an F center arises from an electric dipole transi- 
tion to a bound excited state of the center. 

Other Centers in Alkali Halides 

In the FA center one of the six nearest neighbors of an F center has been 
replaced by a different alkali ion, Fig. 9. More complex trapped-electron cen- 
ters are formed by groups of F centers, Fig. 10 and 11. Thus two adjacent 
F centers form an M center. Three adjacent F centers form an R center. Dif- 
ferent centers are distinguished by their optical absorption frequencies. 



Figure 10 An M center consists of two 
adjacent F centers. 

Figure 11 An R center consists of 
three adjacent F centers; that is, a 
group of three negative ion vacancies 
in a [Ill] plane of the NaCl struc- 
ture, with three associated electrons. 

. .. 

V, center 

Figure 12 A V, center formed when a hole is trapped by a pair of negative ions resembles a neg- 
ative halogen molecule ion, which is C1; in KC1. No lattice vacancies or extra atoms are involved in 
a VK center. The center at the left of the figure probably is not stable: the hexagon represents a 
hole trapped near a positive ion vacancy; such a center would be the antimorph to an F center. 
Holes have a lower energy trapped in a V, center than in an anti-F center. 
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Holes may be trapped to form color centers, but hole centers are not usu- 
ally as simple as electron centers. For example, a hole in the filled p%hell of a 
halogen ion leaves the ion in a p5 configuration, whereas an electron added to 
the filled p6 shell of an alkali ion leaves the ion in a p6s configuration. 

The chemistry of the two centers is different: p6s acts as a spherically sym- 
metric ion, but p5 acts as an asymmetric ion and, by virtue of the Jahn-Teller 
effect, will distort its immediate surroundings in the crystal. 

The antimorph to the F center is a hole trapped at a positive ion vacancy, 
but no such center has been identified experimentally in alkali halides; in 
insulating oxides the 0- (called V-) defect is known. The best-known trapped- 
hole center is the V, center, Fig. 12. The V, center is formed when a hole is 
trapped by a halogen ion in an alkali halide crystal. Electron spin resonance 
shows that the center is like a negative halogen molecular ion, such as C1, in 
KC1. The Jahn-Teller trapping of free holes is the most effective form of self- 
trapping of charge carriers in perfect crystals. 

Problems 

1. Frenkel defects. Show that the number n of interstitial atoms in equilibrium with n 
lattice vacancies in a crystal having N lattice points and N' possible interstitial posi- 
tions is given by the equation 

E, = k,T ln [(N - n)(N' - n)ln2] , 

whence, for n < N, N',  we have n = (NN')'12 exp(-EIl2kBT). Here E,  is the energy 
necessary to remove an atom from a lattice site to an interstitial position. 

2. Schottky vacancies. Suppose that the energy required to remove a sodium atom 
from the inside of a sochum crystal to the boundary is 1 eV. Calculate the concentra- 
tion of Schottky vacancies at 300 K. 

3. F center. (a) Treat an F center as a free electron of mass m moving in the field of 
a point charge e in a mechum of dielectlic constant E = n2; what is the 1s-2p energy 
difference of F centers in NaCl? (b) Compare from Table 3 the F center excitation 
energy in NaCl with the 3s-3p energy difference of the free sodium atom. 
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Figure 1 (a) Relative shear of two planes of atoms (shown in section) in a uniformly strained clys- 
tal: (h) shear stress as a function of the relative displacement of the planes from their equilibrium 
position. The heavy broken hne drawn at the initial slope defines the shear modulus G. 



CHAPTER 21: DISLOCATIONS 

This chaptcr is concerned with the interpretation of the plastic mechani- 
cal properties of crystalline solids in terrrls of the thcory of dislocations. Plastic 
properties are irreversible defor~~iations; elastic properties are reversible. The 
easc with which pure single crystals deform plastically is striking. This i~itrinsic 
weakness of crystals is exhibited in various ways. Pure silver chloride melts at 
455*C, yet at room temperafirre it has a cheeselike consistency and can he 
rolled into sheets. Pure aluminum crystals are elastic (follow Hookc's law) only 
to a strain of about lo-', after which they deform plastically. 

Theoretical estimates of the strain at the elastic limit of perfect crystals 
may gyve val~ies 10%r lo4 higher than the lowest ohsenred values, although a 
factor 102 is more usual. There are few excrptions to the rule that pure crystals 
are plastic and are not strong: crystals of germanium and silicon are not plastic 
at room temperature and fail or yeld only by fracture. Glass at room tempcra- 
ture fails o~ily by fracture, but it is not crystalline. The fracture of glass is 
caused by stress concentration at minute cracks. 

SHEAR STRENGTH OF SINGLE CRYSTALS 

Frenkel gave a simple method of estiniating the theoretical shear strength 
of a perfect crystal. We consider in Fig. 1 the force needed to make a shear 
displacement of two planes of atoms past each other. For small elastic strains, 
the stress u is related to the displacement x by 

Here d is the interplanar spacing, and G denotes the appropriate shear 
modulus. When the displacement is large and has proceeded to the point that 
atom A is directly over atom B in the figure, the two planes of atoms arc in a 
configuratio~~ of unstable equilibriiim and the stress is zero. As a first approxi- 
mation we represent tlir stress-displacement relation by 

u = (Gd25-d) sin (2mlu) , (2) 

where a is the interatomic spacing in the direction of shear. This relation is con- 
structed to reduce to (1) for small values of x/u. The critical shear strcss uc at 
which the lattice becomes unstable is given by the niaximum valuc of u, or 

If a = d, then u, = (;/25-: the ideal critical shear stress is of the order or of 
the shear modulus. 



Table 1 Comparison of shear modulus G and observed elastic limit rrCA 

Shear modulus 6, Elastic limit a,., 
in dydr/crn2 in d>n/crn2 

Sn, single crystal 1.9 X 10" 1.3 X 10' 15,000 
Ag, single crystal 
A], single c~ystal 
Al, 1311re. I~olycrystt"l 
Al,  corr~rr~ercial drawn 
Duralumin 
Fe, soft, polycrystal 
Heat-treated carbon stccl 
Nickel-chrome steel 

"After Mott 

The observatior~s in Table 1 show the experimental values of the elastic 
limit are much smaller tlrm ( 3 )  \i~ou!d suggest. The theoretical estimate may 
he improvcd by consideration of the actual fonr~ of the intermolecular forces 
and by consideration of other configurations of mecl~anical stability available 
to the lattice as it is sheared. Mackcnzie has shown that these two effects may 
reduce the theoretical ideal shear strength to about G/,30, corresponding to a 
critical shear strain angle of about 2 degrees. The ohscrvcd low values o l  the 
shear strength can be explained only by the presence of impcrfkctions that 
can act as sources of rrrechariical weakness in real crystals. The movement of 
crystal imperlections called dislocations is responsible for slip at very low 
applied strcsses. 

Slip 

Plastic deformation in crystals occurs by slip, an example of which is 
shown in Fig. 2. In slip, one part of the crystal slides as a unit across an adja- 
cent pad. The surface on which slip takes place is known as the slip plane. The 
direction of motion is know11 as the slip direction. The great importance of lat- 
ticr properties lor plastic strain is indicated by the highly anisotropic nature of 
slip. Displacement takes place along crystallograpllic planes with a set of small 
Miller indices, such as thc {lll) planes in fcc metals and the (110), [llZ}, a ~ ~ d  
{I231 planes in bcc metals. 

The slip hrection is in the line of closest atomic packing, (110) in fcc 
111etals and (111) in bcc metals (Problem 1). To maintain the crystal striicturc 
after slip, the displacement or slip vector must equal a lattice translation vec- 
tor. The shortest lattice trans la ti or^ vector expressed in terms of the lattice con- 
stant n in a fcc structure is of the form (al2)(? + y); in a bcc structure it is 
(a/2)(% + y + 2). Bnt in fcc crystals one also observes partial displacarr~ents 
which upset the regular seqllence ABCABC . . . of closest-packed planes, to 



Figure 2 Translational slip in zinc single clystals. (E. R. Parker.) 

produce a stacking fault such as ABCABABC. . . . The result is then a mix- 
ture of fcc and hcp stacking. 

Deformation by slip is inhomogeneous: large shear displacements oocur 
on a few widely separated slip planes, while parts of the crystal lying between 
slip planes remain essentially undeformed. A property of slip is the Schmid law 
of the critical shear stress: slip takes place along a given slip plane and direction 
when the corresponding component of shear stress reaches the critical value. 

Slip is one mode of plastic deformation. Another mode, twinning, is ob- 
served particularly in hcp and bcc structures. During slip a considerable dis- 
placement occurs on a few widely separated slip planes. During twinning, a 
partial displacement occurs successively on each of many neighboring crystal- 
lographic planes. After twinning, the deformed part of the crystal is a mirror 
image of the undeformed part. Although both slip and twinning are caused by 
the motion of dislocations, we shall be concerned primarily with slip. 

DISLOCATIONS 

The low observed values of the critical shear stress are explained in terms 
of the motion through the lattice of a line imperfection known as a dislocation. 
The idea that slip propagates by the motion of dislocations was published in 
1934 independently by Taylor, Orowan, and Polanyi; the concept of dislocations 
was introduced somewhat earlier by Prandtl and Dehlinger. There are several 
basic types of dislocations. We first describe an edge dislocation. Figure 3 
shows a simple cubic crystal in which slip of one atom distance has occurred 
over the left half of the slip plane but not over the right half. The boundary be- 
tween the slipped and unslipped regions is called the dislocation. Its position is 
marked by the termination of an extra vertical half-plane of atoms crowded into 



Figure 3 An edge dislocation EF in the glide plane ABCD. The figure shows the slipped region 
ABEF in which the atoms have been displaced by more than half a lattice constant and the un- 
slipped region FECD with displacement less than half a lattice constant. 

Figure 4 Structure of an edge disloca- 
tion. The deformation may be thought 
of as caused by inserhng an extra plane 
of atoms on the upper half of they axis. 
Atoms in the upper half-crystal are 
compressed by the insertion; those in 
the lower half are extended. 

the upper half of the crystal as shown in Fig. 4. Near the dislocation the crystal 
is highly strained. The simple edge dislocation extends indefinitely in the slip 
plane in a direction normal to the slip direction. In Fig. 5 we show a photo- 
graph of a dislocation in a two-dimensional soap bubble raft obtained by the 
method of Bragg and Nye. 

The mechanism responsible for the mobility of a dislocation is shown in 
Fig. 6. The motion of an edge dislocation through a crystal is analogous to the 
passage of a ruck or wrinkle across a rug: the ruck moves more easily than the 
whole rug. If atoms on one side of the slip plane are moved with respect to 
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Figure 5 A dislocation in a hvo-dimensional bubble raft. The dislocation is ]nost eas~ly seen by 
turning the page by 30" in its plane and sighting at a low angle. (W. M. Lomer, after Bragg and Nye.) 

- -t -t 

Figure 6 Motion of a dislocation 
under a shear tending to move the 
upper surface of the s~ecimen to the - - - dght. (D. Hull.) 

those on the other side, atoms at the slip plane will experience repulsive forces 
from some neighbors and attractive forces from others across the slip plane. 
These forces cancel to a first approximation. The external stress required to 
move a dislocation has been calculated and is quite small, below lo5 dyn/cm2 
when the bonding forces in the crystal are not highly directional. Thus dis- 
locations may make a crystal very plastic. Passage of a dislocation through a 
crystal is equivalent to a slip displacement of one part of the crystal. 

The second simple type of dislocation is the screw disIocation, sketched 
in Figs. 7 and 8. A screw dislocation marks the boundary between slipped and 
unslipped parts of the crystal. The boundary parallels the slip direction, in- 
stead of lying perpendicular to it as for the edge dislocation. The screw dis- 
location may be thought of as produced by cutting the crystal partway through 
with a knife and shearing it parallel to the edge of the cut by one atom spacing. 
A screw dislocation transforms successive atom planes into the surface of a 
helix: this accounts for the name of the dislocation. 



Figure 7 A screw dislocation. A part ABEF of the slip plane has slipped in the direction parallel to 
the dislocation line EF A screw dislocation may be visualized as a helical arrangement of lattice 
planes, such that we change planes on going completely around the dislocation line. (After Cottrell.) 

Figure 8 Another view of a screw dislocation. The bro- 
ken vertical line that marks the dislocation is surrounded 
by strained material. 

Burgers Vectors 

Other dislocation forms may be constructed from segments of edge and 
screw dislocations. Burgers has shown that the most general form of a linear 
dislocation pattern in a crystal can be described as shown in Fig. 9. We con- 
sider any closed curve within a crystal, or an open curve terminating oil the 
surface at both ends: (a) Make a cut along any simple surface bounded by the 
line. (b) Displace the material on one side of this surface by a vector b relative 
to the other side; here b is called the Burgers vector. (c) In regions where b 
is not parallel to the cut surface, this relative displacement will either ~ r o d u c e  
a gap or cause the two halves to overlap. In these cases we imagine that we 
either add material to fill the gap or subtract material to prevent overlap. (d) 
Rejoin the material on both sides. We leave the strain dsplacement intact at 
the time of rewelding, but afterwards we allow the medium to come to internal 
equilibrium. The resulting strain pattern is that of the dislocation character- 
ized jointly by the boundary curve and the Burgers vector. The Burgers vector 
must be equal to a lattice vector in order that the rewelding process will main- 
tain the crystallinity of the material. The Burgers vector of a screw dislocation 
(Figs. 7 and 8) is parallel to the dislocation line; that of an edge dislocation 
(Figs. 3 and 4) is perpendicular to the dislocation line and lies in the slip plane. 
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Figure 9 General method of forming a dislocation ring in a medium. The medium is represented 
by the rectangular block. The ring is represented by the closed curve in the interior in the block. A 
cut is made along the surface bounded by the curve and indicated by the contoured area. The ma- 
terial on one side of the cut is displaced relative to that on the other by vector distance b, which 
may be oriented arbitrarily relative to the surface. Forces will be required to effect the displace- 
ment. The medium is filled in or cut away so as to be continuous after the displacement. It is then 
joined in the displaced state and the applied forces are relaxed. Here b is the Burgers vector of the 
dislocation. (After Seitz.) 

1 line Figure 10 Shell of elastically distorted cvstal surrounding 
screw dislocation with Burgers vector b; see also Fig. 16. 

Stress Fields of Dislocations 

The stress field of a screw dislocation is particularly simple. Figure 10 
shows a shell of material surrounding an axial screw dislocation. The shell of 
circumference 2nr has been sheared by an amount b  to give a shear strain 
e = b I 2 ~ r .  The corresponding shear stress in an elastic continuum is 



This cxprcssion does not hold in the region immediately around the disloca- 
tion line, as the strains here are too large for continuum or linear elasticity 
theory to apply. The elastic energy of the shell is dE, = ~GC' dV = (GhP/4v) drlr 
per unit length. The total elastic energy per unit length of a screw dislocation 
is found on integration to be 

wherc R and r,  are appropriate upper and lower limits for the variable r. A rea- 
sonable valile of r,  is comparable to the magnitudc b of the Burgers vector 
or to the lattice constant; the value of R cannot exceed thc dimensions of thc 
crystal. The value of the ratio R/r, is not very important hecalise it enters in a 
logarithm term. 

\17e now show the form of the energy of an edge dislocation. Let u, and 
u,, denote the tensile stresses in the radial and circulnferential hrections, and 
let u, denote the shear stress. In an isotropic elastic continuum, u7, and u,, 
are proportional to (sin 8)lr: wc nerd a function that falls off as l l r  and that 
changes sign when y  is replaced by -y .  The shear stress mro is proportional to 
(COS 0)lr;  considering the plane y  = 0, we see from Fig. 4 that the shear stress 
is an odd fur~ction of x. The constants of proportionality in the stress are propor- 
tional to the shear modulus G and to the Burgers vector b of the displacement. 
The final result is 

where the Poisson ratio v = 0.3 for most cry-stals. The strain energy of a unit 
length of edge dislocation is 

N7e want an expression for the shear stress component u,, on planes paral- 
lel to the slip plane in Fig. 4. From the stress components a,, a,,, and ud 
evaluated on the plane a &stance y above the slip plane, we find 

It is shown in Problem 3 that the force caused by a resolved unifornl shear 
strcss u is F = bu per unit length of dislocation. The force that an edge dislo- 
cation at thc origin cxcrts upon a similar onc at the location (y, 8 )  is 

per unit length. Here F is the component of force in the slip direction. 
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Low-angle Grain Boundaries 

Burgers suggested that low-angle boundaries between adjoining crystal- 
lites or crystal grains consist of arrays of dislocations. A simple example of the 
Burgers model of a grain boundary is shown in Fig. 11. The boundary occupies 
a (010) plane in a simple cubic Iattice and divides two parts of the crystal that 
have a [001] axis in common. Such a boundary is called a pure tilt boundary: 
the misorientation can be described by a small rotation 0 about the common 
[001] axis of one part of the crystal relative to the other. The tilt boundary is 
represented as an array of edge dislocations of spacing D = bl0, where b is the 
Burgers vector of the dislocations. Experiments have substantiated this model. 
Figure 12 shows the distribution of dislocations along small-angle grain 
boundaries, as observed with an eIectron microscope. Further, Read and 
Shockley derived a theory of the interfacial energy as a function of the angle of 
tilt, with results in excellent agreement with measurements. 

Direct verification of the Burgers model is provided by the quantitative 
x-ray and optical studies of low-angle boundaries in germanium crystals by Vogel 

Figure 11 (a) Low-angle grain boundary, after Burgers. (b )  Electron micrograph of a low-angle 
grain boundaly in molybdenum. The three dislocations in the image each have the same Burgers 
vector as in the drawing in Fig. l la .  The white circles mark the positions of atomic columns 
normal to the plane of the paper. Each array of circles defines the position of a dislocation, with 
four circles on the top of each array and three circles below. Closure failure is indicated by the 
arrows which define the Burgers vectors. (Courtesy of R. Gronsky.) 



Figure 12 Electron micrograph of dislocation structures in low-angle grain boundaries in 
an A1-7 percent Mg solid solution. Notice the lines of small dots on the right. Mag. X17,OOO. 
(R. Goodrich and 6. Thomas.) 

Figure 13 Dislocation etch pits in low-angle 
bounda~y on (100) face of germanium; the angle of 
the boundary is 27.5". The b o u n d v  lies in a (011) 
plane; the line of the dislocations is [100]. The 
Burgers vector is the shortest lattice translation vec- 
tor, or Ibl = a l l h  = 4.0 A. (F. L. Vogel, Jr.) 

and co-workers. By counting etch pits along the intersection of a low-angle 
grain boundary with an etched germanium surface (Fig. 13), they determined 
the dislocation spacing D. They assumed that each etch pit marked the end of 
a dislocation. The angle of tilt calculated from the relation 0 = b/D agrees well 
with the angle measured directly by means of x-rays. 

The interpretation of low-angle boundaries as arrays of dislocations is fur- 
ther supported by the fact that pure tilt boundaries move normal to them- 
selves on application of a suitable stress. The motion has been demonstrated in 
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Figure 14 Motion of a low-angle grain boundan, under stress. The boundary is the straight vertical 
line, and it is photographed under vertical illumination, thereby making evident the 2" angular 
change in the cleavage surface of the zinc clystal at the boundaly. The irregular horizontal line is a 
small step in the cleavage surface which serves as a reference mark. The crystal is clamped at the 
left; at the right it is subject to a force normal to the plane of the page. Top, oliginal position of 
boundary; bottom, moved back 0.4 mm. (J. Washburn and E. R. Parker.) 

a beautiful experiment, Fig. 14. The specimen is a bicrystal of zinc containing 
a 2" tilt boundary with dislocations about 30 atomic planes apart. One side of 
the crystal was clamped, and a force was applied at a point on the opposite side 
of the boundary. Motion of the boundary took place by cooperative motion of 
the dislocations in the array, each dislocation moving an equal distance in its 
own slip plane. The motion was produced by stresses of the order of magni- 
tude of the yield stress for zinc crystals, strong evidence that ordinay defor- 
mation results from the motion of dislocations. 

Grain boundaries and dislocations offer relatively little resistance to diffu- 
sion of atoms in comparison with diffusion in perfect crystals. A dislocation is 
an open passage for hffusion. Diffusion is greater in plastically deformed ma- 
terial than in annealed crystals. Diffusion along grain boundaries controls the 
rates of some precipitation reactions in solids: the precipitation of tin from 
lead-tin solutions at room temperature proceeds about lo8 times faster than 
expected from diffusion in an ideal lattice. 



Dislocation Densities 

The density of dislocations is the number of dislocation lines that inter- 
sect a unit area in the crystal. The density ranges from well below 10' 
&slocations/cm2 in the best germanium and silicon crystals to 1011 or 1012 dis- 
locations/cm2 in heavily deformed metal crystals. The methods available for 
estimating dislocation densities are compared in Table 2. The actual dislocation 
configurations in cast or annealed (slowly cooled) crystals correspond 
either to a group of low-angle grain boundaries or to a three-dimensional 
network of dislocations arranged in cells, as shown in Fig. 15. 

Lattice vacancies that precipitate along an existing edge dislocation will eat 
away a portion of the extra half-plane of atoms and cause the dislocation to climb, 
which means to move at right angles to the slip direction. If no dislocations are 

Table 2 Methods for estimating dislocation densitiesa 

W~dth of Maximum practical 
Techmque Speclmen thickness image density, per cm2 

Electron microscopy >lo00 -100 A 10"- 10l2 
X-ray transmission 0.1- 1.0 mm 5 ~m lo4-lo5 
X-ray reflection <2 pm (min.) - 50 pm (max.) 2 pm l0~-10' 
Decoration -10 pm (depth of focus) 0.5 pm 2 x lo7 
Etch pits no limit 0.5 p,mb 4 X lo8 

"W. 6. Johnston. 
' ~ imi t  of resolution of etch pits. 

Figure 15 Cell structure of three-dimensional tangles of dislocat~ons in deformed aluminum. 
(P. R. Swann.) 
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Figure 16 Electron micrograph of dislocation loops formed by aggregation and collapse of 
vacancies in A15 percent Mg quenched from 550°C. The helical dislocations are formed by 
vacancy condensation on a screw dislocation. Mag. X43.000. (A. Eikum and 6. Thomas.) 

present, the crystal will become supersaturated with lattice vacancies; their pre- 
cipitation in cylindrical vacancy plates may be followed by collapse of the plates 
and formation of dislocation rings that grow with further vacancy precipitation, as 
in Fig. 16. 

Dislocation Multiplication and Slip 

Plastic deformation causes a very great increase in dislocation density, 
typically from lo8 to about 10" dislocations/cm2 during deformation. If a dis- 
location moves completely across its slip plane, an offset of one atom spacing is 
produced, but offsets up to 100 to 1000 atom spacings are observed. This 
means that dislocations multiply during deformation. 

Consider a closed circular dislocation loop of radius r surrounding a 
slipped area having the radius of the loop. Such a loop will be partly edge, 
partly screw, and mostly of intermediate character. The strain energy of the 
loop increases as its circumference, so that the loop will tend to shrink in size. 
However, the loop will tend to expand if a shear stress is acting that favors slip. 



Figure 17 Frank-Read mechanism 
for multiplication of dislocations, 
showing successive stages in the gen- 
eration of a dislocation loop by the 
segment BC of a dislocation line. The 
process can be repeated indefinitely 

Figure 18 A Frank-Read dislocation source in silicon, decorated with copper precipitates and 
viewed with infrared illumination. Two complete dislocation loops are visible, and the third, inner- 
most loop is near completion. (After W. C. Dash.) 

A common feature of all dislocation sources is the bowing of dislocations. 
A dislocation segment pinned at each end is called a Frank-Read source, and 
it can lead (Fig. 17) to the generation of a large number of concentric disloca- 
tions on a single slip plane (Fig. 18). Related types of dislocation multiplica- 
tion mechanisms account for slip and for the increased density of dislocations 
during plastic deformation. Double cross-slip is the most common source. 
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STRENGTH OF ALLOYS 

Pure crystals are very plastic and yield at very low stresses. There appear 
to be four important ways of increasing the yield strength of an alloy so that it 
will withstand shear stresses as high as lo-' 6. They are mechanical blocking 
of dislocation motion, pinning of dislocations by solute atoms, impeding dis- 
location motion by short-range order, and increasing the dislocation density so 
that tangling of dislocations results. All four strengthening mechanisms de- 
pend for their success upon impeding dislocation motion. A fifth mechanism, 
that of removing all dislocations from the crystal, may operate for certain fine 
hairlike crystals (whiskers) that are discussed in the section on crystal growth. 

Mechanical blocking of dislocation motion can be produced most directly 
by introducing tiny particles of a second phase into a crystal lattice. This 
process is followed in the hardening of steel, where particles of iron car- 
bide are precipitated into iron, and in hardening aluminum, where particles 
of A1,Cu are precipitated. The pinning of a dislocation by particles is shown 
in Fig. 19. 

In strengthening by the addition of small particles there are two cases to 
be considered: either the particle can be deformed with the matrix, which re- 
quires that the particle can be traversed by the dslocation, or the particle 
cannot be traversed by the dislocation. If the particle cannot be cut, the stress 

Figure 19 Dislocations pinned hy particles in magnesium oxide. (Electron micrograph by 
6.  Thomas and J. Washburn.) 



necessary to force a dislocation between particles spaced L apart on a slip 
plane should be approximately 

u/G = b/L . (10) 

The smaller the spacing L, the higher is the yield stress cr. Before particles pre- 
cipitate, L is large and the strength is low. Immediately after precipitation is 
complete and many small particles are present, L is a minimum and the strength 
is a maxi~nurn. If the alloy is then held at a high tempcraturc, some particles 
grow at the expense of others, so that L increa~es and the strength drops. Hard 
intermetallic phases, such as refractory oxides, cannot be cut by dislocations. 

The strength of dilute solid solutions is believed to result fro111 the pi~ining 
of dislocations by solute atoms. The solubility of a foreign atom will be greater 
in the neighborhood of a dislocation than elsewhere in a crystal. An atom that 
tends to expand the crystal will dissolve peferentially in the expandcd region 
near an edge dislocation. A small atom will tend to dissolve preferentially in 
the contracted region near the dislocation-a dislocation offers both expanded 
and contracted regions. 

As a resnlt of the affinity of solute atoms for dislocations, each dislocation 
will collect a cloud of associated solute atoms during cooling, at a time when 
the mobility of solute atoms is high. At still lower temperatures, diffusion of 
solute atorns effectively ceases, and the solute atom cloud becomcs fixed in the 
crystal. When a dislocation moves, leaving its solutc clond behind, the energy 
of the crystal must increase. The incrcasc in energy can only he provided by an 
increased stress acting on the dislocation as it pulls away from the solute atom 
cloud, and so the presence of the cloud strengthens the crystal. 

The passage of a dislocation across a slip plane in pure crystals does not 
alter the binding energy across the plane after the dislocation is gone. The in- 
ternal energy of the crystal remains unaffected. The same is true for random 
solid solutions, because the solution is equally random across a slip plane after 
slip. Most solid solutions, however, have short-rangc order. Atoms of different 
species are not arranged at random on the lattice sites, but tend to have an ex- 
cess or a deficiency of pairs of unlike atoms. Thus in ordered alloys disloca- 
tions tend to move in pairs: the second dislocation reorders the local disorder 
left by the first dislocation. 

The strength of a crystalline material increases with plastic delormation. 
The phenomenon is called work-hardening or strain-hardening. The 
strengtt~ is believed to increase because of the incrcascd density of disloca- 
tions and the greater difficulty of moving a given dislocation across a slip plane 
that is threaded by many dislocations. Strain-hardening frequently is em- 
ployed in the strengthening of materials, but its usefulness is limited to low 
enough temperatures so that annealing does not occur. 

An important factor in strain-hardening is the total density of dislocations. 
In most metals dislocations tend to form cells (Fig. 15) of dislocation-free 



areas of dinlensions orthe order of 1 pm. But unlcss we can get a uniform high 
density of dislocations wc cannot strain-harden a metal to its theoretical 
strength, because of slip in the dislocation-free areas. A high total density is 
accomplished by explosive deformation or by special therrnal-mechanical 
treatments, as of martensite in steel. 

Each of the rneclianisms of strengthening crystals can raise the yield 
strength to the range of G to lo-' G. All mechanisms begin to brcak 
down at temperatures where diffusion can occur at an appreciable rate. When 
diffusion is rapid, precipitated particles dissolve; solute clouds drift along with 
dislocations as they glide; short-range order repairs itself behind slowly mov- 
ing dislocations; and dislocation climb and annealing tend to decrease the dis- 
location density. The resulting time-dependent deformation is called creep. 
This irreversible motion precedes the elastic limit. The search for alloys for 
use at very high temperatures is a search Tor reduced diffusion rates, so that 
the four strengthening mechanisms will survivc to high temperatnres. But the 
central problcm of strong alloys is not strength, but ductility, for failure is 
oftcn by fracture. 

DISLOCATIONS AND CRYSTAL GROWTH 

In some cases the prcscncc of dislocations may he the controlling factor in 
crystal growth. \tihcn cry-stals are grown in conditions of low supersaturation, 
of the order of 1 percent, it has been observed that the growth rate is enor- 
mously faster than that calculated for an ideal crystal. The actual growth rate 
is explained in terms of the effect of dislocations on growth. 

The theory of growth of ideal crystals predicts that in crystal growth Gom 
vapor, a supersaturation (pressure/equilibrium vapor pressure) of the order of 
10 is required to nucleate new crystals, of thc ordcr of 5 to form liqnid drops, 
and of 1.5 to form a two-dimensional monolayer of molecules on the face of a 
perfect crystal. \Jolmer and Schultze observed growth of iodine crystals at 
vapor supersaturations down to less than 1 percent, where the growth rate 
should have been down by the factor exp(-3000) frorn the rate defined as the 
rninirriurn observable growth. 

The large disagreement expresses the difficulty of nucleating a new mono- 
layer on a completed surface of an ideal clystal. Rut if a screw dislocation is 
present (Fig. 20), it is never necessary to nucleate a new layer: the crystal will 
grow in spiral fashion at the edge of the discontinuity shown. An atom can be 
bound to a step more strongly than to a plane. The calculated growth rates for 
this mechanism are in good agreement with observation. \%'e expect that nearly 
all crystals in irature grown at low supersaturation will contail1 dislocations, as 
otherwise the>. could not have grown. Spiral growth patterns havc bccn oh- 
sen~cd on a largc number of crystals. A heantifill example of the growth pat- 
tern from a single screw dislocation is given in Fig. 21. 



Figure 20 Development of a spiral step produced by intersection of a screw dislocation with the 
surface of a crystal as in Fig. 8. (F. C. Frank.) 

Figure 21 Phasecontrast micrograph of a hexagonal spiral growth pattern on a Sic  crystal. The 
step height is 165 A. (A. R. Verma.) 

If the growth rate is independent of direction of the edge in the plane of 
the surface, the growth pattern is an Archimedes spiral, r = a0, where a is a 
constant. The limiting minimum radius of curvature near the dislocation is 
determined by the supersaturation. If the radius of curvature is too small, 
atoms on the curved edge evaporate until the equilibrium curvature is at- 
tained. Away from the origin each part of the step acquires new atoms at a con- 
stant rate, so that drldt = const. 

Whiskers 

Fine hairlike crystals, or whiskers, have been observed to grow under con- 
ditions of high supersaturation without the necessity for more than perhaps one 
dislocation. It may be that these crystals contain a single axial screw dislocation 
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Figure 22 .4 nickel whisker of diameter 1000 bent in a loop. (R.  W De Blois.) 

that aids their essentially one-dimensional growth. From the absence of dis- 
locations we would expect these crystal whiskers to have high yield strengths, of 
the order of the calculated value C/30 discussed earlier i11 this chapter. A single 
axial screw dislocatior~, if present, could not cause yielding, because in bending 
the crystal the dislocation is not subjected to a shear stress parallel to its 
Burgers vector. That is, the stress is not in a dircction that can cause slip. 
Hcrring and Galt obsen~cd whiskers of tin of radu~s -10-Qm with elastic 
properties near those expected from theoretically perfect crystals. They ob- 
served peld strains of the order of lo-', which correspond to shear stresses of 
order C ,  about 1000 times greater than in bulk tin, confirming the early 
estimates of the strength of perfect crystals. Theoretical or ideal elastic proper- 
ties have bee11 observed for a nu~nber of materials as lor carbon nanotubes. A 
single domain whisker of nickel is shown in Fig. 22. 

HARDNESS OF MATERIALS 

The hardness of materials is measured in several ways, the simplest test 
for nonmetals being the scratch test. Substance A is harder than substance B if 
A will scratch B but B will not scratch A. A standard scale is used for represen- 
tative minerals, wit11 diarr~or~d, the hardest, assigned the value 10 and talc, the 
softest, assigned the value 1: 

10 diamond C $5 apatitc Ca,(PO,),F 
9 cori~ndl~m AlzO, 4 fll~orite CaF, 
8 topaz AlzS~O,Fz 3 calcite CaCO, 
7 quartz SiO, 2 gjpsum CaSO, - 2H20 
6 orthoclase K.41Si308 1 talc 3Mg0 . 4Si02 . H,O 

There is great current interest in the development of materials of great 
hardness, lor example as films for use as scratch-resistant coating? on Ien~es. 



It is widely felt that the scale between diamond and corundum is misleading, 
because diamond is much, much harder than corundum. I t  has been suggested 
that one might assign diamond the hardness 15, with the gap between 9 and 15 
to be  filled in eventually by synthetic materials, such as compounds of C and B. 

Modern scales of hardness, such as the VHN scale, are based on indcntcr 
tests in which an indenter is pressed into the surface of the material and the 
sizc of the impression is measured. The Vickers Hardness Numbers of se- 
lected materials are tabulated below, after conversion by E. R. m7eber to units 
of CPa [CN/m": 

Diamond 45.3 B e 0  7.01 
SiC 20.0 Steel (quenched) 4.59 
Si3N4 18.5 Cu (annealed) 0.25 

A1203 14.0 A1 (annealed) 0.12 
B 13.5 Pb 0.032 
WC 11.3 

The data are from J. C. Anderson and others. 

Problems 

1. Lines of closest packing. Show that the lines of closest atomic pachng are (110) in 
fcc structures and (111) in bcc structures. 

2. Dinlocation pairs. (a) Find a pair of dislocations equivalent to a row of lattice 
vacancies; (h) find a pair oidislocations cquivalcnt to a row of interstitial atoms. 

3. Force on dislocation. Consider a crystal in thc form of a cube of side L containing 
an edge dislocation of Burgers vector h. If the crystal is subjcctcd to a shear stress a 
on the upper and lower faces in the directio~r of slip, sho\v, by considcring energy 
balance, that the force acting on the dislocatiorr is F = hrr per unit length. 
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Figure 1 Ordered (a) and disordered (b) arrangements of AB ions in the alloy AB. 



CHAPTER 22: ALLOYS 

GENERAL CONSIDERATIONS 

The theory of the band structure of solids assumes that the crystal has 
translational invariancc. Rut supposc that thc crystal is cornposcd of two 
elements A and B that occupy at random the regular lattice sites of the struc- 
ture, in proportions x and 1 - x for the composition A,B,-,. The translational 
symmetv is no longer perfect. Will we then lose the consequences of band 
theory, such as the existence of Ferrr~i surfaces and of energy gaps? Will insula- 
tors becorrie co~iductors because the eriergy gap is gone? We touched on these 
questions in the discussion or amorphous semiconductors in Chapter 19. 

Expcrimrnt and thcory agrcc that thc conscqncnccs of the destnlction of 
perfect translational symmetry are much less serious (nearly always) than we ex- 
pect at first sight. The viewpoint of the effective screened potential of Chapter 9 
is helpful in these matters, first because the effective potentials are relatively 
weak in comparison with a free ion potential and, second and most important, 
tlie differerices betweeri the effective potentials of tlie host arid the additive 
atoms may he very weak in comparison with either alone. Alloys of Si and Ge or 
of Cu and Ag are classic examples of what we may call tlie relative ineffective- 
ncss of alloying. 

In any event, a low concentration of impurity atoms cannot have much 
effect on the Fourier components U ,  of the effective potential U(r) that is re- 
sponsible for the band gaps and for the form of the Fermi surface. (This state- 
ment irr~plies that the G's exist, which implies that a regular lattice exists. This is 
not an inlportalit assumptioii because we know that thermal phonoi~s do not 
have drastic erfects on the band structure, so that lattice distortions described 
as fiozcn-in phonons should not haw drastic cffrcts. If thc distortions arc more 
serious, as with amorphous solids, the electronic changes can be significant.) 

It is true that an impurity atom will introduce Fourier components of U(r) 
at wavevectors that are not reciprocal lattice vectors, but at low impurity con- 
centration such components are never large in comparison with the U,, arguing 
fro111 the statistics of random potentials. The Fourier cornpouents at the recip- 
rocal lattice vectors G will still be large and will give the band gaps, Fermi sur- 
faces, and sharp x-ray diffraction lines charactcristic of a rcgular lattice. 

The consequences of alloying will he particnlarly small when the impurity 
element belongs to the same column of the periodic table as the host element it 
replaces, because the atomic cores will make rather similar contributions to the 
effective pote~itids. 

One measure of the effect of alloying is the residual electrical resistivity, de- 
fined as the lo\v temperature limit of the resistivity. Here we must distinguish 
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Figure 2 Resistivity of a disordered binary alloy of copper and gold. The variation of the residual 
resistivity depends on t l ~ r  cumpuritiun Cqi \u ,_ ,  as x ( l  - x), which is known as Nordheim's Rule 
for a disordered alloy. IIere x ( l  - x) is a measure of the degree of maximum disorder possihle fix 
a givcn valuc of x. (Johansson and Linde.) 

between disordered and ordered alloys. An alloy is disordered if the A and B 
atoms are randonlly arranged, which occurs for a general value of x in the com- 
position A,B1-,. For special values of x, such as 114: 1/2, and 314 for a cubic 
structure, it is possible for ordered phases to form, phases in which the A and B 
atoms lorm an ordered array. Thc distinction between order and disorder is 
shown in Fig. 1. The effect of order on the electrical resistivity is s h o ~ n  in 
Figs. 2 and 3. The residual resistivity increases with disorder, as discussed for 
amorphous materials in Chapter 19. The effect is shawl in Fig. 2 for the Cu-Au 
alloy system. When the specimen is cooled slowly fro~n a high te~nperature, or- 
dered structures are fornred at Cu,Au and CuAu; these structures have a lowcr 
residual resistivity by virtue or their order, as in Fig. 3. 

Thus we can usc thc residual electrical resistivity to measure the effect 
of alloying in a disordered structure. One atomic percent of copper dissolved 
in silver (which lies in the same column of the periodic table) increases the 
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liigure 3 Effect  of ordered pllares UII t l~c  resistivity of a binar). alloy Cu,Au,-,. The alloys 
here have been annealed. whereas those in Fig. 2 have bee11 quc~lclrcd (cooled rapidly). The 
compositions of low rcsidual resistivity correspond to the ordered compositions Cul3Au and CuAu. 
(Johansson and Linde.) 

rcsidnal resistivity by 0.077 pohrr~-cm. This corresponds to a geometrical 
scattering cross section which is only 3 percent of thc naive "projected area" of 
the impurity atom, so that the scattering effect is very small. 

In insulators there is no experimental cbidence for a significant reduction 
of band gap caused by thc random potential components. For exa~nple, silicon 
and germanium form homogeneous solid solutior~s, known as substitutional 
alloys, ovcr the entire composition range, but t l ~ e  band edge energies vary- con- 
tinlionsly with composition from the pure Si gap to the pure Gc gap. 

It is widely believed, however, that the density of states near the band 
edges in amorphous ~naterials is snlearecl by thc gross absence of translational 
syrrln~etry. So~ne of the newr statcs thns formed just inside the gap may not 
r~ecessaril~ he currcnt-carqing states because they may not extend throughout 
the crystal. 



SUBSTITUTIONAL SOLID SOLUTIONS-HUME-ROTHERY RULES 

We now discuss substitutional solid solutions of one metal A in another 
metal B of different valence, where A and B occup): at random; equivalent 
sites in the structure. Hurne-Rothery treated the empirical requirements for 
the stability of a solid solution of A and B as a single phase system. 

One requirement is that the atomic diameters be compatible, which 
means that they should not differ by more than 15 percent. For example, the 
diameters are favorable in the Cu (2.55 A) - Zn (2.65 A) alloy system: zinc 
dissolves in copper as an fcc solid solution up to 38 atomic percent zinc. The 
diameters are less favorable in the Cu (2.55 A) - Cd (2.97 A) system, where 
only 1.7 atomic percent cadmium is soluble in copper. The atomic diameters 
referred to copper are 1.04 for zinc and 1.165 for cadmium. 

Although the atomic diameters may be favorable, solid solutions will not 
form when there is a strong chemical tendency for A and B to form "intermetal- 
lic compoimds," which are compounds of definite chemical proportions. If A is 
strongly electronegative and B strongly electropositive, compounds such as AB 
and A,B may precipitate from the solid solution. (This is different fro111 the for- 
mation of an ordered alloy only by the greater chemical bonding strength 
of the intermetallic compounds.) Although the atomic diameter ratio is favor- 
able for As in Cu (1.02), only 6 atomic percent As is solublr. The diameter ratio 
is also favorable for Sb in Mg (1.06), yet the solllbility of Sb in Mg is very small. 

The electronic stnlctrlre of alloys can often be described by the average 
number of conduction electrons (or valence electrons) per atom, denoted by n. 
In the alloy CuZn the value of n is 1.50; in CuAl, n = 2.00. Changes in electron 
concentration determine stmctural changes in rnany alloy systems. 

The phase diagram of the copper-zinc system1 is shown in Fig. 4. The fcc 
structure of pure copper (n = 1) persists on the addition or  zinc (n. = 2) until 
the electron concentration reaches 1.38. A bcc structure occurs at a minimum 
electron concentration of about 1.48. The y phase exists for the approximate 
range of n between 1.58 and 1.66, and the hcp phase E occurs near 1.75. 

The term electron compound denotes an intermediate phase (such as 
the p phase of CuZn) whose crystal structure is determined by a fairly well de- 
fined electron to atom ratio. For many alloys the ratio is close to the Hume- 
Rothery rules: 1.50 for the P phase, 1.62 for the y phase, and 1.75 for thc 
r phase. Representative experimental values are collcctcd in Table 1, based on 
the usual chemical valence of 1 for Cu and Ag; 2 for Zn and Cd; 3 for A1 and 
Ga; 4 for Si, Ge, and Sn. 

The Hnme-Rothery rilles find a simple expression in terms of the band 
theory of nearly free electrons. The observed limit of the fcc ~11ase occurs 

'The phases of interest are usually denoted by metallurgists by Creek characters: in the 
Cu-Zn system we havc a (fcc), p (bcc), y (complex cubic cell of 52 atoms), E (hcp) and 1) (hcp); E 

and q differ considerably in c/n ratio. The meaning of the characters depends UII the alloy systcm. 
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Atomic percent zinc 

WcighL pcrcen t zinc 

Figure 4 Equilibrium diagram of phases in the cnpper-zinc alloy system. The a phase is fcc; 
p and p' are bcc; y is a complex structure; E and are both hcp, but E has a cia ratio near 1.56 
and q (for pure ZII) has c/u = 1.86. Tlre B' phase is ordcrod boc, by which wc nlcau that most o l  
the Cu atorns occupy sites on our sr suhlattire and most of the Zn atoms occnpy s i t ~ s  on a second 
sc sublattice that iuterpenetrates the first sublattice. The P phase is disordered bcc: any site is 
rq~rdlly likely to be occupied by a Cu or ZII aturn, al~rrort irrcspcctivc of what alorns arc in Lhe 
neighboring sites. 

Table 1 Electronlatom ratios of electron cnmpnunds 

Mirrirnurr~ 
fcc phase bcc phase y-phase hcp phase 
honndarv ho~rndarv hourrdarier bou~rdaries 

Cu-Zn 1.38 
CII-A1 1.41 
Cu-Ga 1.41 
Cu-Si 1.42 
Cu-Ce 1.36 
Cu-Sn 1.27 
ilg-Zn 1.38 
Ag-Cd 1.42 
Ag-A1 1.41 



close to the electron concentration of 1.36 at which an inscribed Fermi sphere 
makes contact with the Brillouin zone boundary for the fcc lattice. The ob- 
sewed electron concentration of the bcc phase is close to thc concentration 
1.48 at which an inscribed Fermi spherc makes contact with the zone bound- 
ary for the bcc lattice. Contact of the Fermi sphere with the zone boundary for 
the y phase is at thc concentration 1.54. Contact for the hcp phase is at the 
concentration 1.69 for the ideal cla ratio. 

Why is there a connection between the electron concentrations at u.hic11 a 
new phase appears and at which the Fermi surface makes contact with the 
boundary of the Brillouin zone? We recall that thc cncrgy hands split into hvo 
at the region of contact on the zone boundary (Chapter 9). If we add more 
electrons to the alloy at this stage, thcy ~411 have to be accommodated in the 
upper band or in states of high energy near the zone corners of the lower 
band. Both options are possible, and both involve an increase of energy. It may 
also he energetically favorable for the crystal structure to change to one which 
can contain a Fermi surface of larger volun~e (more electrons) before contact 
is made with the zone boundary. In this way H. Jones madc plausible the se- 
quence of structures fcc, bcc, y,  hcp with increasing electron concentration. 

Measurements of the latticc parameter of Li-Mg alloys are shown in 
Fig. 5.  In thc range shown the structure is bcc. The lattice contracts during the 
initial stages of the addition of Mg to Li. When the lithiurn content drops 
below 50 atomic percent, corresponding to an average electron concentration 
increasing above 1.5 per atom, the lattice starts to expand. We have sccn that 

Figure 5 Lattice parameter of body-centered cubic n1agnesrn111-lithiu111 alloys. (After 
D. W. Lewson.) 
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Figure G Number of orbitals per unit energy range 
for the first Brilluui~l zone of the fcc and bcc lat- 
tices, as a function of enera.  

for a spherical Fermi surface, contact with the zone boundaly is established at 
7~ = 1.48 electrons per atom, in a bcc lattice. It appears that the expansion of 
the lattice arises from the onset of overlap across the zone boundary. 

The transformation from fcc to bcc is illustrated hy Fig. 6; this shows the 
numher of orbitals per unit energy range as a fi~nction of enera ,  for the fcc 
and bcc structures. As the number of electrons is increased, a point is reached 
where it is easier to accornmodatc additional electrons in the Brillouin zone of 
the bcc lattice rather than in the Rrillouin zone of the fcc lattice. The figure is 
draw11 for copper. 

ORDER-DISORDER TRANSFORMATION 

The dashed horizontal line in the beta-phase (hcc) region of the phase dia- 
gram (Fig. 4) of the Cu-Zn system represents the transition temperature be- 
tween the ordered (low temperature) and disordered (high temperature) 
states of the alloy. In the common ordered arrange~rient of an AB alloy uith a 
bcc structure, all thc nearest-neighbor atoms of a B atom are A atoms, and vice 
versa. This arrangement results when the dominant interaction among the 
atoms is an attraction between A and B atoms. (If the AR interaction is weakly 
attractive or repulsive, a two-phase system is formrd in which some crystallites 
are largely A and other crystallites are largcly B.) 

The alloy is completely ordercd in equilibrium at absolute zero. It becomes 
less ordered as the temperafixre is increased, until a transition temperature is 
reached above which thr str~icture is disordered. The transition temperature 
niarks the disappearance of long-range order, which is order over many inter- 
atomic distances, but some short-range order or correlation among near 
ncighhors may persist above the transition. Thc long-range order in an AB alloy 
is shown in Fig. 7a. Long- and short-range order for an alloy of con~position 
AB, is given in Fig. 'ib. The degree of order is defined below. 



Short-range order 

3 

Temperature --t 
(b) 

Figure 7 (a) Jang-range order verslts temperature for an AB alloy. The tranrforn~atiun is s euu~~d  
order. (b) Long-range and short-range order for an An, alloy. The transformation for this composi- 
tion is first order. 

If an alloy is cooled rapidly lrom high temperatures to a temperature 
below the transition, a metastablc condition may he produced in which anon- 
cq~iilihrilim disorder is frozen in the structure. The reverse effect occurs when 
an ordered specimen is disordered at constant temperature by heavy irradia- 
tion with nuclear particles. The degree of order may be investigated experi- 
mentally by x-ray diffraction. The disordered structure in Fig. 8 has diffraction 
lines at the same positiorls as if t l ~ e  lattice points were all occupied by only one 
type of atom, because the effective scattering power of each plane is eqlial to 
the average of the A and B scattering powers. The ordered str~tcture has extra 
diffraction lines not posscsscd by the disordered str~icture. The extra lines are 
called superstructure lines. 

The use of the terms order and disorder in this chapter always refers to 
regular lattice sites; it is the occupancy that is ra~ldonrly A or B. Do not con- 
fuse this usage with that of Chapter 19 on noncrystalline solids where therc 
are no regular lattice sites and the structure itself is random. Both possihilities 
occur in nature. 



22 Alloys 629 

(6 
Figure 8 X-ray powder photographs in AuCu, alloy. (a) Disordered by quenching from T > T,; 
(b) ordered by annealing at T < T,. (Courtesy of 6. M. Gordon.) 

The structure of the ordered CuZn alloy is the cesium chloride structure 
of Chapter 1. The space lattice is simple cubic, and the basis has one Cu atom 
at 000 and one Zn atom at &;. The diffraction structure factor 

This cannot vanish because fc, + fin; therefore all reflections of the simple 
cubic space lattice will occur. In the disordered structure the situation is 
different: the basis is equally likely to have either Zn or Cu at 000 and either 
Zn or Cu at &$;. Then the average structure factor is 

(~(hkZ)) = (f) + (f) e-zli(h+k+l) , (2) 

where (f) = $(fc, +fin). Equation (2) is exactly the form of the result for the 
bcc lattice; the reflections vanish when h + k + I is odd. We see that the or- 
dered lattice has reflections (the superstructure lines) not present in the disor- 
dered lattice (Fig. 8). 

Elementary Theory of Order 

We give a simple statistical treatment of the dependence of order on tem- 
perature for an AB alloy with a bcc structure. The case A,B differs from AB, 
the former having a first-order transition marked by a latent heat and the latter 
having a second-order transition marked by a discontinuity in the heat capacity 
(Fig. 9). We introduce a measure of the long-range order. We call one simple 
cubic lattice a and the other b: the bcc structure is composed of the two inter- 
penetrating sc lattices, and the nearest neighbors of an atom on one lattice lie 
on the other lattice. If there are N atoms A and N atoms B in the alloy, the 



Figure 9 Heat capacity versus tem- 
perature of CuZn alloy @-brass). Temperature in "C 

long-range order parameter P is defined so that the number of A's on the 
lattice a is equal to :(1 + P)N.  The number of A's on lattice h is equal to 
: ( I -P )N .  When P = 2 1 ,  the order is perfect and each lattice contains only 
one type of atom. When P = 0, each lattice contains equal numbers of A and B 
atoms and there is no long-range order. 

We consider that part of the internal energy associated with the bond en- 
ergies ofAA, AB, and BB nearest-neighbor pairs. The total bond energy is 

where Nq is the number of nearest-neighhor ij bonds and U,i is the energy of 
an ij bond. 

The probability that an atom A on lattice a will have an AA bor~d is equal 
to the probability that an A occupies a particular nearest-neighbor site 011 b, 
times the number of nearest-neighbor sites, which is 8 Tor the bcc structure. 
We assume that the probabilities are independent. Thus, by the preceding ex- 
pressions for the number of A's on a and 6, 



22 Alloys 631 

The energy ( 3 )  becorrles 

E  = E,  + 2NP2u . 
where 

E o z 2 N ( C ' , , + l i , B + 2 U A n ) ;  U = 2 U A u - U A 4 - C T u B .  (6) 

\tie now calculate the entropy of this distribution of atoms. There are 
i ( 1  + P)N atoms A and i ( 1  - P)N atoms B on lattice a; there are i ( 1  - Y ) N  
atoms A and i ( 1  + P)N atoms B on lattice b. The number of arrangements G of 
these atoms is 

From thc dcfinition of the entropy as S = kB  In G, we have, nsing Stirling's 
approximation, 

S = 2Nk, In 2  - hlkB[(l  + P) ln ( l  + P) + ( 1  - P) In (1  - P)] . (8 )  

This defines the entropy of mixing. For P  = t-1: S = 0; for P  = 0, S = 2NkB In 2. 
The equilibrium order is determined by the requirement that the free 

energy F = E - TS be a minimum with respect to the order parameter P. On 
differentiating F with respect to P, we have as the condition for the minimum 

1 + P  4NPL' + NkBT In - = 0 . 
I - P  

The transcendental equation for P map be solved graphically; we find the 
sr~~oothly decreasirlg curve sl~owr~ in Fig. 7a. Near the transition we may 
expand ( 9 )  to find 4NPL' + 2Nk,?'Y = 0. At the transition tenlperature P = 0, 
so that 

For a transition to occur, the effective interaction U must be negative. 
The short-range order parameter r is a Irieasure of tlle fraction of the 

average number q of nearest-neighbor bonds that are AL3 bo~lds. \Vlien com- 
pletely disordered, an AB alloy has an average of four AB bonds about each 
atom A. Thc total possiblc is eight. N7e may define 

so that r = 1  in complete order and r = 0 in complete disorder. Observe tlrat r 
is a measiire only of thc local ordcr about an atom, whereas the long-range 
order parameter P  refers to the piirity of the entire popillation on a given s i~h-  
lattice. Above the transition temperature T,  the long-range order is rigorously 
zero, but the short-range order is not. 



PIUSE DIAGRAMS 

There is a large amount of information in a phase diagram even for a bi- 
nary system, as in Fig. 4. The areas enclosed by curves relate to the equilib- 
rium state in tltat region of conrposition and te~nperature. The curves miark the 
course of phase transitions as plotted in the T-x pla~ie, where x is the composi- 
tion parameter. 

The eq~iilibril~m statc is thc statc of minimum free energy of the binary 
system at given T, x. Thus the analysis of a phase diagram is the snbject of 
thermodynamics. Several extraordinary results come out of this analysis, in 
particular the existence of low-melting-point eutectic compositions. Because 
the analysis has been treated in Chapter 11 of TP, we only outline the principal 
results here. 

Two substances will dissolve in each other and form a homogeneous mix- 
ture if that is the configuration of lowcst frcc cncrgy accessible to thc compo- 
nents. The substances will form a heterogeneous mixtiire if the combined free 
energy of the two separate phases side by side is lower than the free e n e r g  of 
the homogeneous mixture. Now we say that the mixture exhibits a solubility 
gap. In Fig. 4 we see that conipositions near Cuo6,Zn,,, are in a solubility gap 
and are mixtures of fcc and bcc phases of different structures and con~pusi- 
tions. The phase diagram represents the temperature dependence of the solu- 
bility gaps. 

When a small fraction of a homogcncous liquid frcczcs, thc composition of 
the solid that forms is almost always different from that of the liquid. Consider 
a horizontal section near the composition Cu, ,,Z%.,, in Fig. 4. Let x denote the 
weight percent of zinc. At a given temperature, there are three regions: 

x > x,, the equilibrium system is a l~omogeneous liquid. 
xs < x < x,, there is a solid phase of composition xs and a liquid phase 

of composition xL. 
x < x,, equilibrium system is a homogeneous solid. 

The point xL traces a curve called the liquidus curve, and the point xs traces 
the solidus curve. 

Eutectics. Mixtures with two liquidus branches in their phase diagram are 
called eutectics, as in Fig. 10 for the Au-Si system. The minimum solidification 
temperature is called the entectic temperature; here the composition is the 
eutectic composition. The solid at this composition consists of two separate 
phases, as in the microphotograph of Fig. 11. 

There are many binary systems in which the liquid phase persists to tem- 
peratures below the lower rrielting temperature of the constituents. Thus 
Auo69Sio,0, solidifies at 370°C as a two-phase heterogeneous mixture, although 
Au and Si solidify at 1063OC and 1404"C, respectively. One phase of thc eutec- 
tic is nearly pure gold; the other nearly purc silicon. 
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Pure Au Atomic percent silicon Pure Si 

Figure 10 Eutectic phase diagram of gold-silicon alloys. The eutectic consists of two 
branches that come together at T, = 370 "C and xg = 0.31 atomic percent Si. (After Kittel and 
Kroemer, TP.) 

c---.l 

10 fi111 

Figure 11 Microphotograph of the Ph-Sn eutectic. (Courtesy of J. D. Hunt and K. A. Jackson.) 



The Au-Si eutectic is important in semiconductor technology because the 
entectic permits low temperature welding of gold contact wires to silicon de- 
vices. Lead-tin alloys have a similar eutectic of Pbo,,Sno 74 at 183'C. This or 
nearby compositions are used in solder: nearby if a range of melting tempera- 
tures is desired for ease in handling. 

TRANSITION METAT, ALLOYS 

When we add copper to nickel, the effective magneton number per atom 
decreases linearly and goes through zero near Cu, 60Ni0 40, as shown in Fig. 12. 
At this composition the extra electron from the copper has filled the 3d band, 
or the spin-up and spin-down 3d sub-bands that were shown in Fig. 12.7b. The 
situation is shown schematically in Fig. 13. 

Figure 12 Bohr magneton numbers 
of nickel-copper alloys. 

0.60 Electron 

Figure 13 Distribution of electrons in the alloy 
60Cu40Ni. The extra 0.6 electron provided by 
the copper has filled the d band entirely and in- 
creased slightly the number of electrons in the s 
band with respect to Fig. 12.7b. 4s 
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Energy relative to P'ermi energy (eV) 

Figure 14 Density of states in nickel. (V L. Moruzzi, J .  F. Janak. and A. R.  IVilliams.) 

For simplicity the block drawings represent (he density of statcs as uni- 
forrri in energy. The actual density is known to be far from nniform; the result 
of a 11iodern calculatio~l is shown in Fig. 14 for nickel. The width of the 3d 
band is about 5 eV. .4t thc top, where the magnetic effects are determined, the 
density of states is particularly high. The average density of states is an order 
of magnitude higher in the 3d band than in the 4s band. This enhanced density 
of states ratio gives a rough indication of the expected enhancement of the 
electronic heat capacity and of the paramagnetic susceptibility in the nonfcr- 
romagnetic trar~sition ~rletals as compared with the simple monovalent metals. 

Figure 15 shows the effect of thc addition of small amounts of other ele- 
ments to nickrl. On the hand model an alloymg metal with .: valence electrons 
ontside a filled d shell is expected to decrease the magnetization of nickel by 
approximately z Bohr magnetons per solute atom. This sirriple relation holds 
well for Sn, Al, Zn, and Cu, with z = 4, 3, 2, and 1, respectively. For Co, Fe, 
and Mn the localized rrlorrler~t model of Friedel accounts lor effective z values 
of -1, -2, and -3, respectively. 

The average atomic magnctic moments of binaly alloys of the elements 
in thc iron gronp are plotted in Fig. 16 as a function of the concentratio11 of 



Added elenlents in atum percent 

Figure 15 Saturation nlagnctizatio~r of nickel alloys in Buhr nragnetons per atorra as a fu11ctiu11 of 
the atomic percent of salute element. 

electrons outside the 3p  shell. This is called a Slater-Yauling plot. The main se- 
qucnce of alloys on the right-hand branch follows the rules discussed in con- 
nection with Fig. 15. As the electron concentration is decreased, a point is 
reached at which neither of the 3d sub-hands is entirely filled, and the mag- 
netic moment then decreases toward the left-hand side of the plot. 

Electrical Conductivity. It might be thought that in the transition metals the 
availability of the 3d band as a path for conduction in parallel with the 4s band 
would increase the conductivity, but this is not the way it works out. The resistiv- 
ity of the .s electron path is increased by collisions with the d electrons; this is a 
powerfill extra scattering mechanism not availablr when the d band is fillcd. 
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Figure 16 Averagc atomic moments of binav alloys of the elements in the iron group. (Bozorth.) 

llrc: compare the values of the electrical resistivities of Ni, Pd, and Pt in 
microhm-cm at 18'C with that of the noble metals Cu, Ag, and Au immedi- 
ately following them in the periodic table: 

The resistivities of the noble metals are lower than those of the transition 
metals by a factor of the order of 5. This shows the effectiveness of the s-d 
scattering mechanism. 

KONDO EFFECT 

In dilute solid solutions of a magnetic ion in a nonmagnetic metal crystal 
(such as Mn in Cu), the exchange coupling between the ion and the conduc- 
tion electrons has important consequences. The conduction electron gas is 



Figure 17 Magnetization of a free e lec t ro~~ Fer~rli gas at T = 0 in neighborhood of a point mag- 
netic moment at the origin r = 0, according to the RKKY theory The horizontal axis is 2k,r, where 
k, is the wavevector at the Fermi surface. (de Gennes.) 

magnetized in the Vicinity of the magnetic ion, with the spatial dcpendencc 
shown in Fig. 17. This magnetization causes an indirect exchange interaction" 
between two magnetic ions, because a second ion perceives the magnetization 
induced by the first ion. The interaction, known as the Friedel or RKKY inter- 
action, also plays a role in the magnetic spin order of the rare-earth metals, 
where the spins of the 4f ion cores are coupled together by the rriag~ietizatiorl iri- 
duced in the conduction electron gas. 

A conseqlience of the magnetic ion-conduction clcctron interaction is the 
Kondo effect, discussed in a different context in Chapter 18. A minimnm in 
the electrical resistiVity-temperature curve of dilute magnetic alloys at low 
temperatures has been observed in alloys of Cu, Ag, Au, Mg, Zn with Cr, Mn, 
and Fe as impurities, among others. 

The occurrence of a resistance minimum is connected with the existence 
of localized magnetic moments on the impurity atoms. Where a resistance 
minimum is found, there is inevitably a local moment. Kondo showed that the 
anomalorisly high scattering probability of magnetic ions at low tcmperaturcs 

'A r e v i c ~  of indirect excharige iriteractiu~is iri metals is giver1 by C. Kittel, Solid state pliysics 
22, 1 (1968); a review of the Kondo effect is given by J .  Kondo, "Theory of dihte magnetic alloys," 
Solid state physics 23, 184 (1969) and A. I. Heeger, "Localized moments and nonmoments in 
metals: the KUII~IJ effect," Solid state physics 23, 248 (1969). The notation RKKY stands for 
Ruderman, Kittel, Kasuya, and Yosida. 



Figure 18 A comparison of experimental and theoretical results for the increase of electrical re- 
sistivity at low temperatures in dilute alloys of iron in gold. The resistance minimum lies to the 
right of the figure, for the resisti\.ity iircreases at high temperatures because of scattering of elec- 
trons by thermal phonons. The experiments are due to D. K. C. MacDonald, W. B. Pearson, and 
I. M. Templeton; the tlreo~y is by J. Kondo. 4 n  exact sohitiu~~ was given by K. Wilson. 

is a consequence of the dynamic nature of the scattering by the exchange 
coupling and of the sharpness of the Fermi surface at low temperatures. The 
temperature region in which the Kondo effect is important is shown in Fig. 18. 

The central result is that the spin-dependent contribution to the resistivity is 

p,,,,, = cp,  I + - ln T = cp,  - cp ,  In T , [ :! ] 
where J is the exchange energy; z the numher of nearest neighbors; c the con- 
centration; and p, is a measure of the strength of the exchange scattering. 
We see that the spin resistivity increases toward low temperatures ifJ is nega- 
tive. If the pho~lon contribution to the electrical resistivity goes as T5 in the 
region of interest and if the resistivities are additive, then the total resistivity 
has the form 



with a minimum at 

clp/dT = 5aT' - cp, l?' = 0 , (14) 

whence 

T,, = ( C ~ , / S ~ ) ~ ~  

The ten~perature at  which tlie resistivity is a minimum varies as the one-fifth 
power of the concentration of the magnetic impurity, in agreement with experi- 
ment, at least for F e  in Cu. 

Problems 

1.  Superlattice lines in C u d u .  Cu,Au alloy (75% Cu, 25% Au) has an ordered state 
below 40OoC, in which the gold atoms occupy the 000 positiorrs and the copper 

11 I I 1 1  atoms the ,,0, 505, and 05, positions in a face-centered cubic lattice. Give the in- 

dices of the new x-ray reflections that appear when the alloy goes fro111 the disor- 
dered to the ordered state. List all new reflections with indices s 2 .  

2.  Configurational heat capacity. Derive an expression in terms of P(T) for the heat 
capacity associated with ordeddisorder effects in an AB alloy [The entropy (8) is 
called the configurational entropy or entropy of mixing.] 



APPENDIX A: TEMPERATURE DEPENDENCE 
OF THE REFLECTION LINES 

. . . I came to the conclusion that the sharpness 
of the interference lines would not suffer but 
that their intensity should diminish with in- 
creasing angle of scattering, the more so the 
higher the temperature. 

P. Debye 

As the temperature of the crystal is increased, the intensity of the Bragg- 
reflected beams decreases, but the angular width of the reflected line does not 
change. Experimental intensities for aluminum are shown in Fig. 1. It is sur- 
prising that we can get a sharp x-ray reflection from atoms undergoing large 
amplitude random thermal motion, with instantaneous nearest-neighbor spac- 
ings differing by 10 perccnt at room temperature. Before the Laue experiment 

Figure 1 The dependence of intensity on temperature for the (hOO) x-ray reflections of 
aluminum. Reflections (hOO) with h odd are iorbidden for an Icc structure. (ACtcr R. M. Nicklow 
and R.  A. Young.) 



was done, but when the proposal was discusscdl in a coffee house in Munich, 
the objection was made that the instantaneous positions of thc atoms in a 
crystal at room temperature are far from a regular periomc array, because of 
the large thermal fluctuation. Therefore, the argument went, one should not 
expect a well-defined diffracted beam. 

But such a beam is found. The reason was given by Debye. Consider the 
radiation amplitude scattered by a crystal: let the position of the atoni nomi- 
nally at rj contain a term u( t )  fluctriating in time: r(t) = rj + u(t). We suppose 
each atom fluctuates independently about its own equilihri~~m position.2 Then 
the thermal average of the structure factor (2.43) contains terms 

f ,  exp(-iG. ?)(exp(-iG. u)) , (1) 

where ( . . . ) denotes thermal average. The series expansion of the exponential is 

(exp(-iG - u)) = 1 -i(G. u) - ; ( ( G .  u ) ~ )  + . .. . (2) 

But (G . u)  = 0, because u is a random thermal displacerrierit uncorrelated 
with the direction of 6. Further. 

The factor arises as the geometrical average of cos2% over a sphere. 
The function 

has the same series expansion as (2) for the first two terms shown here. For a 
harmonic oscillator all terms in the series (2) and (3) can be shown to be iden- 
tical. Then the scattered intensity, which is the square of the amplitude. is 

where I ,  is the scattered intensity from the rigid lattice. The exponential factor 
is the Debye-Waller factor. 

Here (u2) is the mean square displacement of an atom. The thermal aver- 
age potential energy (U) of a classical harmonic oscillator in three dimensions 
is ak,~, whence 

'P P. Ewald, private comm~mication. 
'This is the Einstein model of a solid; it is not a very good model at low temperatures, but it 

works well at high temperatures. 
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where C is the force constant, M is the mass of an atom, and w is the frequency of 
the oscillator. We have used the result w2 = C/M.  Thus the scattered intensity is 

where hkl are the indices of the reciprocal lattice vector G.  This classical result 
is a good approximation at high temperatures. 

For quantum oscillators (u2) does not vanish even at T = 0; there is zero- 
point motion. On the independent harmonic oscillator model the zero-point 
energy is ghw; this is the energy of a three-di~nensional qnantum harmonic 
oscillator in its ground state referred to the classical energy of the same oscilla- 
tor at rest. Half of the oscillator energy is potential energy, so that in the 
ground state 

whence, by (4), 

at absolute zero. If G = 10' cm-l, w = and M = g, the argu- 
ment of the exponential is approximately 0.1, so that 1/1, = 0.9. At absolute 
zero, 90 percent of the beam is elastically scattered and 10 percent is inelasti- 
calIy scattered. 

We see from (6) and from Fig. 1 that the intensity of the diffracted line 
decreases, but not catastrophically, as the temperature is increased. Reflec- 
tions of low G are alfectcd less than reflections of high G. The intensity we 
have calculated is that of the coherent diffraction (or the elastic scattering) in 
the well-defined Bragg directions. The intensity lost from these directions is 
the inelastic scattering and appears as a diffuse hackground. In inelastic scat- 
tering the x-ray photon causes tlie excitation or de-excitation of a lattice vibra- 
tion, and the photon changes direction and energ).. 

At a given temperature thc Debye-Waller factor of a diffraction line de- 
creases with an increase in the magnitude of the reciprocal lattice vector G as- 
sociated with the reflection. The larger IGI is, the weaker the reflection at high 
temperatures. Thc theory we have worked out here for x-ray reflection applies 
equally well to neutron diffraction and to the Mijssbauer effect, tlie recoil- 
less emission of gamma rays by nuclei bound in crystals. 

X-rays can be absorbed in a crystal also by the inelastic processes of photo- 
ionization of electrons and Compton scattering. In the photoeffect the x-ray 
photon is absorbed ancl an electron is ejected from an atom. In the Compton 
effect the photon is scattered inelastically by an electron: the photon loses 
energy ancl the clectron is ejected from an atom. The depth of penetration 
of the x-ray beam depends on the solid and on the photon energy, but 1 cm is 



typical. A diffracted beam in Rragg reflection may rerriove the energy in a 
much shorter distance, perhaps cm in an ideal crystal. 

APPENDIX B: EWALD CALCULATION OF LATTICE SUMS 

The problem is to calcnlate the electrostatic potential experienced by 
one ion in the presence of aU the other ions in the crystal. We consider a lattice 
made up of ions with positive or negative chargcs and shall assume that the 
ions are spherical. 

We compute the total potential cp = cp, + cp2 at an ion as the slim of tsvo dis- 
tinct but rdatcd potentials. The potential cp, is that of a structure with a Gaiissian 
distribution of charge situated at each ion site, with s i p s  the same as those of 
the real ions. According to thc definition of the Madelung constant, the charge 
distribution on the reference point is not considered to contribute to the poten- 
tial or cp, (Fig. la) .  We therefore calculate the potential pl as the difference 

'PI = (Pa - (Ph 

Figure 1 (a) Cliarge distlihution used for computing potential rp,; the potential rpn is cornputcd (it 
incllldes the dashed curve at the reference point), whilc cph is the potential of the dashed curve 
alone. (b) Charge distributio~~ for poterrtial qz. The reference point is denoted by an X. 



of two potentials, p, being the potential of a continuous series of Gaussian dis- 
tributions and a being the potential of the single Gaussian distribution on the 
reference point. 

The potential p2 is that of a lattice of point charges with an additional 
Gaussian distribution of opposite sign superposed upon the point charges 
(Fie. lb) .  

\, 

The point of splitting the problem into the two parts 9, and q2 is that by a 
suitable choice of the parameter determining the width of each Gaussian peak 
we can get very good convergence of both parts at the same time. The Gaussian 
distrihiitions drop out completely on taking the surn of the separate charge 
distributions giving rise to cpl and p,, so that the value of the total potential is 
independent of the width parameter, but the rapidity of convergence depends 
on the value chosen for that parameter. 

\it: calculate first the potential q, of a continuoi~s Gaussim distribution. 
We expand pa and the charge density p  in Fourier series: 

where G is 2 ~ r  tinies a vector in the reciprocal lattice. The Poisson equation is 

so that 

c, = 4 7 7 p , / ~ ~  

We suppose in finding pG that there is associated with each lattice point of 
the Bravais lattice a basis containing ions of charge q, at positions r, relative to 
the lattice point. Each ion point is therefore the center of a Gaussian charge 
distrihution of density 

where the factor in front of the exponential ensures that the total charge associ- 
ated with the ion is q,; the range parameter 7 is to he chosen judiciously to ensure 
rapid convergence of the final result (6), which is in value independent of T .  

L%'e would normally evaluate pG by multiplying both sides of (2) by 
exp(-iG . r) and integrating over the volume A of one cell, so that the charge 
distrihution to be considered is that originating on the ion points within the 
cell and also that of the tails of the distributions originating in all other cells. It 



is easy to see, however, that the integral of the total charge density times 
exp[-(iG . r ) ]  over a single cell is equal to the integral of the charge density 
originating in a s ing l~  cell times exp[-(iG . r)] over all space. 

We have therefore 

= I 2 q , in /~ r "Yexp-~( r  - r . )qexp(-i~ - r )  ib 
111 ' 
space 

This expression is readily evaluated: 

where S(G) = q,exp(-iG rt) is just the structure factor (Chapter 2) in 
appropriate units. Using (1) and (3), 

At the origin r = 0 we have 

4 n  
cpa = S(G)G-2 eV(-G2/49) . 

C 

The potential cp,, at tht: reference ion point i due to thc central Gaussian 
distribution is 

and so 

The potential cp, is to be evaluated at the reference point, and it differs 
from zero because other ions have the tails of their Gaussian distributions 
overlapping the reference point. The potential is due to three contributions 
from each ion point: 



where the terms are from the point charge, frorrl the part of the Gaussian dis- 
tribution lying inside a sphere of radius r, about the lth ion point, and from 
that part lying outside the sphere, respectively. On substituting for p ( r )  and 
carrying out elementary manipulations, we have 

where 

Finally, 

is the desired total potential of the reference ion i in thc field of all the other 
ions in the crystal. I n  the application of the Ewald method the trick is to 
choose TJ such that both sums in (6) converge rapidly. 

Ewald-Kornfeld Method for Lattice Sums for Dipole Arrays 

Kornfeld extended the Ewald method to &polar and quadrupolar arrays. 
We discuss here the field of a dipolc array at a point which is not a lattice 
point. According to (4) and ( 5 )  the potential at a point r in a lattice of positive 
unit point charges is 

where rl is the distance from r to the lattice point 1. 
The first term on the right gives the potential of the charge distribution 

p = ( T J / T ~ ) ~ ! ~  e ~ p ( - ~ ? )  about each lattice point. By a well-known relation in 
electrostatics we obtain the potential of an array of unit dipoles pointing in tlie 
s direction by taking -d/dz of the above potential. The term under discussion 
contributes 

and the s component of the electric field from this term is E,  = @p/az2, or 

The second terrn on the right of (7) after one differentiation gves 



and the z component of this part of the field is 

2 iz;[(3~(firl)/r;) f (6/r-f )(T/T)~' exp(-~r,? 
1 

The total Ez is given by the sum of (8) and (9). The effects of any number of 
lattices may be added. 

APPENDIX C: QUANTIZATION OF ELASTIC WAVES: PHONONS 

Phonor~s were introduced in Chapter 4 as quantized elastic waves. How do 
we quantize an elastic wave? As a simple model of phonons in a crystal, con- 
sider the vibrations of a linear lattice of particles connected by springs. We can 
quantize the particle motion exactly as for a harmonic oscillator or set of cou- 
pled harmonic oscillators. To do this we make a transformation from particle 
coordinates to phonon coordinates, also called wave coordinates because they 
represent a traveling wave. 

Let N particles of mass M be conncctcd by springs of force constant C and 
length a. To fix the boundary conditions, let the particles form a circular ring. 
We consider the tra~lsverse displacements of the particles out of the plane of 
the ring. The displacement of particle s is q, and its momentum is P ,~ .  The 
Hamiltonian of the system is 

The Hamiltonian of a harmonic oscillator is 

and the energy eigcnvalues are, where n = 0 , 1 , 2 , 3 ,  . . . , 

The eigenvalue problem is also exactly solvable for a chain with the diffrrent 
Hamiltonian (1). 

To solve (1) we make a Fourier transformation from the coordinates p,, q, 
to the coordinates Pk, Qk, which arc known as phonon coordinates. 
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Phonon Coordinates 

The transformation from the particle coordinates q, to the phonon coordi- 
nates Qn is used in all periodic lattice problems. We let 

consistent with the inversc transformation 

Qk = N-'/' z q, exp(-iksa) . ( 5 )  

Here the N values of the wavcvector k allowed by the ~er iodic  boundary con- 
dition q, = y,,, are given by: 

1% need the transformation from the particle momentum p, to the momen- 
turn Yk that is canonically conjugate to the coordmate Qk. The transformation is 

This is not quite what onc wonld obtain by the naive substitution of p for y and 
P for Q in (4) and (S), hecause k and -k have been interchanged between (4) 
and (7). 

LVe verify that our choice of P I  and Qk satisfies the quantum commutation 
relation for canonical variables. We lorm the commutator 

Because the operators q, p are conjugate, they satisb the commutation relation 

[q,,p,l = ifiS(r, s) , (9) 

where S(r,s) is the Kronecker delta symbol. 
Thus (8) hecomes 

[Qk,Pk,] = N-I i'z exp[-i(k - kf)ra] = ih3(k, k') , (10) 

so that Q,, Pk also are conjugate variables. Here we have evaluated the summa- 
tion as 

z exp-i(k - k')ml = 2 exp[-i2v(n - nl)rlN] 
(11) 

= N6(n, n' )  = NS(k, k') , 

where we have used (6) and a standard result for the finite series in (11). 



We carry out the transformations (7) and (4) on the hamiltonian (I) ,  and 
make use of the sum~nation (11): 

X exp(ikkss)[exp(ik'a) - 11 = 2 ~ Q ~ Q - ~ ( I  - cos ka) . (13) 
k 

Thus the hamiltonian (1) becomes, in phonon coordinates, 

If we introduce the symbol wk defined by 

wk = ( 2 ~ / ~ ) ~ ' ~ ( 1 -  cos ka)In , 

we have the phonon hamiltonian in the form 

1 
PkP-k + - M6.J: QkQ-k . 

k 2 1 (16) 

The equation or  motion of the phonon coordinate operator Qk is found hy 
the standard prescription of quantum mechanics: 

ifii), = [Q,, H] = ifiP-klhl , (17) 

with H given by (14). Further, using the co~n~nutator (17), 

i h ~ ~  = [ Q ~ ,  H] = M-'[Y-~,H] = ihw:~, , (18) 

so that 

Q~ + wiQk=O . (19) 

This is the equation of motion of a harmonic oscillator with the frequency wk. 
The energy eigenvalues of a quantum harmonic oscillator are 

where the quantum number nk = 0, 1, 2, . . . . The energy of the entire system 
of all phonons is 

o=Z(nk+;)f iy k (21) 

This resnlt demonstrates the quantization of the energy of elastic waves on 
a line. 



Appendix 

Creation and Aaaihilation Operators 

It is helpful in advanced work to transform the phonon hamiltonian (16) 
into the form of a set of harmonic oscillators: 

Here a:, ak are harmonic oscillator operators, also called creation and destruc- 
tion operators or bosun operators. The transformation is derived below. 

The bosori creation operator a+  which "creates a phonon" is defined by 
the property 

when acting on a harmonic oscillator state of quantum number n, and the boson 
annihilation operator a which "destroys a phonon" is defined by the property 

a j n ) = n m l r ~ - l )  . (24) 

It follows that 

a+aln) = a+nl"ln - 1) = nln) , (25) 

so that In) is an eigenstate of the operator a+u with the integral eigenvalue n, 
called the quantum number or occupancy of the oscillator. When the phonon 
mode k is in the eigenstate labeled by nk, we may say that there are nk phonons 
in the mode. The eigenvalues of (22) are U = Z (nk + ;)nok, in agreement 
with (21). 

Because 

the commutator of the boson wave operators a: and ak satisfies the relation 

[a ,aS]=aa+-a ta= 1 . (27) 

We still have to prove that the hamiltonian (16) can be expressed as (19) in 
terms of the phonon operators a:, uk. This can be done by the transformation 

The inverse relations are 

Qk = (fi/2~@J~)'"(U~+ UZk)  ; 

Pk = i(fiM0~/2)~"(u~- 

By (4), ( 5 ) ,  and (29) the particle position operator becomes 



This equation relates the particle dlsplacemcnt operator to the phonon cre- 
ation and annihilation operators. 

To obtain (29) horn ( 2 8 ) ,  we use the properties 

QIk = Q ,  ; Pkf = P-k ( 3 3 )  

which follow from ( 5 )  and (7) by use of the quantum mechanical requirement 
that y, and p ,  be hermitian operators: 

% = y :  ; p s = p :  . ( 3 4 )  

Then (28 )  follows from the transformations (4), ( 5 ) ,  and (7) .  We verify tlrat the 
commutation relation (33) is satisfied by the operators defined by (28 )  and (29 ) :  

[ak, a i l  = ( 2 f L ) ~ - ' ( ~ ~ k [ ~ k ,  Q - k l  - i[Qk,pkl + i[P-k,Q-kl 

+ [P-k,PkI/MWk) . ( 3 5 )  

By use of [QkrPk'] = ilid(k,k') from (10 )  we have 

[ak,  a;] = 6(k ,  k ' )  . (36 )  

It remains to show that the versions of ( 1 6 )  and (22 )  of thc phonon hamil- 
tonian are identical. Sie note that wk = mk from ( I S ) ,  and we form 

This e h b i t s  thc cqt~ivalence of the two expressions (14 )  and ( 2 2 )  for H .  l i e  
identify wk = (2C/M)'"(l - cos ka)"' in (15) with the classical frequency of 
the oscillator mode of wavevector k. 

The Fermi-Dirac distribution function' may bc derived in several steps by 
use of a modem approach to statistical mechanics. We outline the argument 
here. Thc notation is such that conventional entropy S is related to the funda- 
mental entropy cr by S = k , ~ ,  and the Kelvin temperature T is related to the 
fundamental temperature T by T = kBT, where k B  is the Boltzmann constant 
with the value 1.38066 X 10 2 3  J K. 

The leading quantities are the entropy, the temperature, the Boltzmann fac- 
tor, the che~nical potential, the Gibbs factor, and thc distribution functions. The 

'This appendix follows closely the introduction to C. Kitlel and H. Krue~r~er. T h r m l  
Physics, 2nd ed., Freeman, 1980. 



entropy measures the number of quantum states accessible to a system. A closed 
system might be in any of these quantum states and (we aqsume) with equal prob- 
ability. The fundamental assumption is that quantum states are either accessible 
or inaccessible to the system, and the system is equally likely to be in any onc ac- 
cessible state as in any other accessible state. Given g accessible statcs, the en- 
tropy is defined as a = log g .  The entropy thus defined will be a fimction of the 
energy U, the number of particles N, and the volu~ne V of the system. 

When two systems, each of specified energy, are bronght into thermal 
contact, they may transfer energy; their total energy remains constant, but the 
constraints on their individual energies are lifted. A transfer of energy in one 
direction, or perhaps in the other, may increase the product g,g, that measures 
the number of accessible states of the combined systems. \%'hat wc call the 
fundamental assumption biases the outcome in favor of that allocation of the 
total energy that maximizes the number of accessible states: more is better, 
and more likely. This statement is the kernel of the law of increase of entropy, 
which is the general expression of the second law of thermodynamics. 

We have brought two systems into thermal contact so that they may trans- 
fer energy. What is the most probable outcomc of the encounter? One system 
will gain energy at the expense of the other, and meanwhile the total entropy 
of the two systems will increase. Eventually the entropy will reach a maxim~lm 
for the given total energy. It is not difficult to show that the maximum is at- 
tained when the value of ( a ~ / a U ) ~ , ,  for one syste~n is equal to the value of the 
same quantity for the second system. This equality property for two systems in 
thermal contact is the property we expect of the temperature. Accordingly, the 
fundamental temperature T is defined by the relation 

The use of 117 assures that energy will flow from high T to low T; no more com- 
plicated relation is needed. 

Now consider a ver)r simple example of the Boltzmann factor. Let a small 
system with only two states, one at energy 0 and one at energy E ,  be placed in 
thermal contact with a large system that we call the reservoir. The total energy 
of the combined systems is U,; when the small system is in thc state of energy 
0, the reservoir has energy U,, and will have g(U,) states accessible to it. When 
the srriall system is in the state of energy E ,  the reservoir d l  have energy 
Un - E and will have g(UU - E) states accessible to it. By the funda~rlental as- 
sumption, the ratio of the probability of finding the small system with energy 
to the probability of finding it with energy 0 is 



The reservoir entropy a may be expanded in a Taylor series: 

u(uO - E )  = u ( u ~ )  - E ( ~ U / ~ U ~ )  = a ( u O )  - E/T , (3) 

by the definition ( 1 )  of the temperature. Higher order terms in the expansion 
may be dropped. Cancellation of the term exp[u(li,)], which occurs in the nu- 
merator and denominator of (2) after the substitution of (3), leaves us with 

P ( e ) / P ( O )  = e x p ( - € 1 7 )  . ( 4 )  

This is Boltzmann's result. To show its use, we calculate the thermal aver- 
age energy ( E )  of the two-state system in thermal contact with a reservoir at 
temperature T:  

where we have imposed the normalization condition on the sum of the 
probabilities: 

p ( 0 )  + P ( E )  = 1 . (6) 

The argument can be generalized immediately to find the average energy of a 
harmonic oscillator at temperature T ,  as in the Planck law. 

The most important extension of the theory is to systems that can transfer 
particles as well as energy with the reservoir. For two systems in diffilsive and 
thermal contact, the entropy will be a mawi~rlum with respect to the transfer of 
particles as well as to thc transfer or energ).. Not only must ( a ~ / a U ) , ~  be equal 
for the two systems, hut ( d u / d N ) U , v  must also be equal, where N refers to the 
number of particles of a given species. The new equality condition is the occa- 
sion for the introduction2 of the chemical potential p: 

For two systems in thermal and diffusive contact, T ,  = T ,  and p1 = p2. The 
sign in (7) is chosen to ensure that the direction of particle flow is f ro~n high 
chemical potential to low chemical potential as equilibrium is approached. 

The Gibbs factor is an extension of the Boltzmann factor ( 4 )  and allows us 
to treat systems that can transfer particles. The simplest example is a system 
with two states, one with 0 particles and 0 energy, and one with 1 particle and 
energy E .  The system is in contact with a resemoir at temperature T and chem- 
ical potential p. \Ve extcnd ( 3 )  for the reservoir entropy: 

'TP Chapter 5 has a careful treatment of the chemical potential. 



By analogy with (4), we have the Gibbs factor 

P(l,~)IPi0,0) = exp[(y -*)/TI , 

for the ratio of the probability that the system is occupied by 1  particle at 
energy- E to the probability that the system is unoccupied, with energy 0.  The 
rrsnlt ( 9 )  after normalization is readily expressed as 

This is the Ferrrri-Dirac distribution function. 

APPENDIX E: DERIVATION OF THE dk/dt EQUATION 

Thc simple and rigorous derivation that follows is due to Kroemer. In 
quantnm mechanics, for any operator A we have 

where H is the l~anriltonian. See also C. L. Cook, American J. Yhys. 55, 953 
(1987). 

We let A be the lattice translation operator T defined by 

where a is a basis vector, here in one dimension. For a Bloch function 

Thic resnlt is usually written for one band, hnt it holds even if +hk is a linear 
combination of Bloch states from any nnmher of bands, but having the identi- 
cal wavevector k in the reduced zone scheme. 

The crystal hamiltonian No commutes with the lattice translation operator 
T, so that [Ho,T] = 0. If we add a uniform external force F, then 

and 

[H,  TI = FaT . 

From ( 1 )  and ( 5 ) ,  

d(T)/dt = ( i / f i )(Fa)(T) . 



From (6) we form 

(T)*d(T)/dt = (iFaIfi) l(T)I2 ; 

On addition, 

This is the equation of a circle in the complex plane. The coordinate axes 
in the plane arc the real and imaginary parts of the eigenvalue exp(ika). If (T) 
is initially on the unit circle, it will remain on the unit circle. 

For II/S that satisfy periodic houndaly conditions, (T) can lie on the unit 
circle only if (I,k is a single Bloch function or a s~lperposition of Bloch functions 
from different bands, but with the same reduced k. 

As (T) moves around the unit circle, the wavevector k changes exactly at 
the same rate for the co~nponents of & in all bands. With (T) = exp(ika), we 
have from (6) that 

an exact result. 
This does not mean that interhand mixing (such as Zener tunneling) does 

not occur under the influence of applied electric fields. It just means that k 
evolves at a constant rate for every component of a wave packet. The result is 
easily extended to three dimensions. 

APPENDIX F: BOLTZMANN TRANSPORT EQUATION 

The classical theory of transport processes is bascd on the Boltzmann trans- 
port equation. We work in the six-dimensional space of Cartesian coordinatcs r 
and velocity v. The classical distribution function f(r,v) is defined by the relation 

f(r,v)drdv = number of particles in drdv . (1) 

The Boltzlnann equation is derived by the following argument. L7e con- 
sider the effcct of a time displacement dt on the distribution function. The 
Liouville theorem of classical mechanics tells us that if we follow a volume 
element along a flowline the distrihntion is conscrvcd: 

f(t + dt,r + dr,v + dv) = f(t,r,v) , (2 )  



in the absence of collisions. With collisions 

Thus 

dt(dflat) + dr - grad, f + d v  grad, f = dt(?flflat)mu . (4) 

Let a denote the acceleration dv/dt; then 

This is the Boltzmann transport equation. 
In many problems the collision term (af/at),,,l may be treated by the intro- 

duction of a relaxation time r,(r,v), defined by the equation 

Here f ,  is the distribution function in thermal equilibrium. Do not confuse T, 
for relaxation time with T for temperature. Suppose that a nonequilihrium dis- 
tribution of velocities is set up hy external forces which are suddenly removed. 
The decay of the distribution towards eqiiilihrium is then obtained from (6) as 

a ( f - f o ) -  f - f o  
at TC ' 

if we note that dfdat  = 0 by definition of the eqnilihrinm distribution. This 
equation has the solution 

It is riot excluded that T, may be a function of r and v. 
We combine (I), ( S ) ,  and ( 6 )  to obtain the Boltzmann transport equation 

in the relaxation time approximation: 

In the steady state aflat = 0 by definition. 

Particle DifPusion 

Consider an isothermal system with a gradient of the particle concentra- 
tion. The steady-state Roltzmann transport equation in the relaxation time ap- 
proximation becomes 



where the nonequilibrium distribution function f  varies along the x direction. 
Wc may write (10) to first order as 

fi = f o  - uXrcdf2dx , (11) 

where we have replaced &'ax by dfddx. We can iterate to obtain higher order 
solutions when dcsired. Thus the second order solution is 

fZ = fO - o,rJf1/dx = f o  - u,~&f~/dx  + vf<d?fO/dxZ . (12) 

The iteration may be used in the trcatment of nonlinear effects. 

Clarsical Distribution 

Let fO be the distribution function in the classical limit: 

We are at liberty to take whatever normalization for the distribution fi~nction 
is most convenient because the transport equation is linear in f  and f,. We can 
take the normalization as in ( 1  3 )  rather than as in (1).  Then 

and the first order solution (11)  for the nonequilibrium distrihiltion becomes 

f = fa - (cx7z fo /~) (dddx)  . (15) 

The particle flux density in the x direction is 

where D(6) is the density of electron states per unit volume per unit energy 
range: 

Thus 

The first integral vanishes because c,  is an odd function and.fo is an even func- 
tion of 0,. This confirms that the net particle flux vanishes for the equilihriltm 
distribution f,. The second integral will not vanish. 

Before evaluating the second integral, we have an opportunity to make use 
of what we may know about the velocity dependence of the relaxation time 7,. 

Only for the sake of example we assume that T,  is constant, independent of ve- 
locity; T, may then be taken out of the integral: 
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The integral rriay be written as 

because the integral is just thc kinetic energy density gnr of the particles. IIere 
j&D(~)de = n is the concentration. The particle flux density is 

J:, = - (nr,/M)(dgldx) = - ( ~ , ~ / M ) ( d n / d x )  , (21) 

because 

p = T log n + constant . (22) 

The result (21) is of the form of the diffusion equation with the diffusivity 

Another possible assumption about the relaxation time is that it is in- 
versely proportional to the velocity, as in T, = I / ( ; ,  where the mean free path 1 is 
constant. Instead of (19) we have 

and rlow the integral may he written as 

i lufuD(.)& = bii 

where c is the average speed. Thus 

J: = - $ ( ~ C V L / T ) ( ~ ~ / & )  = -$l~(dnldx) , (26) 

and the diffusivity is 

D, = i1c . (27) 

Fermi-Dirac Distribution 

The distribution function is 

To form dfn/dx as in (14) we need the derivative &Idp. We argue below 
that 

4fn/dk = S ( E  - p)  , (29) 



at low temperatures T < p.  Here 6 is the Dirac delta function, which has the 
property for a general function F ( E )  that 

Now consider the integral I," F(e)(dfO/dp)de At low temperatures &/dp is very 
large for E - p and is sinall elsewhere. Unless the function F(E) is very rapidly 
varying near p, we may take F(E) outside the integral, with the value F(p):  

where we have used dfo/dp = -clfdcle. We have also used f, = 0 for E = m. At 
low temperatures f(0)  = 1; thus the right-hand side of (31) is just F(p) ,  consis- 
tent with the delta function approximation. Thus 

The particle flux density is, from (16), 

where T, is the relaxation time at thc surface E = p of the Fer~ni  sphere. The 
integral has the value 

$$(3n/2~,)  = n/rn , (34) 

by use of D ( p )  = 3n/2eF at absolute x r o ,  where E ,  = :mu; defines the velocity 
UF on the Fermi surface. Thus 

At absolute zero p(0)  = (fi2/2m)(3?j.n)2'3, whence 

so that (33)  bccomes 

1; = - ( 2 ~ , / 3 m ) e ~  drddx = -$;T, dnldx . (37)  

The diffusivity is the coefficient of dn/dx: 

closely similar in form to the result (23) for the classical distribution of veloci- 
ties. In (38) the relaxation tirne is to be taken at the Fermi energy. 
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We see we can solve transport problems where the Fermi-Dirac distribu- 
tion applies, as in metals, as easily as where the classical approximation 
applies. 

Electrical Conductivity 

The isothermal electrical conductivity u follows from the result for the 
particle diffusivity when we multiply the particle flux density by the particle 
charge q and replace the gradient d d d x  of the chemical potential by the gra- 
dient qdpldx = -qE, of the external potential, where E, is the x component of 
the electric field intensity. The electric current density follows from (21): 

for a classical gas with relaxation time 7,. For the Fermi-Dirac distribution, 
from (35) ,  

APPENDIX G: VECTOR POTENTIAL, FIELD MOMENTUM, 
AND GAUGE TRANSFORMATIONS 

This section is included because it is hard to find the magnetic vector po- 
tential A discusscd thoroughly in one place, and we need the vector potential 
in suprrcondnctivity. I t  may seem mysterious that the ha~niltonian of a particle 
in a magnetic field has the form derived in (18) below: 

where Q is the charge; hl is the mass; A is the vector potential; and 9 is 
the electrostatic potential. This expression is valid in classical mechanics and 
in quantu~n mechanics. Because the kinetic energy of a particle is not clranged 
by a static magnetic field, it is perhaps unexpected that the vector potential 
of the magnetic field enters the hamiltonian. As we shall see, the key is the 
observation that the momentum p is the sum of two parts, the kinetic 
momentum 

which is fa~rliliar to us, and the potential momentum or field momentum 



The total momentum is 

C 

and the kinetic energy is 

The vector is related to the magnetic field by 

B = curlA . (6) 

We assume that we work in nonmagnetic material so that H and B are trcated 
as identical. 

Lagrangian Equations of Motion 

To find the Hamiltonian, the prescription of classical mechanics is clear: we 
must first find the Lagrangian. The Lagrangian in generalized coordinates is 

This is correct because it leads to the correct equation of motion of a charge in 
combined electric and magnetic fields, as we now show. 

In Cartesian coordinates the Lagrange equation of motion is 

and similarly for y and z .  From (7) we form 

Thus (8) becomes 

'For an elementary treatment of the vector potential see E M. Pnrcell. Electricity und 
mngdinm, 2nd ed., McGrdw-Hill, 1984. 
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d2x Q M = QE, + - [v XB], , 
dr? c 

with 

B  = curl A . (15) 

Equation (13) is the Lorentz force equation. This confirms that (7) is correct. 
We note in (14) that E has one contribution from the electrostatic potential p 

and another from the time derivative of the magnetic vector potential A. 

Derivation of the Hamiltonian 

The momentunl p is defined in terms of the Lagrangian as 

in agreemcnt with (4). The hamiltonian H(p,q) is defined by 

Field Momentum 

The momentum in the electromagnetic field that accompanies a particle 
moving in a magnetic field is given by the volume integral of the Poynting vec- 
tor, so that 

I ~ V E X B .  Pfield = (19) 

We work in the nonrelativistic approximation with v 4 c, where v is the veloc- 
ity of the particle. At low values of vlc we consider B to arise from an external 
source alone, but E arises from the charge on the particle. For a charge Q 
at r', 

E  = -Vp ; VZp = -4mQS(r - r') . (20) 

Thus 

dV V p  X curl A . 
4mc 



By a vector relation we have 

$ dV Vcp X curl A = -$ dV [ A  X curl ( V q )  - A div V q  - (Vcp) &v A] . (22)  

But curl (Acp) = 0, and we can always choose the gauge such that div A = 0. 
This is the transverse gauge. 

Thus, we have 

This is the interpretation of the field contribution to the total momentlim 
p = Mv + QAlc. 

GAUGE TRANSFORMATION 

Suppose H* = E*, where 

Let us make a gauge transformation to A', where 

where x is a scalar. Now B = curl A = curl A', because curl ( O X )  = 0. The 
Schrodinger equation hecomes 

What +' satisfies 

with the same E as for +? Equation (27)  is equivalent to 

We try 

Now 

so that 
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Thus +' = exp(iQx/fic)+ satisfies the Schrijdinger equation after the 
gauge transformation (25). The energy E is invariant under the transformation. 

The gauge transforniation on A merely changes the local phase of the 
wavefunction. N7e see that 

so that the charge density is invariant under a gauge transformation. 

Gauge in the London Equation 

Because of the equation of continuity in the flow of electric charge we 
require that in a superconductor 

divj = 0 , 

so that the vector potential in the London equation j = -cA/4~rhZ must satisfy 

divA = O . (32) 

Further, there is no current flow through a vacuum/superconductor interface. 
The normal component of the current across the interface must vanish: j ,  = 0, 
so that the vector potential in the London equation must satisfy 

A,, = 0 . (33) 

The gauge of the vector potential in the London equation of superconductivity 
is to be choscn so that (32) and (33) are satisfied. 

APPENDIX H: COOPER PAIRS 

For a co~nplete set of states of a two-electron system that satisfy periodic 
boundary conditions in a cube of unit volume, we take plane wave product 
functions 

We assurrie that the electrons are of opposite spin. 



We introduce center-of-mass and relative coordinates: 

K = k,  + k, ; k = i(k1 - k,) , (3) 

so that 

k , - r l + k 2 - r , = K - R + k - r .  (4) 

Thus (1 )  becomes 

p(K,k;R,r) = exp(iK . R) exp(ik . r) , ( 5 )  

and the kinetic energy of the two-electron system is 

eg + Ek = (f i2/m)(;P + k') . (6 )  

We give special attention to the product functions for which the center-of- 
mass wavevector K = 0 ,  so that k,  = -k2. With an interaction H I  between the 
two electrons, we set up the eigenvalue ~ rob lem in terms of the expansion 

~ ( r )  = Xgk exp(ik . r )  . ( 7 )  

The Schrodinger equation is 

(H,,  + H I  - €)x(r)  = 0 = zk, [ (EL,  - e)gkr + H1gk,]exp(ikl . r )  , (8) 

where H ,  is the interaction energy of the two electrons. Here is the eigenvalue. 
We take the scalar product with exp(ik - r )  to obtain 

the secular equation of the problem. 
Now transform the sum to an integral: 

( E  - e ) g ( E )  + JdE' g(E1)HI(E,E')N(E') = 0 , (10) 

where N(E1) is the number of two electron states with total momentum K = 0 
and with kinetic energy in dE' at E'. 

Now consider the matrix elements H 1 ( E , E 1 )  = (klHllkf). Studies of these by 
Bardeen suggest that they are important when the two electrons are confined to 
a thin energy shell near the Fermi surface-within a shell of thickness fiw, 
above E,, where w, is the Debye phonon cutoff frequency. We assume that 

for E,E' within the shell and zero otherwise. Here V is assumed to be positive. 
Thus (10) becomes 

with E ,  = eF + fiw,. Here C is a constant, independent of E 
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From (12) we have 
C 

g(E) = 

and 

\t7ith N(Ef)  approximately constant and equal to N ,  over the small energy 
range between 2e, and 2cF, we take it out of the integral to obtain 

Let tlie eige~ivalue c of (15) be written as 

which defines the binding energy A of the electron pair, relative to two free 
electrons at the Fermi surface. Then (15) becomes 

2c,, - 2~~ + A 2hwD + A 
1 = NFV log 

A 
= AI;V log 

A ' (17) 

This result for the binding energy of a Cooper pair may be written as 

For V positive (attractive interaction) the energy of the system is lowered hy 
excitation of a pair of electrons above the Fermi level. Therefore the Fermi 
gas is unstable in an important way. The binding energy (19) is closely related 
to the superconducting energy gap Eg. The BCS calculations show that a high 
density of Cooper pairs may form in a metal. 

APPENDIX 1: GINZBURG-LANDAU EQUATION 

We owe to Ginzburg and Landau an elegant theory of the phenomenology 
ofthe snpercondlicting state and of the spatial variation of the order parameter 
in that state. An extension of the theory by Abrikosov describes the structure 
of the vortex state which is exploited technologically in superconducting mag- 
nets. The attractior~s of the GL theory are the natural introduction of the 



coherence length and of the wavefunction used in the theory of the Josephson 
effects in Chapter 12. 

We introduce the order parameter $(r) with the property that 

$*(r)$(r) = ns(r) , (1) 

the local concentration of superconducting electrons. The mathematical for- 
mulation of the definition of the fiinction $(r) will come out of the BCS the- 
ory. We first set lip a form for the free energy density Fs(r) in a superconduc- 
tor as a function of the order parameter. We assume that in the general vicinity 
of the transition temperature 

with the phenomenological positive constants a, P, and m, of which more will 
be said. Here: 

1. FN is the free energy density of the normal state. 
2. -aI$I" $ $ P I $ I ~  is a typical Landau form for the expansion of the free 

energy in terms of an order parameter that vanishes at a second-order phase 
transition. This term may be viewed as -ans + ifin: and by itselc is a mini- 
mum with respect tons when ns(T) = alb 

3. The term i11 lgrad $I2 represents an increase in encrgy caused by a spa- 
tial variation of the order parameter. I t  has the form of the kinetic energy in 
quantum mechanics.' The kinetic momentum -ifiV is accompanied by the 
field momentum -qNc to enslire the gauge invariance of the free energy, as 
in Appendix G. Here q = -2e for an electron pair. 

4. The term -$M . dB,, with the fictitious magnetization M = (B - Ba)/4.rr, 
represents the increase in the superconductir~g free energy caused by the ex- 
pulsion of magnetic flux from the superconductor. 

The separate terms in (2) will be illustrated by examples as we progress 
further. First let us derive the GL equation (6). We minimize the total free en- 
ergy JdV Fs(r) with respect to variations in the function $(r). We have 

We integrate by parts to obtain 

if 89" vanishes on the boundaries. It follows that 

SJdVF, = JdVS$*[-a$ + P1$12$ + (1/2m)(-ifiV - q ~ l c ) ~ $ ]  + C.C. ( 5 )  

'A oo~~tribution of the form IVMI2, where M is the magnetization, was introduced hy Landau 
and Lifshitz to represent the exchange energy density in a fcrromagnet; see QTS, p. 65. 
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This integral is zero if the term in brackets is zero: 

This is the Ginzburg-Landau equation; it resembles a Schrvdinger equation 
for $. 

By minimizing (2) with respect to SA we obtain a gauge-invariant expres- 
sion for the supercurrent flux: 

At a frcr surface of the specimen we must choose the gauge to satisfy the 
hoi~ndary condition that no current flows out of the superconductor into the 
vacuum: ii . js = 0, where ii is the surface normal. 

Coherence Length. The intrinsic coherence length 5 may be defined from 
(6). Let A = 0 and suppose that /3l+l2 may be neglected in comparison with a. 
In one dimension the GL equation (6) reduces to 

This has a wavelike solution of the form exp(ix/(), where &is defined by 

5 = (fi2/2ma)'" . (9) 

A more interesting special solution is obtained if we retain the nonlinear 
term p1$I2 in (6). Let us look for a solution with I+!I = 0 at x = 0 and with II, + I$, 
as x + m. This situation represents a boundary between normal and supercon- 
ducting states. Such states can coexist if there is a magnetic field H ,  in the nor- 
mal regon. For the moment we neglect the penetration of the field into the 
si~perconducting region: we take the field penetration depth h < 5, which de- 
fines an extreme type I superconductor. 

The solution of 

subject to our boundary conditions, is 

$(x) = ( a / / 3 ) l f 2 t a n h ( d ~ )  . (11) 

This may be verified by dlrect substitution. Deep inside the superconductor 
we have Go = as follows from the minimization of the terms -a1+l2 + 
ipl$14 in the free energy. We see from (11) that 5 marks the extent of the co- 
herence of the superconducting wavefunction into the normal region. 

We have seen that deep inside the superconductor the free energy is a 
minimum when 1$,1" a/P, SO that 



by definition of the thermodynamic critical field H,  as the stabilization free 
energy density of the superconducting state. It follows that the critical field is 
related to a and P by 

H, = (4m2/p)'" . (13) 

Consider the penetration depth of a weak magnetic field (B  < H,) into a 
superconductor. We assume that 1 + 1 2  in the superconductor is equal to II)~~', 
the value in the absence of a field. Then the equation for the supercurrent flux 
reduces to 

js(r) = - (q2 /~) l I )012A , (14)  

which is just the London equation js(r) = -(c/4.rrh2)A, with the penetration 
depth 

The dimensionless ratio K = A/[ of the two characteristic lengths is an 
important para~neter in the theory of superconductivity. From (9) and (15) 
we find 

We now show that the value K = 1 / f i  divides type I superconductors 
( K  < 1 / f i )  from type I1 superconductors ( K  > 1 / f i ) .  

Calculation of the Upper Critical Field. Superconducting regions nucle- 
ate spontaneously within a normal conductor when the applied magnetic field 
is decreased below a value denoted by H,,. At the onset of superconductivity 
I+I is small and we linearize thc GL equation ( 6 )  to obtain 

The magnetic field in a snperconducting region at the onset of superconduc- 
tivity is just the applied field, so that A = B(O,x,O) and (17) becomes 

This is of the same form as the Schrodinger equation of a free particle in a 
magnetic field. 

We look for a solution in the form exp[i(kyy + kzz)]p(x) and find 
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this is the equation for an harmonic oscillator, if we set E = a - (h2/2m) 
( k t  + k:) as thc eigenvalne of 

The term linear in x can be transformed away by a shift of the origin from 
0 to x, = hkyqB/2mc, so that ( 2 0 )  hecomes, with X = x - x,, 

The largcst valiie of the magnetic field B for which solutions of ( 2 1 )  exist is 
given by the lowest eigenvalue, which is 

fhw = fiqB,,/2n~ = a - fi2k:/2m , ( 2 2 )  

where w is the oscillator frequency yB/mc. With k ,  set equal to zero, 

B,, = H,  = 2amclqh . (23 )  

This result may be expressed by (13) and ( 1 6 )  in terms of the thermody- 
rianiic critical field H ,  and the GL pararnetcr K = A/(: 

When A/( > l / f i ,  a superconductor has H,, > H, and is said to be of type 11. 
It is helpful to write H,, in terms of the flux quantum @, = 27rfic/q and 

E2 = h2/2ma: 

This tells us that at the upper critical field the flux density HC2 in the material 
is equal to one flux quantum per area 2n%, consistent with a fluxoid lattice 
spacing of the order of (. 

APPENDIX 1: ELECTRON-PHONON COLLISIONS 

Phonons distort the local crystal structure and hence distort the local band 
structure. This distortion is sensed by the conduction electrons. The important 
effects of the co~ipling of electrons with phonons are 

Electrons are scattered from one state k to another state k', leading to elec- 
trical resistivity. 



Phonons can be absorbed in the scattering event, leading to the attenuation 
of ultrasonic waves. 
An electron will carry with it a crystal distortion, and the effective mass of 
the electron is thereby increased. 
A crystal distortion associated with one electron can be sensed by a second 
electron, thereby causing the electron-electron interaction that enters the 
theory of superconductivity. 

The deformation potential approximation is that the electron energy ~ ( k )  
is coupled to the crystal dilation A(r) or fractional volume change by 

~ ( k , r )  = ~,,(k) + CA(r) , (1) 

where C is a constant. The approximation is useful for spherical band edges 
c0(k) at long phonon wavelengths and low electron concentrations. The 
dilation may be expressed in terms of the phonon operators uq, a: of 
Appendix C by 

A(r) =i C, ( f i / 2 ~ o , ) ' ~  Iq l[agexp(ig - r) - a;exp(-iq . r)] . (2) 
9 

as in QTS, p. 23. Here M is the mass of the crystal. The result (2) also follows 
from (C.32) on formingq, - q,?-, in the limit k * 1. 

In the Born approximation for the scattering we are concerned with the 
matrix elements of CA(r) between the one-electron Bloch states Ik) and Ik'), 
with Ik) = exp(ik . r )uk ( r )  In the wave field representation the matrix ele- 
ment is 

= icC, cGck2 (~5/2Mw~)"~1qI(a,J d3x U ~ - U L ~ " ~ - ~ + ~ ) "  
k'k q 

(3) 

where 

where ct ,  ck are the fermion creation and annihilation operators. The product 
ui..(r)uk(r) involves the periodic parts of the Rloch filnctinns and is itself peri- 
odic in the lattice; thus the integral in (3) vanishes unless 

k - k ' * q =  vector in the reciprocal lattice. (" 
In semiconductors at low temperatures only the possibility zero (N proccsses) 
may be allowed energetically. 
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Let 11s limit orirselves to N processes, and for convenience we approximate 
J d3x uk.uk by unity. Then the deformation potential perturbation is 

Relaxation Time. In the presence of the electron-phonon interaction 
the wavevector k is not a constant of the motion for the electron alone, but 
the sum of the wavevectors of the electron and virtual phonon is conserved. 
Suppose an electron is iliitially in the state Ik); how long will it stay in that 
state? 

We calculate first the probability w per unit time that the electron in k will 
emit a phonon q. If n, is the initial population of the phonon state, 

by time-dependent perturbation theory. Here 

The total collision rate W of an electron in the state Ik) with a phonon sys- 
tem at absolute zero is, with nq = 0, 

where p is t l ~ e  Inass density. 
The argunient of the delta function is 

where y,, = 2hm' c,, with c, the velocity of sound. The minimum value of k for 
which the argument can be zero is k,,, = i(q + q,), which for q = 0 reduces to 
k .  ,,, = '  ,q, = m'c,lh. For this value of k thc clcctron group velocityug = k,,/m' 

is cqual to the velocity of soilnd. Thus the threshold for the emission of 
phonons by electrons in a crystal is that the electron group velocity should ex- 
ceed the acoustic velocity. This requirement resembles the Cerenkov thresh- 
old for the emission of photons in crystals by fast electrons. The electron 
energy at the threshold is im'c; - - 10" - 10-Ifi erg - 1 K. An electron 
of energ). below this threshold will not be slowed down in a perfect crystal at 
ahsolutc zero, even by higher order electron-phonon interactions, at least in 
the harmonic approximation for the phonons. 

Fork % q, we may neglect the qq, term in (9). The integrals in (8) become 



and the phonon emission rate is 

directly proportional to the electron energy ek. The loss of the component of 
wavevector parallel to the original direction of the electron when a phonon is 
emitted at an angle 8 to k is given by cj cos 8. The fractional rate of loss of k ,  is 
given by the transition rate integral with the extra factor ( q / k )  cos 0 in the inte- 
grand. Instead of ( lo) ,  we have 

so that the fractional rate of decrease of k,  is 

W(k,) = 4C2m'k2/5~pcSfi2 . 

This quantity enters into the electrical resistivity. 
The above results apply to absolute zero. At a temperature k,T % Ac,k the 

integrated phonon emission rate is 

For electrons in thermal equilibrium at not too low temperatures the required 
inequality is easily satisfied for the rms value of k.  If we take C = lo-'' erg; 
m* = g; k = 10' cm-I; c, = 3 X 10; cm s-I; p = 5 g ~ m - ~ ;  then W - 1012 s-'. 
At absolute zero (13) gives W = 5 x 10lOs-I with these same parameters. 
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Ginzburg-Landau parameter, 667 
GLAG theow 283 
Glass, 573 

transition tcmpcraturc, 573 
Grain honndary, small-angle, 607 
Group velocity, 94 
Grunciscn constant, 129 
Gyromagnetic ratio, .?O2 
Gyroscopic equation, 366 

Hagen-Rubens relation, 451 
Hall coefficient, 154 

table, 155 
Hall effect, 153 

ballistic jnnction, 542 
two-carrier types, 218 

Hall resistance, 155 
Hall resistivity, 498 
Hardness, 617 
Hcavy fcrmions, 147 
Heat capacity, configurational, 640 

electron gas, 141 
glasses, 378 
metals, 145 
one-dimension, 561 
phonon, 107 
superconductors. 264 

He3 liquid, 158 
Heisenberg model, 325 
IIelicon waves, 425 
Heierojunction, 505 
Heterostrnchlrrs. 507 
Ilexagonal close-packed 

structure, 15 
Hexagonal lattice, 44 
High temperature super- 

conductors, 293 
Hole, eqnation of motion, 

104,194 
Holc orbits, 230 
Hole trapping. 422 
Hooke's law, 73 
HTS, 293 
Hume-Rothery rules, 624 
Hund roles, 306 
Hydrogen bonds, 70 
Hyperfine constant, 375 
Hyperfine effects, ESR in 

metals, 391 

Hypcrfinc splitting, 373 
Hystrresis, 352 

Ilmenite, 470 
Impurity conducti~ty, 209 
Impurity orbits, 218 
Index system, 10 
Indirect gap, 190 
Indirect photon absorption, 189 
Inelastic scattering, phonons, 100 
Inert gas crystals, table, 53 
Injection laser, 510 
Insulators, 181 
Interband transitions, 434 
Interface plasmons, 425 
Interfacial polarization, 484 
Intrinsic carrier conce~ltratiun, 

1 88,205 
Intrinsic coherence length, 277 
Intrinsic mobility, 208 
Intrinsic semiconductors, 187 
Inverse spinel, 338 
Ionic bond, 60 
Ionic character, table, 69 
Ionic conductivity, 420, 
Ionic crystals, 6 
Ionic radii, 72 

table, 71 
lnnization energies, acceptor, 209 

donor, 209 
table, 54 

Iron garnets, 339 
Iron group, 307 
Isentropic demagnetization, 312 
Isotope effect, 269 

superconductors, 269 
Isotope effect, thermal 

conduction, 127 

Jahn-Teller effect, 209 
trapping, 420 

Josephsnn t~~nneling, 289 
Jump frequency, 590 
Junction, superconducting, 287 
Jnnctinns, p-n, 503 

k . p perturbation theory, 253 
Kelvin relation, 215 
Knight shift, 377, 378 
Kohn anomaly, 103 
Kramers-Heisenberg 

dispersion, 431 
Kramers-Kmnig relations, 430,432 

Kronig-Penney model, 174,182 
reciprocal space, 174 

LA modes, 95 
Lagrangian equations, 662 
Landaner forrnnla, 535 
Landau gauge, 503 
Landau-Ginzburg equations, 276, 

667 
Landau level, 245,254,493 
Landau theory, Ferrni liquid, 417 
Landau theory, phase 

transition, 474 
Langevin diamagnetism, 299 
Langevin result, 301 
Lanthanide group, 306 
Larmor frequency, 300 
Larmor theorem, 300 
Laser, 389 

injection, 510 
ruby, 389 
semiconductor, 510 

Lattice, Bravais, 8 
Lattice constants, equilibrium, 58 
Lattice frequencies, table, 41 6 
Lattice momentum, 193 
Lattice sums, dipole arrays, 647 
Lattice types, R,10 
Lattice vacancies, 585 
Lattices, cubic, 10 
Lane equation, 33,513,641 
Law of mass action, 206 
LCAO approxi~nation. 233 
LEED, 511 
Lennard-Jones potential, 58 
Lcnz's law, 299 
Lindhard dielectric function, 406 
Line width, 370 
Liquid He" 158 
Liquidus, 632 
Localization, 539 
Local electric field, 460 
London equation, 273,665 
London gauge, 665 
London penetration depth. 

275,294 
Longitudinal plas~rla 

oscillations, 398 
Longitudinal relaxation time, 366 
Long-range order, 630 
LO modes, 95 
&rent2 field, 462 
Lorenz number, 157 
Low-angle grain boundary, 607 
LST relation, 414,416 



Luminescence, 437 
Luttinger liquid, 532 
Lyddane-Sachs-Tcllcr relation, 414 

Madclung constant, 64 
Madelnng energy, 60 
Magnetic breakdown, 251 
Magnetic force niioroscupy, 

355,527 
Magnetic susceptibility, 298, 

315,318 
Magnetite, 337 
Magnetoconductivity, tensor, 

159,254 
Magnetocrystalline energy, 347 
Magnctoclastic coupling, 357 
Magnetogyric ratio, 302,363 
Magneton numbers, 308 
Magnctoplas~na frcqucncy, 425 
Magnetore~istance, giant, 359 
Magnetoresistance, 408 

two carrier types, 219 
Magnetic resonance, 361 
Magnetotaxis, 355 
Magnetization. 303 

saturation, 304 
Magnons, 330 

antiferromapetic, 344 
dispersion relation, 357 

Maser action, 386 
Matthiassen's rule, 150 
Maxwell equations, 455 
Mean field appruximatiuo. 323 
Meissner effect, 259 

sphere, 296 
Meltingpoints, table, 51 
Melt-spin velocity, 576 
Mesh, 490 
Mesoscopic regime, 543 
Metal-insulator transition, 407 
Metals, 69 
Metal spheres, 484 
Metglas, 576 
Mioroelectro~nechanical 

systems, 561 
Miller indices (see index 

system), 11 
Mobility edges, 501 
Mobility gap, 501 
Mobility, intrinsic, 208 
Mobilities, table, 208 
Molecular crystals, 440 
Molecnlar hydrogen, 68, 86 
Momentum crystal, 100,173 

field, 661 

lattice, 193 
phonon, 100 

MOSFET, 497 
Motional narrowing, 371.373 
Mott exciton, 441 
Mott transition, 407 
Mott-Wannier excitons. 441 

np product, 206 
Nanocrystals, 517 

fluorescence, 522 
e n e r a  levels, 54.5 

Nanostructures, 517 
Nanotuhes, 518 

density of states, 529 
band structure, 562 

N6el temperature, 341,342, 343 
NBel wall, 358 
Negative effective mass, 199 
Neutron diffraction, 45 
NMK tomography, 363 
Noncrystalline solid, 519 
Nonideal structures, 18 
Normal mode enumeration, 108 
Normal proccsscs, 124,125 
Normal spinel, 338 
Nuclear demagnetization, 314 
Nuclear ~rlagrietic resonance, 363 

table, 365 
Nuclear magneton, 364 
Nnclear paramagnetism, 314 
Nuclear quadrupole resonance, 379 

Ohm's law, 147, 538 
Open urbits, 230 

magnetoresistance, 254 
Optical absorption, 190,521 
Optical microscopy, 521 
Optical phonon branch, 95 
Optical phonons, soft, 473 
Orbit, dog's bboe, 250 
Order-disorder transformation, 627 
Order, long-range. 630 

short-range, 631 
Order parameter, 668 
Oscillations, Friedel, 407 
Oscillator strength, 466 

p-n junctions, 503 
Paramagnetic defects, 375 
Paramagnetism, 302 

conduction electrons, 315 
Van Vleck, 311 

Particle diffusion, 657 
Fauli exclusion principle, 56 
Pauli spin magnetization, 316,319, 

377 
Peierls instability, 422,532 

insulator, 424 
Peltier coefficient; 215 
Penetration depth, London, 296 
Peliodic boundary conditions, 110 
Periodic zone scheme, 225 
Perovskite, 470 
Persistent currents, 282 
Phase diagrams, 625,632 
Phase transitions, structural, 467 
Phonons, 100,101,107 

coordinates, 649 
dispersion relations, 117 
gas, ther~nal resistivity, 123 
heat rapacity, 107 
inelastic scattering, 100 
rriean free path, 122 
metals, 409 
modes, soft, 103 
morner~tu~n, 100 

Photolithography, 522 
Photovoltaic detectors, 506 
Piezoelectricity, 481 
Planck distribution, 107 
Plasrnon frequency, 90, 397, 398 

interface, 425 
mode, sphere, 425 
uptics, 396 
oscillation, 398 
surface, 403,424 

Poise, 573 
Poisson equation. 403 
Poisson's ratio, 87 
Polaritons, 410 
Polarizability, 463 

conducting sphere, 484 
electronic, 464 

Polarization, 455 
interfacial, 484 
saturation, 484 

Polaron, coupling constant, 420, 
422,426 

Polytypism, 19 
Power absorption, 370 
Primitive cell, 5 ,6 ,  180 
p-n junctions, 503 
Pseudopotential, 

components, 239 
metallic sodium, 240 
method, 239 

Pyroelectric, 469 
PZT system, 479,481 



Qi~anti~ation. elastic wave, 
99,648 

orbits in xr~agr~etic field, 242 
spin waves, 382 

Quantum corral, 525 
Quautu~m dots, 517, 545 

charge states, 549 
Quantum interference, 282,292 
Quar~turn solid, 85 
Quantum theory, 

diamagnctism, 301 
paramagnetism, 302 

Quasi-lcermi levels, 510 
Quasi particles, 417 
Quenching, nrhital angular 

momentum, 308 
QHE, 499 

Radial breathing mude, 558 
Radial distribution function. 569 
Raman effect, 444 

scatteling, 428 
surface enhanced, 549 
nanntuhcs, 558 

Random network, 572 
Random stacking, 19 
Rarc carth ions, 305 
Rayleigh attenuation. 582 
I'teciprocal lattice points, 29 
Rcciprooal lattice vectors, 29 
Recombination radiation. 442 
Reconstruction, 489 
Rectification, 504 
Reduced zone scheme. 223 
Reflectance, 430 
ReHection, normal incidence. 450 
Reflectivity coefficient, 429 
Refractivc indcx, 429 
Relaxation, 366 

direct, 368 
Orbaclr, 368 
Raman, 368 

Relaxation time, 
longitudi~~al, 366 
spin-lattice, 366 

ltemanence, 347 
Resistance per square, 159 
Resistance quantum. 534 
Ilesistance, surface, 159 
Resistivity, electrical, 147, 159 
Resistivity ratio, 150 
Resonant tunneling, 538 
Respo~~se, electron gas, 426 
Response function, 430 
Rf saturation, 391 

RHEED, 493 
Richardso~l-Dushman 

equation. 49.5 
RKKY theory, 638 
Rotatlng coordinate system, 391 
Ruby laser, 389 

Saturation magnetization, 326 
Saturation polarization, 485 
Saturatinn rf, 391 
Scanned probe microscopy, 520 
Scanning clcctro~i microscope, 521 
Scanning tnnneling 

microscope, 523 
Schottky barrier, 506 
Schottky defect, 58.5 
Schottb vacancies, 585,595 
Screened Coulomb potential, 406 
Screening, electrostatic, 403 
Screw dislocation, 603 
Second harmonic generation, 549 
Second-order transition, 475 
Self-diffusion, 591 
Self-trapping, 209 
Semiconductor crystals, 187 
Scmico~lductor. degenerate, 409 
Semiconduvtor lasers, 510 
Semiconductors, deficit, 209 
S e ~ ~ ~ i ~ n e t a l s ;  162, 215 
Shear constant, 87 
Shear strength, silrglc crystals, 599 
Shear stress, critical, 599 
Short-range order, 631 
Single-domain particles, 353, 358 
Single-electron tranaistor, 551 
Singularities, Van Hove, 119 
Slatcr-Pauling plot, 636 
Slip, 600 
Sodium chloride structure, 13 
Sodiu~n n~etal, 132 
Soft modes. 474,485 
Solar cells, 506 
Solidus, 632 
Solubility gap, 632 
Spheres, metal, 484 
Spectruscupic splitting factnr, 31 1 
Spinel, 337 
Spin-lattice interaction; 367 
Spin-lattice relaxation time, 366 
Spin wave (see also 

magnon), 330 
quantization, 333 
resonance, 382 

Square lattice, 8, 182 
Stability criteria, 88 

Stabilization free energy, 272 
Stacking fault, 601 
STM, 523 
Stokes line, 445 
Strain component, 75 
Strength of alloys, 613 
Stress component, 75 
Structural phase transitions, 467 
Structure [actor, 39 

bcc lattice, 40 
diamond, 45 
fcc lattice, 40 

Substrate, 489 
Surface plasmon resonance, 547 
Superconducti\lty, table, 261 

type I, 259 
type 11,283 

Superlattices, 628, 640 
Superparamagnetism, 354 
Surface crystallography, 490 

surcace electronic stnlchlre, 494 
surface nets, 490 
surfacc plasmons, 279,302 
surface resistance, 159 
surface states, 495 
surface transport, 497 

Susceptibility, dielectric, 459 

TA modes, 95 
Temperaturc, Debye, 112 
Temperature dependence. 

reflection lines, 643 
Tetrahedral angles, 22 
Thermal conductivity, 121,156 

glasses, 534 
isotope effect, 127 
metals, 156 
one-dimension, 561 
tablc, 116 

Thermal dilation, 128 
Thermal effective mass, 145 
Tl~rrxnal excitation, magnons, 334 
Thermal expansion, 120 
Thermal ionization, 213 
Thermal resistiviv, phonon 

gas, 133 
Thermionic emission, 495 
Thermodynamics, 

superconducting transition, 270 
Ther~noclcctric effects, 214 
Thomas-Fermi approximation, 403 
Thomas-Fermi dielechic 

function, 405 
Three-level maser, 388 
Tight-binding method, 232 



TO modes, 615 
To~nography, lnagnetic 

resonance, 363 
Transistor, MOS, 507 
Transition, displacive, 471 

first-order, 477 
metal insulator, 107 
order-disorder, 471 
second-order, 47.5 

Transition metal alloys, 634 
Transition temperature, glass, 573 
Transistor, MOS, 497 
Translation operation, 4 
Translation vector, 4 
Transmission electron 

microscopy, 520 
Transmission probability, 534 
Transparency, alkali metals, 388 
Transport, surface, 497 
Transverse optical modes, 

plasma, 398 
Transverse relwatio~i time, 368 
Triplet excited states, 318 
Tunneling, 287 

Josephson, 289 

Tunneling probability, 524 
Twinning, 601 
n*n*o-fluid model, 295 
Two-level system, 320 
Type I superco~~ductors. 264 
Type I1 superconductors, 264,283 

Ultraviolet transmission 
limits, 399 

Umklapp processes, 125 
Unit cell, 6 
Upper critical field, 670 
UPS, 447 

Valence hand edge, 190 
Van der \Vaals interaction, 53 
Val1 Hove singularities, 119,528 
Van Vleck paramagnetism. 311 
Vector potential, 661 
Vickers hardness nulnler, 618 
Viscosity ,574 
Vitreous Silica, 570 
Vortex state, 264, 284, 295 

Wanuier functions, 254 
Wave eqwatio~i, co~itinuum, 103 

periodic lattice, 169 
Weiss field, 323 
Whiskers, 616 
Wiedemann-Franz law, 1.56 
Wiper-Seitz boundaly 

condition, 237 
Wigner-Seitz cell, 6, 8, 34, 238 
Wiper-Seitz method, 236 
Work hnction, 494 
Work-hardening, 614 

XPS, 447 

Young$ modulus, 87 
Yttriuni iron ganlct, 381 

Zener breakdown, 217 
Zener tnnneling, 217 
Zero-field splitting, 386 
Zero-puint motion, 56,85 



Table of Values 
Quantity Symbol Value CCS SI 

\Jclocity of light c 2.997925 10'' crn s I 10B rn s-' 
Proton charge e 1.60219 - 10- I= C 

4.80:125 10-lo esu - 
Planck's constar~t h 6.62620 erg s J s 

R = h l 2 ~  1.05459 lo-'' erg s J s 

Avogadro's number N 6.02217 X loz3 nrolk' - - 
Atomic mass unit amu 1.66053 lo-" g lo-z7 kg 
Electron rest mass rn 9.10956 10 g lo31  kg 
Proton rest mass MP 1.6726 1 10.~' kg 
Proton rnass/electron mass M,/m 1836.1 - - 

Rec~procal tine structure llu 137.036 - - 
constant hcle2 

Electron radius e2/mc2 re. 2.81794 cm rn 
Electron Compton A? 3.86159 lo-" cm 10-l3 rn 

wavelrrrgth hlmc 
Bohr radius h2/rne" TO 5.29177 cm lo-" m 
Bohr rnagneton ehl2mc p, 9.27410 erg C-I lo-=' j T-I 
Rydberg constant me4/2h2 R ,  or Ry 2.17991 lo-'' erg J 

13.6058 eV 

1 electron volt eV 1.64219 lo-'' erg 10-l9 J 
eVIh 2.41797 x loL4 Hz - - 
cVlhc 8.06546 103 cm-' 1W m-' 
eVlkB 1.16048 x 10' K - - 

-- 

Bol tzlnar~rl constant k~ 1.38062 10-16 erg K-I J K ~ I  
Permittivity of frep spacc e0 - 1 107/4~c2  
Permeability of free bpare p,, - 1 4~ x 

S,,urcr. D. N. Taylor. W H Parker. and U N Langcnbrrg. Hev. Mud Phys.41, 375 (1969) See rlav E. R. Cohrn and 8. N. Taylor. Journal 
of Phyrical and Chcm~cal  Reference Data 2(4l, 663 (1973). 
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