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Foreword

Andrew Pohorille and Christophe Chipot

In recent years, impressive advances have been made in the calculation of free
energies in chemical and biological systems. Whereas some of this be ascribed to
a rapid increase in computational power, progress has been facilitated primarily
by the emergence of a wide variety of methods that have greatly improved both
the efficiency and accuracy of free energy calculations. This progress has, however,
come at a price: it is increasingly difficult for researchers to find their way through
the maze of available computational techniques. Why are there so many methods?
Are they conceptually related? Do they differ in efficiency and accuracy? Why do
methods that appear to be very similar carry different names? Which method is the
best for a specific problem? These questions leave not only most novices but also
many experts in the field confused and desperately looking for guidance.

As a response, we attempt to present in this book a coherent account of the
concepts that underlie the different approaches devised for the determination of
free energies. Our guiding principle is that most of these approaches are rooted
in a few basic ideas, which have been known for quite some time. These original
ideas were contributed by such pioneers in the field as John Kirkwood [1, 2], Robert
Zwanzig [3], Benjamin Widom [4], John Valleau [5] and Charles Bennett [6]. With
a few exceptions, recent developments are not so much due to the discovery of
ground-breaking, new fundamental principles, but rather to astute and ingenious
ways of applying those already known. This statement is not meant as a slight
on the researchers who have contributed to these developments. In fact, they have
produced a considerable body of beautiful theoretical work, based on increasingly
deep insights into statistical mechanics, numerical methods and their applications to
chemistry and biology. We hope, instead, that this view will help to introduce order
into the seemingly chaotic field of free energy calculations.

The present book is aimed at a relatively broad readership that includes advanced
undergraduate and graduate students of chemistry, physics and engineering, post-
doctoral associates and specialists from both academia and industry who carry out
research in the fields that require molecular modeling and numerical simulations.
This book will also be particularly useful to students in biochemistry, structural
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biology, bioengineering, bioinformatics, pharmaceutical chemistry, as well as other
related areas, who have an interest in molecular-level computational techniques.

To benefit fully from this book readers should be familiar with the fundamen-
tals of statistical mechanics at the level of a solid undergraduate course, or an
introductory graduate course. It is also assumed that the reader is acquainted with
basic computer simulation techniques, in particular the molecular dynamics (MD)
and Monte Carlo (MC) methods. Several very good books are available to learn
about these methodologies, such as that of Allen and Tildesley [7], or Frenkel and
Smit [8]. In the case of Chaps. 4 and 11, a basic knowledge of classical and quantum
mechanics, respectively, is a prerequisite. The mathematics required is at the level
typically taught to undergraduates of science and engineering, although occasionally
more advanced techniques are used.

The book consists of 14 chapters, in which we attempt to summarize the current
state of the art in the field. We also offer a look into the future by including descrip-
tions of several methods that hold great promise, but are not yet widely employed.
The first six chapters form the core of the book. In Chap. 1, we define the context of
the book by recounting briefly the history of free energy calculations and presenting
the necessary statistical mechanics background material utilized in the subsequent
chapters.

The next three chapters deal with the most widely used classes of methods:
free energy perturbation (FEP) [3], methods based on probability distributions and
histograms, and thermodynamic integration (TI) [1, 2]. These chapters represent
a mix of traditional material that has already been well covered, as well as the
description of new techniques that have been developed only recently. The common
thread followed here is that different methods share the same underlying principles.
Chapter 5 is dedicated to a relatively new class of methods, based on calculating free
energies from nonequilibrium dynamics. In Chap. 6, we discuss an important topic
that has not received, so far, sufficient attention – the analysis of errors in free energy
calculations, especially those based on perturbative and nonequilibrium approaches.

In the next three chapters, we cover methods that do not fall neatly into the
four groups of approaches described in Chaps. 2–5, but still have similar conceptual
underpinnings. Chapter 7 is devoted to path sampling techniques. They have been,
so far, used primarily for chemical kinetics, but recently have become the object of
increased interest in the context of free energy calculations. In Chap. 8, we discuss
a variety of methods targeted at improving the sampling of phase space. Here, read-
ers will find the description of techniques such as multi-canonical sampling, Tsallis
sampling and parallel tempering or replica exchange. The main topic of Chap. 9 is
the potential distribution theorem (PDT). Some readers might be surprised that this
important theorem comes so late in the book, considering that it forms the theoretical
basis, although often not spelled out explicitly, of many methods for free energy cal-
culations. This is, however, not by accident. The chapter contains not only relatively
well-known material, such as the particle insertion method [4], but also a generalized
formulation of the potential distribution theorem followed by an outline of the quasi-
chemical theory and its applications, which may be unfamiliar to many readers.
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Chapters 10 and 11 cover methods that apply to systems different from those
discussed so far. First, the techniques for calculating chemical potentials in the grand
canonical ensemble are discussed. Even though much of this chapter is focused on
phase equilibria, the reader will discover that most of the methodology introduced
in Chap. 3 can be easily adapted to these systems. Next, we will provide a brief
presentation of the methods devised for calculating free energies in quantum sys-
tems. Again, it will be shown that many techniques described previously for classical
systems, such as PDT, FEP and TI, can be profitably applied when quantum effects
are taken into account explicitly.

In Chap. 12, we discuss approximate methods for calculating free energies. These
methods are of particular interest to those who are interested in computer-aided drug
design and in silico genetic engineering. Chapter 13 provides a brief and necessarily
incomplete review of significant, current and future applications of free energy cal-
culations to systems of both chemical and biological interest. One objective of this
chapter is to establish the connection between the quantities obtained from com-
puter simulations and from experiments. The book closes with a short summary that
includes recommendations on how the different methods presented here should be
chosen for several specific classes of problems. Although the book contains no exer-
cises, most chapters provide examples and pseudo-codes to illustrate how the differ-
ent free energy methods work.

Each chapter is written by one or several authors, who are specialists in the area
covered by the chapter. In spite of considerable efforts, this arrangement does not
guarantee the level of consistency that could be attained if the book were written by
a single or a small number of authors. The reader, however, gets something in return.
By recruiting experts in different areas to write individual chapters, it is possible to
achieve the depth in the treatment of each subject matter, that would otherwise be
very hard to reach.

The material of this book is presented with greater rigor and at a higher level of
detail than is customary in general reviews and book chapters on the same subject.
We hope that theorists who are actively involved in research on free energy cal-
culations, or want to gain depth in the field, will find it beneficial. Those who do
not need this level of detail, but are simply interested in effective applications of
existing methods, should not feel discouraged. Instead of following all the mathe-
matical developments, they may wish to focus on the final formulas, their intuitive
explanations, and some examples of their applications. Although the chapters are not
truly self-contained, they may, nevertheless, be read individually, or in small clusters,
especially by those with sufficient background knowledge in the field.

Several interesting topics have been excluded, perhaps somewhat arbitrarily,
from the scope of this book. Specifically, we do not discuss analytical theories,
mostly based on the integral equation formalism, even though they have contributed
importantly to the field. In addition, we do not discuss coarse-grained, and, in par-
ticular, lattice and off-lattice approaches. At the opposite end of the wide spectrum
of methods, we do not deal with purely quantum mechanical systems consisting of a
small number of atoms.
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On several occasions, the reader will notice a direct connection between the
topics covered in the book and other, related areas of statistical mechanics, such
as the methodology of computer simulations, nonequilibrium dynamics or chemical
kinetics. This is hardly a surprise because free energy calculations are at the nexus
of statistical mechanics of condensed phases.

Acknowledgments

The authors of this book gratefully thank Dr. Peter Bolhuis, Prof. David Chandler,
Dr. Rob Coalson, Dr. Gavin Crooks, Dr. Aaron Dinner, Dr. Jim Doll, Dr. Phillip
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Introduction

Christophe Chipot, M. Scott Shell and Andrew Pohorille

1.1 Historical Backdrop

To understand fully the vast majority of chemical processes, it is often necessary
to examine their underlying free energy behavior. This is the case, for instance,
in protein–ligand binding and drug partitioning across the cell membrane. These
processes, which are of paramount importance in the field of computer-aided, ratio-
nal drug design, cannot be predicted reliably without knowledge of the associated
free energy changes.

The reliable determination of free energy changes using numerical simula-
tions based on the fundamental principles of statistical mechanics is now within
reach. Developments on the methodological front in conjunction with the continuous
increase in computational power have contributed to bringing free energy calcula-
tions to the level of robust and well-characterized modeling tools, while widening
their field of applications.

1.1.1 The Pioneers of Free Energy Calculations

The theory underlying free energy calculations and several different approximations
to its rigorous formulation were developed a long time ago. Yet, due to compu-
tational limitations at the time when this methodology was introduced, numerical
applications of this theory remained very limited. In many respects, John Kirkwood
laid the foundations for what would become standard methods for estimating free
energy differences – perturbation theory and thermodynamic integration (TI) [1, 2].
Reconciling statistical mechanics and the concept of degree of evolution of a chem-
ical reaction, put forth by Théophile De Donder [3] in his work on chemical affinity,
Kirkwood introduced in his derivation of integral equations for liquid-state theory the
notion of the order parameter, or generalized extent parameter, and used it to infer
the free energy difference between two well-defined thermodynamic states [1, 2].

Almost 20 years later, Robert Zwanzig [4] followed a perturbative route to free
energy calculations, showing how physical properties of a hard-core molecule change
upon adding a rudimentary form of an attractive potential. The high-temperature



2 C. Chipot et al.

expansions that he established for simple, nonpolar gases form the theoretical basis
of the popular free energy perturbation (FEP) method, widely employed for deter-
mining free energy differences. However, the significance of FEP was appreciated
much earlier. In fact, Lev Landau [5] included a simple derivation of the thermody-
namic perturbation formula in the first edition of his widely read textbook on statis-
tical mechanics as early as 1938.

Nearly 10 years after Zwanzig published his perturbation method, Benjamin
Widom [6] formulated the potential distribution theorem (PDT). He further sug-
gested an elegant application of PDT to estimate the excess chemical potential –
i.e., the chemical potential of a system in excess of that of an ideal, noninteracting
system at the same density – on the basis of the random insertion of a test particle.
In essence, the particle insertion method proposed by Widom may be viewed as a
special case of the perturbative theory, in which the addition of a single particle is
handled as a one-step perturbation of the liquid.

1.1.2 Escaping from Boltzmann Sampling

Central to the accurate determination of free energy differences between two
systems – viz. target and reference – is to explore the configurational space of
the reference system such that relevant, low-energy states of the target system
are adequately sampled. It has long been recognized, however, that direct appli-
cations of conventional computer simulations methods, such as molecular dynam-
ics (MD) or Monte Carlo (MC), are not successful in this respect [7]. In the
late 1960s and in the 1970s a number of remarkable strategies were developed
to circumvent this difficulty by generating effective non-Boltzmann sampling. The
basic ideas behind these strategies have been broadly exploited in most subsequent
theoretical developments.

One of the most influential ideas was the energy distribution formalism, in which
free energy difference was represented in terms of a one-dimensional integral over
the distribution of potential energy differences between the target and reference states
weighted by the unbiased or biased Boltzmann factor. This idea was proposed and
applied to calculate thermodynamic properties of Lennard-Jones fluids by McDonald
and Konrad Singer [8, 9] as early as 1967. In subsequent developments it formed the
conceptual basis for some of the best techniques for estimating free energies.

Returning to the concept of a generalized extent parameter, John Valleau and
Damon Card [10] devised so-called multistage sampling, which relies on the con-
struction of a chain of configurational energies that bridge the reference and the
target states whenever their low-energy regions overlap poorly. The basic idea of this
stratification method is to split the total free energy difference into a sum of free
energy differences between intermediate states that overlap considerably better than
the initial and final states.

Finding the best estimate of the free energy difference between two canonical
ensembles on the same configurational space, for which finite samples are available,
is a nontrivial problem. Charles Bennett [11] addressed this problem by develop-
ing the acceptance ratio estimator, which corresponds to the minimum statistical



1 Introduction 3

variance. He further showed that the efficiency of this estimator is proportional to
the extent to which the two ensembles overlap. A remarkable feature of Bennett’s
method is that, once data are collected for the two ensembles, good estimates of the
free energy difference can be obtained even if the overlap between the ensembles
is poor.

Another approach to improving the efficiency of free energy calculations is to
sample the reference ensemble sufficiently broadly that adequate statistics about
low-energy configurations of the target ensemble can be acquired. In 1977, Glenn
Torrie and John Valleau [12] devised such an approach by introducing non-Boltzmann
weighting function that can subsequently be removed to yield unbiased probability
distribution. This method became widely known as umbrella sampling (US). It is
interesting to note that an embryonic form of the US scheme had been laid 10 years
earlier in the pioneering computational study of McDonald and Konrad Singer [8].

The seminal work on stratification and sampling opened new vistas for the accu-
rate determination of free energy profiles. Both approaches are still widely used to
tackle a variety of problems of physical, chemical, and biological relevance. Perhaps
because they are most efficient when used in combination the distinction between
them has often been lost. At present, the name ‘umbrella sampling’ is commonly
used to describe simulations in which an order parameter connecting the initial and
final ensembles is divided into mutually overlapping regions, or ‘windows,’ which
are sampled using non-Boltzmann weights.

1.1.3 Early Successes and Failures of Free Energy Calculations

As we have already pointed out, the theoretical basis of free energy calculations were
laid a long time ago [1, 4, 5], but, quite understandably, had to wait for sufficient com-
putational capabilities to be applied to molecular systems of interest to the chemist,
the physicist, and the biologist. In the meantime, these calculations were the domain
of analytical theories. The most useful in practice were perturbation theories of dense
liquids. In the Barker–Henderson theory [13], the reference state was chosen to be
a hard-sphere fluid. The subsequent Weeks–Chandler–Andersen theory [14] differed
from the Barker–Henderson approach by dividing the intermolecular potential such
that its unperturbed and perturbed parts were associated with repulsive and attractive
forces, respectively. This division yields slower variation of the perturbation term
with intermolecular separation and, consequently, faster convergence of the pertur-
bation series than the division employed by Barker and Henderson.

Analytical perturbation theories led to a host of important, nontrivial predictions,
which were subsequently probed by and confirmed in numerical simulations. The
elegant theory devised by Lawrence Pratt and David Chandler [15] to explain the
hydrophobic effect constitutes a noteworthy example of such predictions.

As more computational power became accessible and confidence in the poten-
tial energy functions developed for statistical simulations increased, applications of
free energy calculations to systems of chemical, physical, and biological interest
began to flourish. The excellent agreement between theory and experiment reported
in pioneering application studies encouraged attempts to employ similar methods to
increasingly complex molecular assemblies.
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Most of the earliest free energy calculations were based on MC simulations.
Initial applications to Lennard-Jones fluids [8] were extended to study atomic clus-
ters [16] and hydration of ions by a small number of water molecules [17]. Atomic
clusters were also studied in one of the first applications of MD to free energy cal-
culations [18]. All these calculations were based on the thermodynamic integration
method originally proposed by Kirkwood [1]. The thermodynamic integration app-
roach was also used by Mihaly Mezei et al. [19, 20] to calculate the free energy
of liquid water. Using a different approach, based on multistage [10] and US [12]
numerical schemes, Gren Patey and John Valleau [21] further extended the range of
free energy calculations by deriving a free energy profile characterizing the interac-
tion of an ion pair dissolved in a dipolar fluid.

In 1979, two studies appeared that addressed the nature of the hydrophobic
effect through free energy calculations. Susumu Okazaki et al. [22] used MC sim-
ulations to estimate the free energy of hydrophobic hydration. They found that,
consistent with the conventional picture of the hydrophobic effect, hydrophobic
hydration is accompanied by a decrease in internal energy and a large entropy loss.
In the second study, Bruce Berne and coworkers [23] adopted a multistage strat-
egy to investigate a model system formed by two Lennard-Jones spheres in a bath
of 214 water molecules. They successfully recovered the features of hydrophobic
interactions predicted by Pratt and Chandler [15]. Subsequent results based on more-
accurate potential energy functions and markedly extended sampling further fully
confirmed these predictions – see for instance [24]. Two years later, Postma et al. [25]
further contributed to our understanding of the hydrophobic effect by investigating
the solvation of noble gases and estimated the reversible work required to form a
cavity in water.

In the early 1980s, free energy calculations were extended in several new directions
in ways that were not possible only a few years earlier. In 1980, Chyuan-Yin Lee and
Larry Scott [26] estimated the interfacial free energy of water from MC simulations.
In this work, they also derived and applied for the first time a useful technique that
is currently often called simple overlap sampling (SOS). Two years later, Quirke
and Jacucci [27] calculated the free energy of liquid nitrogen from MC simulations,
Shing and Gubbins [28] used US combined with the particle insertion method to
determine chemical potentials, focusing sampling on cavity volumes sufficiently
large to accommodate a solute molecule, and Arieh Warshel [29] calculated the
contribution of the solvation free energy to electron and proton transfer reactions,
using a rudimentary hard-sphere model of the donor and acceptor, and a dipolar
representation of water. The same year, Scott Northrup et al. [30] applied US
simulations to examine the free energy changes in a biologically relevant system.
Isomerization of a tyrosine residue in bovine pancreatic trypsine inhibitor (BPTI) was
studied by rotating the aromatic ring in sequentially overlapping windows. From the
resulting free energy profile, the authors inferred the rate constant for the ring-flipping
reaction.

In 1984, using a very rudimentary model, Tembe and McCammon [31] demon-
strated that the FEP machinery could be applied successfully to model ligand–
receptor assemblies. In 1985, Jorgensen and Ravimohan [32] followed the same
perturbative route to estimate the relativesolvation free energy of methanol and
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ethane. To reach their goal, they elaborated an elegant paradigm, in which a common
topology was shared by the reference and the target states of the transformation.
Employing a similar strategy, William Jorgensen and coworkers [33, 34] pioneered
the estimation of the pKa values of simple organic solute in aqueous environments.
These pioneering efforts, which initially met with only moderate enthusiasm, con-
stitute what might be considered today the turning point for free energy calculations
on chemically relevant systems, paving the way for extensions to far more complex
molecular assemblies.

In early studies, complete free energy profiles along a chosen order parameter
were obtained by combining US and stratification strategies—e.g. Chandrasekhar
et al. investigated the SN2 reaction of Cl− + CH3Cl, both in the gas phase and in
aqueous solution [35], thus, laying the ground for the forthcoming hybrid quantum
mechanical/molecular mechanical (QM/MM) calculations. In 1987, Douglas Tobias
and Charles Brooks III showed that the same information could be extracted from
thermodynamic perturbation theory. They did so by constructing the free energy pro-
file for separating two tagged argon atoms in liquid argon [36].

The same year, Peter Kollman and coworkers published three papers that opened
new horizons for in silico modeling of site-directed mutagenesis. Employing the
FEP methodology, they estimated the free energy changes associated with point mu-
tations of the side chains of naturally occurring amino acids [37]. They used the same
approach for computing the relative binding free energies in protein–inhibitor com-
plexes of thermolysin [38] and substilisin [39]. The same year, they also explored
an alternative route to the costly FEP calculations, in which perturbation was carried
out using very minute increments of the general extent, or coupling parameter [40].
It is worth mentioning, however, that this so-called ‘slow-growth’ (SG) strategy had
to wait for 10 years and the work of Christopher Jarzynski [41] to find a rigorous
theoretical formulation. Yet, during that period, a number of ambitious problems
were tackled employing SG simulations, including a heroic effort to understand
structural modifications in deoxyribonucleic acid (DNA) [42].

Considering that the chemical transformations attempted hitherto involved only
one or two atoms, the series of articles from the group of Peter Kollman appeared to
represent a quantum leap forward. It was soon recognized, however, that these cal-
culations were evidently too short and probably not converged. They demonstrated,
nonetheless, that modeling biologically relevant systems was a realistic goal for the
computational chemist.

Also back in 1987, Fleischman and Brooks [43] devised an efficient approach
to the estimation of enthalpy and entropy differences. They concluded that the
errors associated with the calculated enthalpies and entropies were about one order of
magnitude larger than those of the corresponding free energies. Only recently did Lu
et al. [44] revisit this issue, proposing an attractive scheme to improve the accuracy
of enthalpy and entropy calculations. Wilfred van Gunsteren and coworkers [45]
further concluded that reasonably accurate estimates of entropy differences might be
obtained through the TI approach, in which several copies of the solute of interest are
desolvated. It is fair to acknowledge that, although several improvements to the orig-
inal approaches for extracting enthalpic and entropic contributions to free energies
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have recently been put forth, the conclusions drawn by Fleischman and Brooks re-
main qualitatively correct.

In contrast to FEP and US, TI was not widely applied in the late 1970s and early
1980s. Only in the late 1980s, did TI regain its well-deserved position as one of the
most useful techniques to obtain free energies from computer simulations. In 1988,
Tjerk Straatsma and Herman Berendsen [46] used this technique to study the free
energy of ionic hydration by performing the mutation of neon into sodium. Three
years later, Wang et al. [47] used TI to construct the free energy profile describing
interactions between two hydrophobic solutes – viz. a pair of neon atoms in a bath
of water. Today, TI remains one of the favorite methods for free energy calculations.

Several research groups paved the way for future progress through innovative
applications of free energy methods to physical and organic chemistry, as well as
structural biology. An exhaustive account of the plethora of articles published in the
early years of free energy calculations falls beyond the scope of this introduction.
The reader is referred to the review articles by William Jorgensen [48, 49], David
Beveridge and Frank DiCapua [50, 51] and Peter Kollman [52], for summaries of
these efforts.

1.1.4 Characterizing, Understanding, and Improving Free Energy
Calculations

After the initial enthusiasm ignited by pioneering studies, which often reported
excellent agreement between computed and experimentally determined free energy
differences, it was progressively realized that the some of the published, highly
promising results reflected good fortune rather than actual accuracy of computer
simulations. For example, in many instances, it was observed that the calculated free
energy differences showed a tendency to depart from the experimental target value
as more sampling was accumulated. It became widely appreciated that many free
energy calculations were plagued by an inherent slow convergence, sometimes to
such extent that, for all practical purposes, systems under study appeared nonergodic.
These observations clearly indicated that improved sampling and analysis techniques
were needed. Efforts were thus expended, with excellent results, to address these
issues. It was further discovered that several aspects of early calculations had not
been treated with sufficient care to theoretical details. In the subsequent years, the
underlying methodological problems received considerable attention and at present
most of them have been solved. Along different lines, much work was devoted to
large-scale free energy calculations, especially in the biological domain, in which
improved efficiency was achieved by relaxing theoretical rigor through a series of
well-motivated approximations. Below, we outline some of the main advances of the
last 15 years. A more complete account of these advances is given in the subsequent
chapters.

A large body of methodological work is devoted to clarifying and improving
the basic strategies for determining free energy – stratification, US, FEP, and TI
methods. A common class of problems involves calculating free energy along an
order parameter – e.g., the reaction coordinate, based on a combination of US and
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stratification. The efficiency of these methods relies on designing biases that improve
the uniformity of sampling. Intuitive guesses of such biases may turn out to be very
difficult, especially for qualitatively new problems. Improperly set biasing potentials
could result in highly nonuniform probability distributions and a paucity of data at
some values of the order parameter. To improve accuracy, additional simulations
with revised biases are required. This raises a question: what is the optimal scheme
for combining the data acquired at different ranges of the order parameter and using
different biases?

Recasting the Ferrenberg–Swendsen multiple histogram equations [53], Kumar
et al. [54] answered this question by devising the weighted histogram analysis
method (WHAM). WHAM rapidly superseded previously used ad hoc methods and
became the basic tool for constructing free energy profiles from distributions derived
through stratification.

Four years later, Christian Bartels and Martin Karplus [55] used the WHAM
equations as the core of their adaptive US approach, in which the efficiency of free
energy calculations was improved through refinement of the biasing potentials as
the simulation progressed. Efforts to develop adaptive US techniques had, how-
ever, started even before WHAM was developed. They were pioneered by Mihaly
Mezei [56], who used a self-consistent procedure to refine non-Boltzmann biases.

Observing that stratification strategies, which rely on breaking the path connect-
ing the reference and the target states into intermediate states, often led to singu-
larities and numerical instabilities at the end points of the transformation, Beutler
et al. [57] suggested that introducing a soft-core potential might alleviate end-point
catastrophes. This simple technical trick turned out to be a highly successful app-
roach to estimate solvation free energies in computationally challenging systems,
involving, for example, the creation or annihilation of chemical groups.

Another technical problem that plagued early estimations of free energy was
their strong dependence on system size whenever significant electrostatic interac-
tions were present [46]. Once long-range corrections using Ewald lattice summation
or the reaction field are included in molecular simulations, size effects in neutral
systems decrease markedly. The problem, however, persists in charged systems, for
example in determining the free energy of charging a neutral species in solution.
Hummer et al. [58] showed that system-size dependence could be largely eliminated
in these cases by careful treatment of the self-interaction term, which is associated
with interactions of charged particles with their periodic images and a uniform neu-
tralizing charge background. Surprisingly, they found that it was possible to calculate
accurately the hydration energy of the sodium ion using only 16 water molecules if
self-interactions were properly taken into account.

The determination of the character and location of phase transitions has been
an active area of research from the early days of computer simulation, all the way
back to the 1953 Metropolis et al. [59] MC paper. Within a two-phase coexistence
region, small systems simulated under periodic boundary conditions show regions of
apparent thermodynamic instability [60]; simulations in the presence of an explicit
interface eliminate this at some cost in system size and equilibration time. The deter-
mination of precise coexistence boundaries was usually done indirectly, through the
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use of a method to determine the free energies of the coexisting phases, such as TI
or the particle insertion method [61, 62]. A notable advance emerged with the Gibbs
ensemble approach [63], in which two phases were simulated directly without an in-
terface by coupling separate simulation boxes via particle and volume fluctuations.
In the last 10 years, however, the preferred approach to fluid-phase coexistence has
become histogram reweighting methods, which offer greater control over simulation
errors and enable more precise determination of critical points than the Gibbs
ensemble [64]. For equilibria involving dense fluid or solid phases – for which at-
tempted particle insertions are infrequently accepted – the approach of tracing phase
coexistence lines by Gibbs–Duhem integration [65] remains a primary technique.

An aspect of free energy calculations that caused considerable, and somewhat
surprising difficulties is the treatment of holonomic constraints. In numerical sim-
ulations these are often used to remove high-frequency vibrations, and by doing so
allow the equations of motion to be integrated with larger time steps. In the early
years of free energy calculations, the effect of frozen internal degrees of freedom
on the generated ensemble was essentially ignored [66]. It was shown, however, that
hard constraints might alter the accessible volume of phase space, and, consequently,
might significantly influence the computed free energy differences. Stefan Boresch
and Martin Karplus [67] pointed out the importance of metric tensor corrections in
free energy calculations, and showed that, in a number of instances, these corrections
could be evaluated analytically. To a large extent, the foundations for the treatment
of constrained internal degrees of freedom may be found in the articles of Marshall
Fixman [68] and Nubuhiro Gō and Harold Scheraga [69], published some 20 years
earlier.

Holonomic constraints also appear in the determination of free energy profiles
along a chosen order parameter, ξ, using TI. In this framework, the thermodynamic
force – i.e., the first derivative of the free energy with respect to the order parame-
ter – is calculated at fixed values of the parameter and subsequently integrated to
recover the free energy profile along ξ. Wilfred van Gunsteren [70] hypothesized
that the thermodynamic force was equal to the constraint force acting along ξ. It,
however, soon became apparent that this conjecture was incorrect whenever ξ was
a nonlinear function of the Cartesian coordinates. A rigorous framework for han-
dling holonomic constraints in the simulation of rare events was proposed the very
same year by Carter et al. [71]. The complete treatment of such constraints in free
energy calculations that involved other rigid constraints was proposed nearly another
decade later by Wouter den Otter and Wim Briels [72], and further extended to the
multidimensional case [73].

Almost immediately, it was realized that keeping the system at fixed values of the
order parameter was not a prerequisite to calculating the thermodynamic force. Fol-
lowing a different route than den Otter and Briels, Eric Darve, and Andrew Pohorille
derived the formulas for this force in both constrained and unconstrained simula-
tions. They further showed how the latter could be used to combine TI and US into a
highly efficient scheme that yielded uniform sampling of the order parameter. They
called this approach the adaptive biasing force (ABF) method [74]. Gains in effi-
ciency of ABF, compared to the previous adaptive US schemes based on probability
distribution functions, are due to the fact that forces, in contrast to probabilities,
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are local properties and, therefore, they can be readily estimated without the need to
sample broad ranges of ξ. The efficiency of this approach in the treatment of complex
systems has been demonstrated by Jérôme Hénin and Christophe Chipot [75, 76].

ABF is an example of a strategy in which nearly optimal sampling of a low-
dimensional configurational space is achieved even in the presence of high free
energy barriers. In recent years, other strategies aimed at the same goal have been
proposed. In 2002, Allessandro Laio and Michele Parrinello [77] introduced a meta-
dynamics approach for exploring free energy surfaces that relied on the definition
of collective degrees of freedom to which coarse-grained, non-Markovian dynamics
was applied. A memory kernel guarantees that, as the simulation progresses, the
visited minima of the free energy landscape are continuously filled, ensuring that, in
the long run, exploration of the system is uniform.

Some of the most efficient techniques for sampling configurational space were
developed in association with the MC method rather than MD. In 1992, Berg and
Neuhaus [78] devised a multicanonical method in which weighting factors that yield
equiprobable distributions of order parameters are determined through an iterative
procedure. A similar underlying idea is at the origin of the method proposed by
Fugao Wang and David Landau [79]. In their algorithm, independent random walks
are performed over different ranges of the order parameter – e.g., the energy. The
derived density of states is then updated in a continuous fashion, eventually yield-
ing flat probability distributions. This method, originally designed for discrete lattice
systems, was later adapted to continuum fluids by Shell et al. [80] and Yan et al. [81].
A somewhat different approach was taken by Smith and Bruce [82, 83] in their
transition matrix method. Instead of estimating probabilities of visiting different
states of the system, they calculated transition probabilities between macrostates.
This method proved to generate excellent estimates of thermodynamic functions
with a high statistical accuracy. Another multicanonical strategy devised by John
Valleau allows a range of both densities and temperatures to be spanned in a sin-
gle simulation, thus giving access to accurate free energies and other ensemble
averages [84, 85].

In comparison with MC-based methods, US-based molecular dynamics appeared
to be limited by the fact that order parameters had to be dynamical variables, for
which equations of motion existed. This limitation was removed by introducing to
free energy calculations the extended ensemble formalism. In 1996, Xianjun Kong
and Charles Brooks III [86] adopted an extended Hamiltonian approach, which al-
lowed general order parameters to be treated as dynamical variables, to follow a
pathway along which the free energy is always minimal. The same idea forms the
basis of an algorithm recently put forth by Bitetti-Putzer et al. [87]. The authors
observed that using the generalized ensemble helped to cross free energy barriers
and to overcome kinetic traps. An extended ensemble formalism is also an inherent
part of the previously discussed method proposed by Laio and Parrinello [77].

In the early 1990s, another approach was developed for improving the efficiency
of free energy calculations through non-Boltzmann sampling [88–91]. Its basic idea
is to construct simultaneously a series of MD trajectories or MC walks that are char-
acterized by different values of an order parameter. The method is effective if the
probability of visiting different states of the system varies significantly for the target
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value of the parameter, but becomes progressively smoother as the parameter in-
creases, or decreases. Occasionally, one attempts to update the simulations by swap-
ping configurations between the systems characterized by the consecutive values of
the parameter, and accepting this modification according to the Metropolis criterion.
The result is that the rugged nature of the probability density function at the target
value of the parameter is tempered by exchanging configurations with those sam-
pled from smoother probability distributions. For this reasons, the approach is called
parallel tempering, although versions of this method are also known under different
names, such as replica exchange and J-walking. A suitable and most frequently used
parameter that increases smoothness of the probability distribution and efficiency
of sampling is the temperature, although other choices are possible and occasion-
ally employed. In recent years, the method has gained considerable popularity as a
successful approach to problems that involve high-energy barriers between different
states of the system.

Also in the early 1990s, a somewhat related method for calculating free energy
differences was proposed by Ron Elber and coworkers [92, 93]. It relies on simulat-
ing multiple, noninteracting replicas that differ only locally. As a result, the method
is applicable to systems that undergo only local modification – e.g., point mutations
in proteins. For this reason, it has been called the locally enhanced sampling (LES)
technique.

In contrast to the FEP, US, and TI methods, which provided general routes to
calculating free energy, methods based on the PDT had only limited applications.
Their standard formulation, the particle insertion method, was successful only if the
cavities formed spontaneously due to thermal fluctuations in the solvent were suffi-
ciently large to accommodate solvent molecules. These methods, however, proved to
be of considerable conceptual importance, especially in improving our understand-
ing of the hydrophobic effect. To this end, particularly influential was the work of
Hummer et al. [94]. Building on the earlier studies of Pratt and Pohorille [95, 96],
they connected information theory with statistical mechanics to model the probabil-
ity distribution of solvent centers in a given cavity volume. This approach was not
only able to describe the primitive hydrophobic effects that drive cavity formation
in water and association of nonpolar solutes but also provided a convenient frame-
work for investigating other hydrophobic phenomena, such as the conformational
equilibria in alkanes and nonpolar peptide chains, and the effects of temperature and
pressure on protein folding.

Recently, Lawrence Pratt and coworkers applied the generalized form of the PDT,
which included averaging not only over particle positions but also over molecular
orientations and conformations, in a new context. They developed a quasichemical
theory for the evaluation of solution free energies [97] and applied it to several chal-
lenging problems, such as the hydration free energy of ions – viz. H+, Li+, Na+ and
HO− [98]. They further argued that the PDT forms the basis for approaches to calcu-
lating free energies that are as general and practical as other, widely used methods.

One of the most important theoretical developments of the last decade is due to
Chris Jarzynski, who established a remarkably simple relationship between the equi-
librium free energy difference and an ensemble of properly constructed irreversible
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transformations linking the initial and final state of the system [41, 99]. Jarzynski’s
identity laid the foundations for a new, general class of methods for estimating free
energies, which is applicable to phenomena that are either irreversible or clearly
driven out of equilibrium. Not surprisingly, this work stimulated further theoretical
developments [100], and applications on both the experimental [101] and computa-
tional [102] fronts.

In one of the most advanced applications of the nonequilibrium method, Klaus
Schulten and coworkers [103] coupled steered MD simulations with the Jarzynski
identity to derive the free energy profile that characterizes glycerol conduction in
the aquaglyceroporin GlpF [104]. This computationally challenging study, which
required MD simulations of a system composed of approximately 106,000 atoms,
provided theoretical support for the proposed mechanism of glycerol transport by
identifying potential binding sites, energy barriers, and a vestibular low-energy
region conducive to glycerol uptake within the channel.

Further improvements to Jarzynski’s method were proposed in 2004 by Marty
Ytreberg and Daniel Zuckerman [105], who combined it with a path sampling
scheme. Transition path sampling was used to refine in an iterative fashion the
reaction pathway along which the nonequilibrium work was evaluated. Compared
to standard calculations relying on the Jarzynski identity, this approach appears to be
substantially more effective, because it favors rare events involving small works, and
focuses sampling on regions that truly contribute to the free energy change.

Until recently, advances in calculating the free energy were not accompanied by
comparable progress in rigorous error analysis and reduction. Although a variety of
methods to estimate the error in calculated free energies were proposed [32, 106],
they were usually somewhat heuristic or involved approximations that were not al-
ways sufficiently well supported. Only recently, considerable progress has been made
on this front, in particular by Daniel Zuckerman and Thomas Woolf [107].

An interesting approach for eliminating the systematic sampling bias caused by
the exponential averaging in FEP calculations has been proposed by Lu et al. [108].
In a nutshell, it relies on a combination of the forward and reverse transformations
between a reference and target state, employing Bennett’s acceptance ratio [11] for
the optimal averaging of these simulations in terms of overlap sampling. The merit
of the scheme devised by Lu et al. lies in the reconciliation of two techniques that
have been employed widely, albeit always independently and for different purposes
– i.e., running forward and reverse simulations, usually to infer some estimate of the
statistical error associated with the free energy difference [32], and the long-known,
elegant method put forth by Charles Bennett back in 1976. Amazingly enough, the
connection between these two commonly adopted sampling strategies had to wait
almost 20 years to be clearly articulated. The latter illustrates that concepts once
popular may become dormant, until they are rediscovered years later and used in a
computationally more attractive version.

Realizing that practical application of free energy calculations outside the purely
academic environment, in particular in the pharmaceutical industry, required sig-
nificant cost reductions, much effort was invested towards developing faster and
cheaper methods for estimating free energy differences in complex systems. The goal
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for this line of research, primarily aimed at drug design applications, was quite ambi-
tious: to make approximate methods sufficiently efficient and reliable that they would
provide answers faster than laboratory experiments [109].

In this context, of particular interest are protein–ligand associations, which are
typically accompanied by significant conformational changes. Since these changes
occur on time scales that make direct, atomic-level simulation of these processes
impractical, alternative, simplified strategies had to be devised. One such strategy
was proposed by Åqvist. He assumed that the change in the binding free energy
due to the mutation of a ligand associated with a protein obeyed the linear response
theory [110]. Empirical parameters that appeared in his formulation were determined
from training sets of protein–ligand complexes and were subsequently applied to
predict the binding affinities of new ligands.

Another computational strategy relied on simultaneous in silico creation of the
ligand in the free and the bound states. The term creation, that will be discussed in
detail in Chap. 2, refers to the progressive scaling of parameters that describe inter-
action of the ligand with its environment. Andrew McCammon and coworkers [111]
laid the statistical–mechanical foundations for deriving protein–ligand association
constants, showing, in particular, how the double-creation scheme should be mod-
ified to obtain rigorous binding free energies. In a related work, Jan Hermans and
Lu Wang [112] proposed a complete treatment of the binding free energy, which
included the so-called cratic term arising from the loss of rotational and translational
entropy upon association.

In 2000, Erin Duffy and William Jorgensen [113] simulated a set of 200 organic
solutes of potential pharmaceutical interest in aqueous solution. Using an automated
procedure, they inferred solvation free energies on the basis of configurationally
averaged descriptors obtained through linear regression. Noting that the estimated
free energies were sensitive to the choice of the net atomic charges on the solutes,
they proposed that specific corrections be included in the regression equations
for poorly described functional groups. With the increase of computational power,
William Jorgensen showed how lead optimization could be guided employing FEP
calculations to design new, very potent anti-HIV-1 agents [114]. To find a compromise
between accurate but low-throughput free energy calculations and inexpensive but
generally poor-scoring function-based schemes, David Pearlman and Paul
Charifson [115] suggested that one-step FEP simulations on a grid surrounding the
solute of interest represented a promising tradeoff for high-throughput determination
of protein–ligand binding constants.

Paul Smith and Wilfred van Gunsteren [116, 117] suggested an approach to
inferring a set of free energy differences based on a single simulation of the initial
state. Herman Berendsen and coworkers [118] developed another strategy, which was
based on the potential energy distribution function. Using a quasi-Gaussian entropy
theory, the free energy and entropy changes were expressed in terms of the potential
energy moments. This approach was shown to reproduce accurately the free energy
of water and methanol over an appreciable range of temperatures.

New horizons for treating computationally challenging problems opened with the
emergence of reliable implicit solvation models. For example, Simonson et al. [119]
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showed that a continuum treatment of long-range interactions could be used in free
energy calculations without sacrificing accuracy, which led to significant reductions
in the cost of atomistic simulations. More recently, the application of an implicit sol-
vation scheme to the calculation of association free energies was revisited by Andrew
McCammon and coworkers [120]. Employing a molecular mechanics Poisson–
Boltzmann surface area (MM/PBSA) model, they successfully tackled the difficult
problem of estimating changes in the conformational free energy upon binding of
a ligand to its receptor. In general, application of implicit solvent to protein–ligand
assemblies, in which solvent molecules do not contribute directly to the association,
is a possible answer to the need for high-throughput de novo drug design in industrial
settings.

The vast majority of free energy theory/calculation approaches originate from
a classical statistical–mechanical underpinning. This assumption is appropriate for
a wide range of ion and molecule solvation problems. Even in the early stages
of the development of free energy methodology, however, emphasis was placed
on quantum aspects of free energies. These early developments followed two gen-
eral lines. In the first, Eugene Wigner and John Kirkwood, as early as the 1930s,
derived an expansion for the free energy in powers of �; the first term in the series is
the classical free energy, and subsequent terms yield increasingly accurate quan-
tum corrections. In addition, an effective potential can be derived which allows
for a classically based simulation moving on a quantum-modified potential. The
Wigner–Kirkwood and thermodynamic perturbation theory approaches are described
thoroughly in reference [5]. The second line in the development of approximate
quantum free energy methods was the discovery of variational approaches pioneered
by Richard Feynman [121], Albert Hibbs [122], and Hagen Kleinert [123]. Starting
from a path integral description of the quantum system, and integrating out the path
modes, effective potentials were derived which ensure that the computed free ener-
gies were above the exact result. More recently, the PDT has been extended to the
quantum domain using Feynman path integral methods [124, 125], and these ideas
have found utility in modeling quantum behavior in fluids [126, 127].

The ideas mentioned in this section, and many others, will be discussed in detail
in subsequent chapters. As we have already stressed, the goal of this section is not
to be exhaustive. Instead, the guiding idea has been to show how developments in
the field were motivated by the theoretical and practical challenges arising as both
the computational power and the popularity of free energy calculations increased.
The reader interested in learning more about the history of free energy calcula-
tions is referred to the previously mentioned articles by William Jorgensen [48, 49],
David Beveridge and Frank DiCapua [50, 51], and Peter Kollman [52] from the late
1980s and early 1990s, and to more recent reviews by Thomas Simonson et al. [128],
Christophe Chipot and David Pearlman [129], Bruce Berne and John Straub [130],
as well as Tomas Rodinger and Régis Pomès [131].
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1.2 The Density of States

In the remainder of this chapter, we review the fundamentals that underlie the the-
oretical developments in this book. We outline, in sequence, the concept of density
of states and partition function, the most basic approaches to calculating free ener-
gies and the essential strategies for improving the efficiency of these calculations.
The ideas discussed here are, most likely, known to the reader. They can also be
found in classical books on statistical mechanics [132–134] and molecular simu-
lations [135, 136]. Thus, we do not attempt to be exhaustive. On the contrary, we
present the material in a way that is most directly relevant to the topics covered in
the book.

The density of states is the central function in statistical thermodynamics, and
provides the key link between the microscopic states of a system and its macro-
scopic, observable properties. In systems with continuous degrees of freedom, the
correct treatment of this function is not as straightforward as in lattice systems – we,
therefore, present a brief discussion of its subtleties later. The section closes with a
short description of the microcanonical MC simulation method, which demonstrates
the properties of continuum density of states functions.

1.2.1 Mathematical Formalism

We begin by considering the density of states, Ω, or microcanonical partition func-
tion for a single-component, structureless fluid of N particles – although the exten-
sion to structured, or multicomponent systems is rather straightforward. Our use of
the notation Ω refers to the energy density of microstates, and not the integrated
phase space volume [137, 138]. Although there has been some debate about which
is appropriate to the microcanonical entropy, the former is tied to histograms, as
discussed in Chap. 3, and, hence, it is our focus here. For an in-depth mathematical
treatment of these issues, the reader is referred to [137–139].

For discrete systems such as the Ising model, the density of states counts the num-
ber of microstate configurations of the system consistent with each macrostate – e.g.,
Ω(E ) gives the number of microstates with energy E . In a system with continuous
degrees of freedom, this ‘counting’ is ill-defined because the number of configura-
tions is infinite. In contrast, for our fluid, we consider the entire 3N -dimensional
space defined by all the coordinates of the particles, and let the ‘number’ of configu-
rations of a given potential energy be proportional to the (3N − 1)-dimensional area
of the associated energy hypersurface. In mathematical terms, this translates to:

Ωcon ∝ 1
N !

∫
V N

δ[U(q) − E ] dq. (1.1)

Here, δ is the Dirac delta function, U is the potential energy function, and q rep-
resents the 3N coordinates. In this expression, the integral is performed over the
entire configuration space – each coordinate runs over the volume of the simulation
box, and the delta function ‘selects’ only those configurations of energy E . The N !
term factors out the identical configurations which differ only by particle permuta-
tion. It is worth noting that the density of states is an implicit function of N and V ,
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which define the dimensionality and boundaries of the hypersurface E , respectively.
We have also used here the annotation “con,” because this integral depends on the
configurational coordinates and the potential energy alone. The complete density of
states depends on the total Hamiltonian of the system, and is expressed as follows:

Ωtot(N,V,E ) =
1

h3NN !

∫ ∫
V N

δ[H (q,px) − E ] dq dpx (1.2)

where px are the 3N conjugate momenta. Here, we have introduced 1/h3N as the
factor of proportionality, which is necessary to retrieve the correct correspondence
with the high-temperature quantum-mechanical prediction. For a detailed discussion
of this proportionality, see for instance [132]. The interpretation of the density of
states in this classical, continuum setting is that the quantity Ω(E )dE measures the
volume of microstates of energy E ±dE /2. Although this definition may seem vague
in physical terms, the important result is that relative values of the density of states
have a clear significance. This is to say, if Ω(E1) is twice Ω(E2), then there are twice
as many microstates at energy level 1 than 2, even though we may not have a clear
way of counting their absolute number at E1 or E2. Ultimately, at a classical level, we
need only know the density of states to a multiplicative constant, since this will not
change the relative measures at different energy levels – or volumes, or even particle
numbers.

The connection between the multiplicative insensitivity of Ω and thermodynamics
is actually rather intuitive: classically, we are normally only concerned with entropy
differences, not absolute entropy values. Along these lines, if we examine Boltzmann’s
equation, S = kB ln Ω, where kB is the Boltzmann constant, we see that a multi-
plicative uncertainty in the density of states translates to an additive uncertainty in
the entropy. From a simulation perspective, this implies that we need not converge
to an absolute density of states. Typically, however, one implements a heuristic rule
which defines the minimum value of the working density of states to be one.

As suggested previously, the density of states has a direct connection to the
entropy, and, hence, to thermodynamics, via Boltzmann’s equation. Alternately, we
can consider the free energy analogue, using the Laplace transform of the density of
states – the canonical partition function:

Q(N,V, T ) =
∫

exp(−βE ) Ωtot(N,V,E ) dE (1.3)

β = (kBT )−1. In this expression, the macrostate probabilities at a given temperature
are easy to identify – the probability that each energy will be visited is proportional
to the integrand.

We now return to the issue of configurational density of states. In the simulation
of molecular systems, we are interested only in the calculation of their configura-
tional properties, or more explicitly, the configurational contribution to their parti-
tion functions. This is because the kinetic component is analytic, and, hence, there
is no need to measure it via simulation. For conventional MC simulations in the
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canonical N,V, T ensemble, for example, we readily integrate out these kinetic de-
grees of freedom, which are simply factored out of the total partition function [135].
The situation in the microcanonical ensemble is somewhat more intricate [139].
Since the kinetic and the potential energies are additive in the Hamiltonian, one
can rewrite the single δ-function in (1.2) as a convolution integral involving two
δ-functions of each energy term:

Ωtot(N,V,E ) =
1

h3NN !

∫ ∫
V N

δ[U(q) + K(px) − E ] dq dpx

=
1

h3NN !

∫ [∫
δ[K(px) − E ′] dpx

]

×
[∫

V N

δ[U(q) − E + E ′] dq
]

dE ′

=
∫

Ωig(N,V,E ′)Ωex(N,V,E − E ′) dE ′ (1.4)

where the ideal gas and excess density of states in the last lines are defined by

Ωig(N,V,E ) =
V N

h3NN !

∫
δ[K(px) − E ] dpx

=

[
(2πmE )3/2

V

h3

]N
E −1

N !Γ
(

3
2N
) (1.5)

and
Ωex(N,V,E ) =

1
V N

∫
V N

δ[U(q) − E ] dq. (1.6)

Here m is the mass of a particle and Γ is the Γ function. In (1.5), we have determined
the explicit ideal gas density of states. This is possible since the kinetic energy is a
quadratic function of the momentum, K =

∑
p2/2m, which allows us to switch

to hyper-spherical coordinates for the treatment of the δ-function. The important
fact is that the kinetic contribution to the total, microcanonical partition function is
analytical, whereas the excess quantity is the subject of our simulation. This should
not cause any confusion, since the excess and the configurational density of states
differ only by a simple factor:

Ωex(N,V,E ) =
N !
V N

Ωcon(N,V,E ). (1.7)

The simulation algorithms presented in Chap. 3, for example, may be formulated in
such a way that one is calculating either the excess or the configurational density of
states, the only distinction being whether the functionality of the multiplicative term
on the right-hand side of (1.7) is absorbed into Ω or introduced into the reweighting
of results. The use of Ωex might be mathematically more aesthetic, in that it has
natural dimensions. It should, however, be emphasized that it is the configurational
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quantity which retains the physical significance of a density of states. In other words,
Ωcon(N,V,E ) remains proportional to the number of microstates with given N,V,E .

The excess density of states figures straightforwardly into the canonical partition
function. Substituting the convolution in (1.4) into (1.3) and making the substitution
E ′′ = E − E ′, it follows that

Q(N,V, T ) =
[∫

e−βE ′
Ωig(N,V,E ′) dE ′

] [∫
e−βE ′′

Ωex(N,V,E ′′) dE ′′
]

=
V N

Λ(β)3NN !

∫
e−βE Ωex(N,V,E ) dE

=
1

Λ(β)3N

∫
e−βE Ωcon(N,V,E ) dE (1.8)

In the second line, we have carried the integral over the ideal gas part, which results in
the temperature-dependent de Broglie wavelength, Λ. The final expression is similar
to the familiar casting of the canonical partition function,

Q(N,V, T ) =
1

N !h3N

∫
exp [−βH (q,px)] dq dpx

=
1

Λ3NN !
Z(N,V, T ) (1.9)

except that the multidimensional integral over coordinates is now replaced by a one-
dimensional integral over energy. In (1.9), Z(N,V, T ) is the configurational integral
defined by:

Z(N,V, T ) =
∫

exp(−βU(q)) dq (1.10)

where U(q) is the potential energy of the system.
In this chapter and in others of the present book, we will often drop the subscript

“con” from the configurational density of states, which will simply be denoted by
Ω. Any other quantity, such as the total and excess density of states, will retain its
subscript.

1.2.2 Application: MC Simulation in the Microcanonical Ensemble

A working example will help illustrate some of the mathematical properties of the
density of states and its connection to the microcanonical ensemble. It is possible
to perform a MC simulation in a microcanonical setting (constant total energy,
kinetic plus potential) using the previous arguments. This method was developed
by John Ray [140] and later by Rolf Lustig [141], and though it is not frequently
used, its derivation is instructive. As with any MC simulation, the first concern is the
ensemble of interest, which specifies the relevant underlying partition function and,
importantly, the probability with which configurations should be visited or sampled.
In this case, we extract these probabilities with a simple manipulation of the den-
sity of states. Starting with the analytically evaluated ideal gas density of states in
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(1.5), we substitute this contribution back into the convolution integral determining
the total microcanonical partition function in (1.4):

Ωtot(N,V,E ) =
1

N !Γ
(

3
2N
)
[

(2πm)3/2

h3

]N

×
∫ ∫

V N

δ [U(q) − E + E ′] (E ′)3N/2−1 dq dE ′

=
1

N !Γ
(

3
2N
)
[

(2πm)3/2

h3

]N

×
∫

V N

[E − U(q)]3N/2−1
θ [E − U(q)] dq (1.11)

where θ is the Heaviside step function. In going to the last line in this expression,
we have switched the order of integration and performed the integral over E ′ to
remove the delta function. The final expression gives a clear significance of the
microstate probabilities in the ensemble and has a nice correspondence with the
canonical configurational partition function. Compare this result to that of a constant-
temperature simulation, in the NV T ensemble. There we must specify the temper-
ature, the partition function is Q, and the state probabilities follow the Boltzmann
factor. Similarly, in the microcanonical simulation we must specify a total energy,
the partition function is Ω, and the weight each configuration should carry is:

P(q) ∝ [E − U(q)]3N/2−1
θ [E − U(q)] . (1.12)

Based on (1.12), we can implement any complement of MC moves and formulate
appropriate acceptance criteria such that the progression of configurations satisfies
this distribution. For simple moves in which the proposal probability equals that of its
inverse – symmetric moves, such as single-particle displacements – the Metropolis
acceptance criterion then reads [141]:

Pacc(U0 → Un) = min

[
1,

(
E − Un

E − U0

)3N/2−1

θ (E − Un)

]
(1.13)

where it is assumed that the initial energy, U0, is less than E . Similar arguments can
be used to adapt (1.13) in the presence of additional constraints, such as nonspherical
rigid molecules or fixed total momentum [141].

1.3 Free Energy

1.3.1 Basic Approaches to Free Energy Calculations

The Helmholtz free energy, A, which is the thermodynamic potential, the natural
independent variables of which are those of the canonical ensemble, can be expressed
in terms of the partition function:
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A = −β−1 ln Q(N,V, T ). (1.14)

This equation forms the fundamental connection between thermodynamics and sta-
tistical mechanics in the canonical ensemble, from which it follows that calculating
A is equivalent to estimating the value of Q. In general, evaluating Q is a very dif-
ficult undertaking. In both experiments and calculations, however, we are interested
in free energy differences, ∆A, between two systems or states of a system, say 0
and 1, described by the partition functions Q0 and Q1, respectively – the arguments
N,V, T have been dropped to simplify the notation:

∆A = −β−1 ln Q1/Q0 (1.15)

If the quantity of interest is the excess Helmholtz free energy, as is almost always
the case, or if the masses of particles in systems 0 and 1 are the same, (1.15) can be
rewritten in terms of the configurational integrals Z0 and Z1

∆A = −β−1 ln Z1/Z0. (1.16)

Almost all problems that require knowledge of free energies are naturally formulated
or can be framed in terms of (1.15) or (1.16). Systems 0 and 1 may differ in several
ways. For example, they may be characterized by different values of a macroscopic
parameter, such as the temperature. Alternatively, they may be defined by two differ-
ent Hamiltonians, H0 and H1, as is the case in studies of free energy changes upon
point mutation of one or several amino acids in a protein. Finally, the definitions of 0
and 1 can be naturally extended to describe two different, well-defined macroscopic
states of the same system. Then, Q0 is defined as:

Q0 =
1

N !h3N

∫
Γ0

exp [−βH (x,px)] dx dpx (1.17)

where Γ0 is the volume in the phase space accessible to the system in state 0. Q1

can be defined in a similar manner. The macroscopic states defined by Γ0 and Γ1

may correspond to different conformations of a flexible molecule, or the bound and
unbound structures of a protein–ligand complex.

Calculating free energies in these three types of systems requires slightly differ-
ent theoretical treatments, but the underlying ideas remain the same. For this reason,
we will draw a distinction between these systems only when it is necessary for theo-
retical developments. If treatments of different types of systems are essentially iden-
tical, yet require somewhat different notations, we will often limit our discussion to
only one case, leaving the exercise of changing the notation to the reader.

Equation (1.15) indicates that our ultimate focus in calculating ∆A is on
determining the ratio Q1/Q0 – or equivalently Z1/Z0 – rather than on individual
partition functions. On the basis of computer simulations, this can be done in several
ways. One approach consists in transforming (1.16) as follows:
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∆A = −β−1 ln

∫
exp [−βU0 (x)] dx

∫
exp [−βU0 (x)] dx

(1.18)

= −β−1 ln exp {−β [U1(x) − U0(x)]}P0 (x)

= −β−1 ln〈exp {−β [U1(x) − U0(x)]}〉0
Here, the systems 0 and 1 are described by the potential energy functions, U0(x),
and U1(x), respectively. Generalization to conditions in which systems 0 and 1 are
at two different temperatures is straightforward. β0 and β1 are equal to (kBT0)−1 and
(kBT1)−1, respectively. P0(x) is the probability density function of finding system
0 in the microstate defined by positions x of the particles:

P0 (x) =
exp [−β0U0 (x)]

Z0
(1.19)

An interesting feature of (1.18) is that ∆A is estimated from a simulation of system
0 only. During such a simulation, a sample of the value of β1U1 − β0U0 needs to
be collected which is sufficient to estimate with the desired accuracy the average
exponential in (1.18). Using one system as the reference and focusing on energy dif-
ferences is reminiscent of perturbation methods. Not surprisingly, this general app-
roach is called the FEP method. This method will be discussed in detail in Chaps. 2
and 6.

Another approach to calculating ∆A relies on estimating the appropriate proba-
bility density functions. The connection between the probabilities of different states
and the partition function is natural in statistical mechanics. Equation (1.19) is
a reflection of this connection. Similarly, the probability of observing the potential
energy of the system being equal to U is:

P (U) =
exp (−βU) Ω (U)

Z
(1.20)

where, again, the arguments N,V, T have been omitted for simplicity.
Let us assume that system 0 can be transformed to system 1 through the continu-

ous change of some parameter λ defined such that λ0 and λ1 correspond to systems 0
and 1, respectively. This parameter could be a macroscopic variable – viz. the temp-
erature, a parameter that transforms H0 to H1, or a generalized coordinate (e.g.,
a torsional angle or an intermolecular distance) that allows the different structural
states of the system to be distinguished. It follows that:

P0 = P (λ0) =

∫
exp (−βH ) δ (λ − λ0) dx dpx

N
=

Q0

N
(1.21)

where N is a normalization constant. Here, β, H or x,px could be functions of
λ. P1 can be obtained in the same way, by substituting subscript 1 for 0. Combining
(1.15) and (1.21) leads to:
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∆A = −β−1 ln
P1

P0
(1.22)

This equation provides a prescription for calculating ∆A. The probability distribu-
tion function, P (λ), for the range of λ comprised between λ0 and λ1 is obtained
from computer simulations, usually as a histogram. The ratio P1/P0 is then esti-
mated. This generic idea has been implemented in various, creative ways, yielding
a class of techniques called probability distribution or histogram methods. These
methods are discussed in Chap. 3.

In the third approach, one calculates d∆A/dλ rather than ∆A directly. Differen-
tiating (1.14) yields:

dβA

dλ
= − 1

Q (λ)
∂Q

∂λ
(1.23)

If λ is a parameter in the Hamiltonian, we obtain:

dA

dλ
=

∫
∂H

∂λ
exp (−βH ) dx dpx∫

exp (−βH ) dx dpx

=
〈

∂H

∂λ

〉
λ

(1.24)

and the free energy difference between system 0 and system 1 is evaluated by inte-
grating the average derivative of the Hamiltonian with respect to λ, which is in units
of the force, in the range extending from λ0 to λ1. For this reason, the method is
called thermodynamic integration. If λ is a function of the positions of the particles,
derivation of the formula for dA/dλ is more intricate, but the quantity that needs to
be averaged remains the same. Details are given in Chap. 4.

Conceptually, the three methods outlined above are closely connected. For exam-
ple, one can derive the TI formula from (1.18) by assuming that the transformation
from system 0 to system 1 proceeds through a sequential series of small perturba-
tions, in which λ changes by an increment ∆λ, and then taking the limit of ∆λ →
0. Even though the methods are related, the distinction between them is useful,
because the developments of advanced techniques for each of them is often markedly
different.

As we will see further in the book, almost all methods for calculating free
energies in chemical and biological problems by means of computer simulations of
equilibrium systems rely on one of the three approaches that we have just outlined,
or on their possible combination. These methods can be applied not only in the con-
text of the canonical ensemble, but also in other ensembles. As will be discussed in
Chap. 5, ∆A can be also estimated from nonequilibrium simulations, to such extent
that FEP and TI methods can be considered as limiting cases of this approach.

1.4 Ergodicity, Quasi-nonergodicity and Enhanced Sampling

Central to many developments in this book is the concept of ergodicity. Let us
consider a physical system consisting of N particles. Its time evolution can be de-
scribed as a path, or trajectory, in phase space. If the system was initially in the state
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{p0,q0}, the time average – if it exists – of any property, f , observed over time T
would be equal to

f(q0,p0) =
1
T

∫ T

0

f [q(t),p(t)] dt (1.25)

Similarly, we can define the ensemble average:

〈f〉 =
∫

fP (x,px) dx dpx, (1.26)

where P (x,px) is the time-independent probability that measures the fraction of
systems that are in the state {x,px}.

For ergodic systems, the probability of visiting the neighborhood of each point
in phase space converges to a unique limiting value as T → ∞, such that the time
average of f is equal to its ensemble average

lim
T→∞

f(q0,p0) = 〈f〉. (1.27)

There are two important consequences of this equality for computer simulations of
many-body systems. First, it means that statistically averaged properties of these
systems are accessible from simulations that are aimed at generating trajectories –
e.g., molecular dynamics, or ensemble averages such as Monte Carlo. Furthermore,
for sufficiently long trajectories, the time-averaged properties become independent
of the initial conditions. Stated differently, it means that for almost all values of
{q0,p0}, the system will pass arbitrarily close to any point {x,px} in phase space
at some later time.

The assumption that (1.27) holds, i.e., that time averages of macroscopic vari-
ables can be replaced by their ensemble averages is called the ergodic hypothesis. It
is equivalent to the statement that a system assumes, in the long run, all conceivable
microstates that are compatible with the conservation laws, and, therefore, lies at the
foundation of statistical mechanics developed by Boltzmann and Maxwell. From our
perspective, it is clear that the theoretical outline given in the previous two sections
would not be appropriate for nonergodic systems. Moreover, for such systems, it is
not expected that different computer simulations of the same system, no matter how
long, would yield the same estimates of the free energy.

Although it is usually very difficult to prove ergodicity, it is strongly believed
that almost all many-body systems are ergodic. There are, however, a few known
examples of nonergodic systems. Perhaps the best known are completely integrable
systems – i.e., systems for which the number of degrees of freedom is equal to the
number of constants of motion. This was proven in the famous Kolmogorov–Arnold–
Moser (KAM) theorem [142]. Fortunately, systems known to be nonergodic are usu-
ally not of interest in chemistry and biology.

Even if a system is formally ergodic, its behavior during computer simulations
may resemble those of nonergodic systems. This means that the system does not
properly explore phase space, and, therefore, the calculated statistical averages might
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exhibit strong dependence on the initial conditions. This phenomenon is called quasi-
nonergodicity. It may occur because the system diffuses very slowly, to the extent that
the volume in phase space covered during the simulation is insufficient to estimate
reliably statistical averages of properties of interest. More often, the appearance of
nonergodicity is caused by high energy barriers separating different volumes of phase
space. It follows that transitions between these volumes constitute rare events that
might never happen during a computer simulation, or that occur so infrequently
that accurate estimates of statistical averages cannot be achieved in practice. Even
if the volumes are connected by low-energy regions, but these regions are very
narrow – viz. so-called ‘entropy bottlenecks,’ and hence rarely sampled, the ap-
pearance of nonergodicity persists.

Quasi-nonergodicity is a common phenomenon in complex chemical and bi-
ological systems. If this is the case, direct application of the methods outlined
in the previous section might not yield correct estimates of free energies. To im-
prove these estimates, more-advanced strategies that allow relevant rare events to
be sampled are needed. These strategies are called enhanced sampling methods.
Most of them are also used in other fields of science, but under a different name –
viz. variance-reduction methods. The connection between these two names is fairly
obvious. The primary goal in applying enhanced sampling methods is to explore effi-
ciently the regions in phase space that are important for calculating free energy, and,
by doing so, reduce the variance of the estimates of this quantity.

Two enhanced sampling strategies have proved to be particularly effective in
dealing with quasi-nonergodicity, namely stratification and importance sampling. In
fact, almost all techniques used to improve the efficiency of free energy calcula-
tions rely on one of these strategies, or their combination. Their thoughtful and cre-
ative implementation often makes the difference between successful and unreliable
simulations.

Stratification, sometimes also called multistage sampling [10], is a strategy for
distributing samples so that all parts of the function are adequately sampled. In an
unstratified process, all the samples are generated from the same probability distri-
bution function, P (x), which might vary greatly in the domain Ω. In a stratified
method, this domain is first partitioned into a number of disjoint regions Ωi, called
strata, such that their union covers the whole domain. In the region Ωi, xi is sampled
according to Pi(xi), equal to P (x) in this region. In the process, every strata is sam-
pled, even if it is associated with a very low P (x), and, as a consequence, is unlikely
to be visited in an unstratified sampling. The end result of stratification is a lowered
variance on the estimate of any function f(x) averaged over Ω with the probability
measure P (x).

To illustrate how stratification works in the context of free energy calculations,
let us consider the transformation of state 0 into state 1 described by the parameter λ.
We further assume that these two states are separated by a high-energy barrier that
corresponds to a value of λ between λ0 and λ1. Transitions between 0 and 1 are then
rare and the free energy estimated from unstratified computer simulations would
converge very slowly to its limiting value, irrespective of the initial conditions. If,
however, the full range of λ is partitioned into a number of smaller intervals, and
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each of these intervals is sampled independently, it is possible to recover the complete
P (λ) and estimate ∆A from (1.22), with great savings of computer time.

Importance sampling is another, highly successful variance-reduction technique
[143]. The idea behind it is that certain regions in phase space are important for esti-
mating the quantity of interest, even though these regions might have low probability
of being visited. It is thus advantageous to choose a sampling distribution from which
these ‘important’ regions are sampled more frequently than they would be from the
true distribution. If this approach were applied directly in a simulation, it would yield
a biased estimator. The results of the simulation obtained using the modified distribu-
tion can, however, be properly weighted to ensure that the estimator is unbiased. The
weight is given by the likelihood ratio of the true distribution to the biased simulation
distribution.

The basic idea of importance sampling can be illustrated simply in the example
of the transformation from 0 to 1 along λ, as described above. In lieu of sampling
from the true probability distribution, P (λ), we design simulations in which λ is
sampled according to P ′(λ). The latter probability should be chosen so that it is
more uniform than P (λ). The relation between the two probabilities may then be
expressed as follows:

P ′ (λ) = P (λ) exp [βη(λ)] (1.28)

where η(λ) is the weight factor that depends on the value of λ. Next, ∆A in (1.22)
can be expressed in terms of P ′(λ0) and P ′(λ1) derived from the biased simulation:

∆A = −β−1 ln
P (λ1)
P (λ0)

= −β−1 ln
P ′(λ1)
P ′(λ0)

+ η(λ1) − η(λ0) (1.29)

The fundamental issue in implementing importance sampling in simulations is the
proper choice of the biased distribution, or, equivalently, the weighting factor, η. A
variety of ingenious techniques that lead to great improvement in the efficiency and
accuracy of free energy calculations have been developed for this purpose. They will
be mentioned frequently throughout this book.
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Calculating Free Energy Differences Using
Perturbation Theory

Christophe Chipot and Andrew Pohorille

2.1 Introduction

Perturbation theory is one of the oldest and most useful, general techniques in applied
mathematics. Its initial applications to physics were in celestial mechanics, and its
goal was to explain how the presence of bodies other than the sun perturbed the
elliptical orbits of planets. Today, there is hardly a field of theoretical physics and
chemistry in which perturbation theory is not used. Many beautiful, fundamental
results have been obtained using this approach. Perturbation techniques are also used
with great success in other fields of science, such as mathematics, engineering, and
economics.

Although applications of perturbation theory vary widely, the main idea remains
the same. One starts with an initial problem, called the unperturbed or reference
problem. It is often required that this problem be sufficiently simple to be solved
exactly. Then, the problem of interest, called the target problem, is represented in
terms of a perturbation to the reference problem. The effect of the perturbation is
expressed as an expansion in a series with respect to a small quantity, called the per-
turbation parameter. It is expected that the series converges quickly, and, therefore,
can be truncated after the first few terms. It is further expected that these terms are
markedly easier to evaluate than the exact solution.

This is precisely the approach that was followed by the pioneers of free energy
perturbation (FEP) theory [1–3]. The Hamiltonian of the target system was repre-
sented as the sum of the reference Hamiltonian and the perturbation term. The free
energy difference between the two systems was expressed exactly as the ensemble
average of the appropriate function of the perturbation term over the reference sys-
tem. Finally, this statistical average was represented as a series. The first two terms in
this series were easy to evaluate and interpret. With the advent of digital computers it
was, however, realized that, with sufficient care, one might be able to evaluate the free
energy difference directly from the exact formula which was the starting point for
the expansion. At present, most FEP calculations are based on this approach. Even
though this is somewhat inconsistent with the original idea of perturbation theory,
the name of the method remained unchanged. This is well justified – the presently
used FEP methodology is still focused on the perturbation term in the Hamiltonian
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averaged over the reference state, and the expansion of the free energy remains a
helpful theoretical and practical research tool.

FEP is not only the oldest but also one of the more useful, general-purpose strate-
gies for calculating free energy differences. In the early years of molecular-level
computer simulations in chemistry and biology it was applied to small solutes dis-
solved in water [4]. Today, it is used for some of the most challenging applications,
such as protein–ligand interactions and in silico protein engineering [5]. It can also
be applied to examine the effect of force fields on the computed free energies. Finally,
perturbation theory forms the conceptual framework for a number of approximate
theories.

In this chapter, we shall focus on calculating Helmholtz free energies in the
canonical ensemble. Extension to other ensembles is fairly straightforward. We also
note that, for most systems, differences between free energies calculated in different
ensembles vanish rather quickly as the system size increases. In Sects. 2.2 and 2.3,
we will derive the general expression for free energy perturbation and discuss its
meaning. This will be followed by the expansion of free energy in a perturbative
series. Next, we will show how to deal with large perturbations that cannot be treated
satisfactorily by direct application of the general formula. At that point, we will
introduce the concept of the order parameter, which describes transformations bet-
ween different thermodynamic states. The basic FEP methodology will be illustrated
through two simple examples. Next, alchemical transformations used to estimate, for
instance, relative binding affinities resulting from site-directed point mutations, will
be discussed in detail as an important application of FEP theory. In particular, we will
examine the differences between the so-called single-topology and the dual-topology
paradigms used for in silico transformations between states.

Considering that FEP calculations require significant computational effort, we
will discuss a number of techniques for improving their efficiency. Discussion in the
present chapter of these important, practical aspects of FEP is, however, far from
complete. The issues of efficiency and the closely related topic of error analysis
will be considered again in Chap. 6, yet from a somewhat different perspective. This
distinction, which may seem somewhat inconvenient to the reader, is motivated by
the fact that the analyses developed in Chap. 6 apply not only to FEP but also to
calculations of free energies from nonequilibrium simulations, which are discussed
in Chap. 5. The last topic of this chapter will be the extension of the FEP formalism
to calculations of energy and entropy differences, and the relevance of free energy
contributions obtained by breaking down the potential energy function into terms
that have different physical interpretations.

2.2 The Perturbation Formalism

Let us start by considering an N -particle reference system described by the
Hamiltonian H0(x,px), which is a function of 3N Cartesian coordinates, x, and
their conjugated momenta px. We are interested in calculating the free energy dif-
ference between this system and the target system characterized by the Hamiltonian
H1(x,px)
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H1(x,px) = H0(x,px) + ∆H (x,px) (2.1)

Let us assume, for instance, that we seek the free energy of solvation of a chemical
species at infinite dilution. Then, ∆H (x,px) consists of all terms in H1(x,px) that
describe solute–solvent interactions. In another example, we might be interested in
calculating the difference between the hydration free energies of sodium and argon
described as Lennard-Jones particles with and without a charge, respectively. For
these systems, ∆H (x,px) contains contributions to solute–solvent potential energy
due to the presence of the charge and the change in the Lennard-Jones parameters.
Also present is a kinetic energy term associated with the difference in the mass of
the solute.

The difference in the Helmholtz free energy between the target and the reference
systems, ∆A, can be written in terms of the ratio of the corresponding partition
functions, Q1 and Q0 [see (1.15)]

∆A = − 1
β

ln
Q1

Q0
(2.2)

where β = (kBT )−1, and

Q =
1

h3NN !

∫ ∫
exp [−βH ] dx dpx (2.3)

Substituting (2.3) to (2.2) and using (2.1), we obtain

∆A = − 1
β

ln

∫ ∫
exp [−βH1(x,px)] dx dpx∫ ∫
exp [−βH0(x,px)] dx dpx

(2.4)

= − 1
β

ln

∫ ∫
exp [−β∆H (x,px)] exp [−βH0(x,px)] dx dpx∫ ∫

exp [−βH0(x,px)] dx dpx

As has already been discussed in the context of (1.19), the probability density func-
tion of finding the reference system in a state defined by positions x and momenta
px is

P0(x,px) =
exp [−βH0(x,px)]∫ ∫

exp [−βH0(x,px)] dx dpx

(2.5)

If this definition is used, (2.4) becomes

∆A = − 1
β

ln
∫ ∫

exp [−β∆H (x,px)] P0(x,px) dx dpx (2.6)

or, equivalently,

∆A = − 1
β

ln〈exp [−β∆H (x,px)]〉0. (2.7)
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Here, 〈· · · 〉0 denotes an ensemble average over configurations sampled from the
reference state. This is the fundamental FEP formula, which is the basis for all fur-
ther developments in this chapter. It states that ∆A can be estimated by sampling
only equilibrium configurations of the reference state.

Note that integration over the kinetic term in the partition function, (2.3), can
be carried out analytically. This term is identical for the solvated and the gas-phase
molecule in the first example given at the beginning of this section. Thus, it cancels
out in (2.2), and (2.7) becomes

∆A = − 1
β

ln〈exp (−β∆U)〉0 (2.8)

where ∆U is the difference in the potential energy between the target and the refer-
ence states. The integration implied by the statistical average is now carried out over
particle coordinates only. This simplification is true for any two systems of particles
with the same masses. If, however, the masses differ, as is the case in the second
example, there is an additional term due to the change in the kinetic energy. If
this term is neglected the left-hand side of (2.8) should be identified as the excess
Helmholtz free energy of the solute over that in the ideal gas. This issue has already
been discussed in Sects. 1.2 and 1.3. Since this is the quantity that can be obtained
experimentally and, therefore, is of interest in most cases, we will further use (2.8)
rather than (2.7), and do not consider any change of mass during transformations
between states.

If we reverse the reference and the target systems, and repeat the same derivation,
using the same convention for ∆A and ∆U as before, we obtain

∆A =
1
β

ln〈exp (β∆U)〉1 (2.9)

Although expressions (2.8) and (2.9) are formally equivalent, their convergence
properties may be quite different. As will be discussed in detail in Chap. 6, this means
that there is a preferred direction to carry out the required transformation between
the two states.

Using a similar approach we can derive a formula for the statistical average of any
mechanical property, F (x,px) in the target system in terms of statistical averages
over conformations representative of the reference ensemble

〈F (x,px)〉1 =

∫ ∫
F (x,px) exp [−βU1] dx dpx∫ ∫

exp [−βU1] dx dpx

(2.10)

=

∫ ∫
F (x,px) exp [−β∆U ] exp [−βU0] dx dpx∫ ∫

exp [−β∆U ] exp [−βU0] dx dpx
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After multiplying both the numerator and the denominator by Q0, we obtain

〈F (x,px)〉1 =
〈F (x,px) exp (−β∆U)〉0

〈exp (−β∆U)〉0
(2.11)

Examples of properties that can be calculated using (2.11) are the average potential
energy, forces, molecular dipole moment or torsional angles in a flexible molecule.
Equation (2.11) is quite useful and, not too surprisingly, will reappear later in the
book, for example, in Sect. 2.10 and in Chap. 11. It is worth noting, however, that in
practice, calculating 〈F (x,px)〉1 is not easier than calculating ∆A, which is related
to the denominator of (2.11). In particular, obtaining accurate estimates of the aver-
age potential energy in the target state by sampling from the reference state is at least
as difficult as estimating the corresponding free energy difference. We will return to
this point is Sect. 2.10.

2.3 Interpretation of the Free Energy Perturbation Equation

The formulas for free energy differences, (2.8) and (2.9), are formally exact for any
perturbation. This does not mean, however, that they can always be successfully
applied. To appreciate the practical limits of the perturbation formalism, we return to
the expressions (2.6) and (2.8). Since ∆A is calculated as the average over a quantity
that depends only on ∆U , this average can be taken over the probability distribution
P0(∆U) instead of P0(x,px) [6]. Then, ∆A in (2.6) can be expressed as a one-
dimensional integral over energy difference

∆A = − 1
β

ln
∫

exp (−β∆U) P0(∆U) d∆U (2.12)

If U0 and U1 were the functions of a sufficient number of identically distributed
random variables, then ∆U would be Gaussian distributed, which is a consequence
of the central limit theorem. In practice, the probability distribution P0(∆U) deviates
somewhat from the ideal Gaussian case, but still has a ‘Gaussian-like’ shape. The
integrand in (2.12), which is obtained by multiplying this probability distribution by
the Boltzmann factor exp (−β∆U), is shifted to the left, as shown in Fig. 2.1. This
indicates that the value of the integral in (2.12) depends on the low-energy tail of the
distribution – see Fig. 2.1.

Even though P0(∆U) is only rarely an exact Gaussian, it is instructive to consider
this case in more detail. If we substitute

P0(∆U) =
1√
2πσ

exp

[
− (∆U − 〈∆U〉0)

2

2σ2

]
(2.13)

where
σ2 =

〈
∆U2

〉
0
− 〈∆U〉0

2 (2.14)
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Fig. 2.1. P0(∆U), the Boltzmann factor exp (−β∆U) and their product, which is the inte-
grand in (2.12). The low-∆U tail of the integrand, marked with stripes is poorly sampled
with P0(∆U) and, therefore, is known with low statistical accuracy. However, it provides an
important contribution to the integral

to (2.12), we obtain

exp(−β∆A) =
C√
2πσ

∫
exp
[
−
(
∆U − 〈∆U〉0 − βσ2

)2
/2σ2

]
d∆U (2.15)

Here, C is independent of ∆U

C = exp
[
−β

(
〈∆U〉0 −

1
2
βσ2

)]
(2.16)

Comparing (2.13) and (2.15), we note that exp (−β∆U) P0(∆U) is a Gaussian, as
is P0(∆U), but is not normalized and shifted toward low ∆U by βσ2. This means
that reasonably accurate evaluation of ∆A it via direct numerical integration is pos-
sible only if the probability distribution function in the low-∆U region is sufficiently
well known up to two standard deviations from the peak of the integrand or βσ2

+ 2 standard deviations from the peak of P0(∆U), located at 〈∆U〉0. This state-
ment is clearly only qualitative — the reader is referred to Chap. 6 for detailed error
analysis in FEP methods. This simple example, nevertheless, clearly illustrates the
limitations in the direct application of (2.12). If σ is small, e.g., equal to kBT , 95%
of the sampled values of ∆U are within 2σ of the peak of exp (−β∆U) P0(∆U) at
room temperature. However, if σ is large, for example equal to 4kBT , this percent-
age drops to 5%. Moreover, most of these samples correspond to ∆U larger than
〈∆U〉0 − βσ2 (the peak of the integrand). For this value of σ, ∆U smaller than the
peak of the integrand will be sampled, on average, only 63 out of 106 times. Not
surprisingly, estimates of ∆A will be highly inaccurate in this case, as illustrated in
Fig. 2.1. Several techniques for dealing with this problem will be discussed later in
this chapter and in Chap. 6.
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If P0(∆U) is Gaussian, there is, of course, no reason to carry out a numer-
ical integration, since the integral in (2.15) can be readily evaluated analytically.
This yields

∆A = 〈∆U〉0 −
1
2
βσ2 (2.17)

As anticipated, the free energy difference in the Gaussian case is expressed in terms
of the expectation value and the variance of the probability distribution. Both these
quantities are relatively easy to estimate reliably from computer simulation. Formula
(2.17) also has a broader significance that will become clear in Sect. 2.4. At this
point, two observations ought to be made. The first term, which is simply equal to the
average energy difference measured in the reference state, can be either positive or
negative, whereas the second term, which depends on fluctuations of ∆U , is always
negative. In addition, a small value of ∆A does not imply that this quantity is easy
to estimate in computer simulations. In fact, if 〈∆U〉0 and −βσ2 / 2 were equal but
large, an accurate estimate of ∆A would evidently be hard to achieve.

One consequence of the positivity of σ is that ∆A ≤ 〈∆U〉0. If we repeat
the same reasoning for the backwards transformation, in (2.9), we obtain ∆A ≥
〈∆U〉1. These inequalities, known as the Gibbs–Bogoliubov bounds on free energy,
hold not only for Gaussian distributions, but for any arbitrary probability distrib-
ution function. To derive these bounds, we consider two spatial probability dis-
tribution functions, F and G, on a space defined by N particles. First, we show
that ∫

F ln F dx −
∫

F ln G dx ≥ 0 (2.18)

To do so, we rewrite this expression using the fact that both F and G are normalized
to 1, and, hence ∫

Fdx −
∫

G dx = 0 (2.19)

This expression can be added to or subtracted from any other expression without
affecting its value. It follows that:

∫
F ln Fdx −

∫
F ln G dx =

∫ (
F ln

F

G
− F + G

)
dx

=
∫

G

(
F

G
ln

F

G
− F

G
+ 1
)

dx (2.20)

The quantity in the parenthesis must be nonnegative because x ln x − x + 1 is
non-negative for any real, non-negative x. Since G is also non-negative, (2.18)
is satisfied.

If we identify in (2.18) P0(x) and P1(x) as F and G, respectively, then, after
some algebra, in which we use the expressions (2.4) and (2.5), we obtain

〈∆U〉0 − ∆A ≥ 0 (2.21)
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or, after appropriate rearrangement,

∆A ≤ 〈∆U〉0 (2.22)

If we reverse the assignment of F and G, we get

∆A ≥ 〈∆U〉1 (2.23)

The Gibbs–Bogoliubov inequalities set bounds on ∆A of 〈∆U〉0 and 〈∆U〉1, which
are easier a priori to estimate. These bounds are of considerable conceptual interest,
but are rarely sufficiently tight to be helpful in practice. Equation (2.17) helps to
explain why this is so. For distributions that are nearly Gaussian, the bounds are
tight only if σ is small enough.

2.4 Cumulant Expansion of the Free Energy

In this section, we take an approach that is characteristic of conventional perturbation
theories, which involves an expansion of a desired quantity in a series with respect
to a small parameter. To see how this works, we start with (2.8). The problem of
expressing ln〈exp (−tX)〉 as a power series is well known in probability theory and
statistics. Here, we will not provide the detailed derivation of this expression, which
relies on the expansions of the exponential and logarithmic functions in Taylor series.
Instead, the reader is referred to the seminal paper of Zwanzig [3], or one of many
books on probability theory – see for instance [7]. The basic idea of the derivation
consists of inserting

〈
etX
〉

= exp

( ∞∑
n=1

κntn

n!

)
(2.24)

into (2.8), which leads, to the cumulant expansion

∆A = − 1
β

ln 〈exp(−β∆U)〉0 =
∞∑

n=1

(−1)n−1 κn
βn

n!
(2.25)

in which κn is the nth cumulant of the probability distribution P0(∆U). Consecutive
cumulants can be obtained from lower-order cumulants and raw moments, µn, of
P0(∆U), which are defined as 〈∆Un〉0, using the recursion formula

κn = µn −
n−1∑
m=1

(
n − 1
m − 1

)
κm µn−m (2.26)

Cumulants have several interesting properties. All κn for n > 1 are shift-independent,
i.e., they do not depend on the value of 〈∆U〉0. Homogeneity, expressed by the
relationship

κn(cX) = cnκn(X) (2.27)
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in which c is a constant, indicates how to transform cumulants with a change of
energy scale. Additivity for two independent variables ∆Ui and ∆Uj

κn(X + Y ) = κn(X) + κn(Y ) (2.28)

provides the prescription for constructing the total cumulant expansion from the
results obtained using the stratification method described in Sect. 2.5.

The first four terms called, respectively, the average (or expectation value), vari-
ance, skewness, and kurtosis, are equal to

κ1 = 〈∆U〉0 (2.29)

κ2 =
〈
∆U2

〉
0
− 〈∆U〉20

κ3 =
〈
∆U3

〉
0
− 3
〈
∆U2

〉
0
〈∆U〉0 + 2 〈∆U〉30

κ4 =
〈
∆U4

〉
0
− 4
〈
∆U3

〉
0
〈∆U〉0 − 3

〈
∆U2

〉2
0

+ 12
〈
∆U2

〉
0
〈∆U〉21 − 6 〈∆U〉40

As may be seen, the formulas for higher-order cumulants become more com-
plicated. More importantly, they are increasingly difficult to estimate accurately
from simulations.

If the expansion is terminated after the second order, the free energy takes the
form

∆A = 〈∆U〉0 −
β

2

(〈
∆U2

〉
0
− 〈∆U〉20

)
, (2.30)

which is identical to (2.17). This means that the second-order perturbation theory
is accurate for Gaussian probability distribution functions. In fact, these are the only
probability distributions that have this property. In other words, truncating the expan-
sion for ∆A at the second order is equivalent to replacing P0(∆U) by a Gaussian
distribution with the same variance. This is a fundamental result because it forms
the basis for many approximate methods for estimating free energies. The Born and
Onsager formulas for the free energy of an ion or a dipolar particle in a homogeneous
liquid, respectively, are well-known examples of applying second-order perturbation
theory. We will discuss this point in the following sections.

No probability density function exists that can be expanded into a finite number
of cumulants larger than two. In other words, the cumulant expansion either has less
than three terms, or it must be infinite, or it does not exist – i.e., it diverges. One limit
at which the expansion is usually well behaved – i.e., converges quickly – is the high
temperature. It is then clear from (2.25) that β becomes a true ‘small parameter,’ as
required in conventional perturbation theories. Concerns about convergence imply
that, in general, the cumulant expansion should be used beyond the second-order
with great care. Including higher terms in (2.25) may not be more accurate than
the second-order or direct free energy calculations. Doing so might, nevertheless, be
advantageous because it yields a P0(∆U) that is smoother in the tails than the one
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obtained directly from the data. Other, and probably better, methods for modeling
P0(∆U) by smooth functions will be discussed in Sect. 2.9.3.

2.5 Two Simple Applications of Perturbation Theory

In this section, we discuss applications of the FEP formalism to two systems and
examine the validity of the second-order perturbation approximation in these cases.
Although both systems are very simple, they are prototypes for many other sys-
tems encountered in chemical and biological applications. Furthermore, the results
obtained in these examples provide a connection between molecular-level simula-
tions and approximate theories, especially those based on a dielectric continuum
representation of the solvent.

2.5.1 Charging a Spherical Particle

In the first example, we consider the transformation in which an uncharged Lennard-
Jones particle immersed in a large container of water acquires a charge q. The free
energy change associated with charging is given by (2.8), in which the subscript 0
refers to the reference state of the solvated Lennard-Jones sphere and ∆U is the
electrostatic energy of interaction between the charge q and all water molecules.

∆U = qV (2.31)

Here, V is the electrostatic potential created by the solvent that acts on the charge in
the center of the cavity. Recalling (2.30), the second-order perturbation theory yields

∆A = q〈V 〉0 −
β

2
q2[〈(V − 〈V 〉0)2〉0]. (2.32)

If water is considered a homogeneous dipolar liquid, 〈V 〉0 = 0 and the expression
for the free energy change further simplifies to

∆A = −β

2
q2
〈
V 2
〉
0

(2.33)

This result implies that ∆A should be a quadratic function of the ionic charge. This
is exactly what is predicted by the Born model, in which the ion is a spherical particle
of radius a and the solvent is represented as a dielectric continuum characterized by
a dielectric constant ε [1]

∆A = −ε − 1
ε

q2

2a
. (2.34)

It is instructive to compare these predictions with the results of computer simula-
tions. This comparison, however, requires care. In practice, the computed values of
∆A exhibit considerable system-size dependence, i.e., they vary with the size of the
simulation box. This is because charge–dipole interactions between the solute and
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solvent molecules decay slowly as 1/R2 with the distance R. For typical simula-
tion systems, they are not negligible even at the largest solute–solvent separations.
System-size effects may, however, be greatly reduced by properly correcting for the
self-interaction term, which is due to interactions between the charge and its images
and the neutralizing background [8]. This is true for both Ewald lattice summation
and generalized reaction field (GRF) treatments of finite-size effects [9]. In general,
free energy calculations, in which the system is transformed such that its electrical
charge changes, should include system-size corrections.

Monte Carlo simulations, in which a methane-like particle was progressively
charged to q = 1 or q = −1 in intervals of 0.25 e led to the conclusion that the
quadratic dependence of ∆A on q, predicted by the second-order perturbation the-
ory, is essentially correct [8]. In agreement with experimental data [10] negative ions
are, however, better hydrated than positive ions. This is reflected by the different
slopes of the straight line in Fig. 2.2, and can be ascribed to the different arrange-
ments of water molecules in the vicinity of the ion. The positively charged hydrogen
atoms of water, which possess small van der Waals radii, can approach negative ions
closer than the large, negative oxygen atoms can approach positive ions. This asym-
metry leads to a net positive potential acting on the uncharged particle, and for this
reason the lines in Fig. 2.2 do not intersect at q = 0.
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Fig. 2.2. Average electrostatic potential mc at the position of the methane-like Lennard-Jones
particle Me as a function of its charge q. mc contains corrections for the finite system size.
Results are shown from Monte Carlo simulations using Ewald summation with N = 256 (plus)
and N = 128 (cross) as well as GRF calculations with N = 256 water molecules (square). Sta-
tistical errors are smaller than the size of the symbols. Also included are linear fits to the data
with q < 0 and q > 0 (solid lines). The fit to the tanh-weighted model of two Gaussian
distributions is shown with a dashed line. Reproduced with permission of the American
Chemical Society
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We note that accurate values of ∆A for larger values of q – e.g., q = 1 – cannot
be obtained from single-step FEP calculations. Instead, a series of calculations, in
which q is progressively changed from zero to its final value, need to be performed.
This approach is discussed in Sect. 2.6.

2.5.2 Dipolar Solutes at an Aqueous Interface

In this second example, we examine simple systems near the water–hexane interface.
Specifically, we calculate the difference in the free energy of hydrating a hard-sphere
solute of radius a, considered as the reference state, and a model solute consisting
of a point dipole p located at the center of a cavity [11]. We derive the formula for
∆A assuming that the solute is located at a fixed distance z from the interface, and
subsequently we examine the dependence of the free energy on z. The geometry of
the system is shown in Fig. 2.3.

For the model solutes, the difference in the potential energy is equal to the elec-
trostatic energy of solvating a dipole

∆U = −p · E = −pE cos θ (2.35)

and ∆A, statistically averaged over dipolar orientations, is expressed as

∆A = − 1
β

ln 〈exp(−β∆U)〉0 (2.36)

= − 1
β

ln

⎡
⎢⎢⎣

∫
dx exp(−βU0)

∫ 2π

0

dφ

∫ π

0

exp(βpE cos θ) sin θ dθ

4π

∫
dx exp(−βU0)

⎤
⎥⎥⎦

where p and E are, respectively, the vectors of the dipole moment of the solute
and the electric field created by the solvent and acting on the dipole, x abbreviates
the coordinates of all particles in the system, and φ, θ are angles in the cylindrical
coordinate system that describe the orientation of the dipole.

After integrating over φ and θ, we obtain

∆A = − 1
β

ln

⎡
⎢⎢⎣

∫
dx exp(−βU0)4π sinh(βpE)/βpE

4π

∫
dx exp(−βU0)

⎤
⎥⎥⎦

= − 1
β

ln
〈

sinh(βpE)
βpE

〉
0

(2.37)

Next, we consider the second-order perturbation approximation. Since 〈∆U〉0
averaged over dipolar orientations vanishes



2 Calculating Free Energy Differences Using Perturbation Theory 45

〈∆U〉0 =
1
4π

〈∫ 2π

0

dφ

∫ π

0

pE cos θ sin θ dθ

〉
0

= 0 (2.38)

the expression for the free energy difference simplifies to

∆A = −β

2
〈
∆U2

〉
0

= −β

6
p2
〈
E2
〉
0

(2.39)

Equation (2.39) leads to the prediction that ∆A should be proportional to p2. For
a bulk solvent, this can be considered as a molecular equivalent of the well-known
Onsager formula derived for the continuum dielectric model [12].

∆A = − p2(ε − 1)
a3(2ε + 1)

(2.40)

Indeed, both expressions predict quadratic dependence of ∆A on the dipole moment
of the solute. As in the previous example, it is of interest to test whether this
prediction is correct. Such a test was carried out by calculating ∆A for a series
of model solutes immersed in water at different distances from the water–hexane
interface [11]. The solutes were constructed by scaling the atomic charges and,
consequently, the dipole moment of a nearly spherical molecule, CH3F, by a para-
meter λ, which varied between 0 and 1.2. The results at two positions – deep in
the water phase and at the interface – are shown in Fig. 2.3. As can be seen from the
linear dependence of ∆A on p2, the accuracy of the second-order perturbation theory
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Fig. 2.3. Schematic representation of the water–hexane system (a). The z-coordinate is per-
pendicular to the water–hexane interface. Each medium is in equilibrium with its vapor phase.
Periodic boundary conditions are applied. The electrostatic part of the free energy of dissolv-
ing CH3F with scaled atomic charges as a function of the square of the molecular dipole
moment, p2, in water (solid line) and at the water–hexane interface (dashed line) at 310 K (b).
Reproduced with permission of the American Chemical Society
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in bulk water is excellent. In the anisotropic, interfacial environment this approxima-
tion is less satisfactory, and some deviations from linearity are observed. It should
be pointed out, however, that long-range electrostatic effects were not taken into
account in the simulations. Were they included, the agreement with the second-order
theory might improve.

In both examples discussed in this section, the second-order approximation to
∆A turned out to be satisfactory. We, however, do not want to leave the reader with
the impression that this is always true. If this were the case, it would imply that prob-
ability distributions of interest were always Gaussian. Statistical mechanics would
then be a much simpler field. Since this is obviously not so, we have to develop
techniques to deal with large and not necessarily Gaussian-distributed perturbations.
This issue is addressed in the remainder of this chapter.

2.6 How to Deal with Large Perturbations

As has been already stressed, using (2.8) directly can be successful only if P0(∆U)
is a narrow function of ∆U . This does not imply that the free energy difference bet-
ween the reference and the target states must be small. For instance, although the
hydration free energy of benzene – i.e., the free energy for transferring benzene from
the gas phase to the aqueous phase – is only −0.4 kcal mol−1 at 298 K, this quantity
cannot be successfully calculated by direct application of (2.8) in a simulation of
a reasonable length. This is because low-energy configurations in the target ensem-
ble, which do not suffer from the overlap between the solute and solvent molecules,
are not sampled in simulations of the reference state. This point is discussed amply
in Chap. 6.

This difficulty in applying FEP theory can be circumvented through a simple
stratification strategy, also often called staging. It relies on constructing several
intermediate states between the reference and the target state such that P (∆Ui,i+1)
for two consecutive states i and i + 1 sampled at state i is sufficiently narrow for the
direct evaluation of the corresponding free energy difference, ∆Ai,i+1. Then, (2.8)
can be used serially to yield ∆A. If we construct N−2 intermediate states then

∆A =
N−1∑
i=1

∆Ai,i+1 = − 1
β

N−1∑
i=1

ln 〈exp (−β∆Ui,i+1)〉i . (2.41)

Intermediate states do not have to be physically meaningful, i.e., they do not have
to correspond to systems that actually exist. As an example, assume that we want
to calculate the difference in hydration free energies of a Lennard-Jones particle
and an ion with a positive charge q of 1e. For simplicity, we further assume that
the Lennard-Jones parameters remain unchanged upon charging the particle. Since a
direct calculation of the free energy difference is not likely to succeed in this case,
we construct intermediate states in which the particle carries fractional charges qi

such that qi < qj for i < j and 0 < qj < q.
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More generally, we can consider the Hamiltonian as a function of some
parameter, λ. Without loss of generality, we can choose 0 ≤ λ ≤ 1, such that λ = 0
and λ = 1 for the reference and target states, respectively. A simple choice for the
dependence of the Hamiltonian on λ is a linear function

H (λi) = λiH1 + (1 − λi)H0 = H0 + λi∆H , (2.42)

which justifies calling λ a coupling parameter. Here H0 and H1 denote, as before,
the Hamiltonian of the reference and the target systems, respectively, but to simplify
the notation we do not explicitly specify their dependence on x and px. Similarly,
∆H is the perturbation term in the target Hamiltonian, equal to H1 − H0. If we
create N−2 intermediate states linking the reference and the target states such that
λ1 = 0 and λN = 1 then the change in the Hamiltonian, ∆Hi, between two consec-
utive states is given by

∆Hi = H (λi+1) − H (λi) = (λi+1 − λi)∆H = ∆λi∆H (2.43)

where ∆λi = λi+1−λi, and the formula for the total free energy difference becomes

∆A = − 1
β

N−1∑
i=1

ln 〈exp(−β∆λi∆H )〉λi
. (2.44)

If we recall the discussion about integrating out the kinetic term in the Hamiltonian
in Sects. 1.2.1 and 2.2, then we can rewrite ∆A as

∆A = − 1
β

N−1∑
i=1

ln 〈exp(−β∆λi∆U)〉λi
. (2.45)

In the example of charging a neutral particle, λi = qi/q is the linear parameter.
Choosing intermediate states separated by a constant ∆λ is, however, not a good
choice for this problem because, as has been seen in Sect. 2.5, ∆A is a quadratic
function of q. A better choice would be to decrease ∆λ quadratically. Alternatively,
one could define H (λ) as a quadratic function of λ. Then, using a constant ∆λ
would be appropriate.

So far, the issue of choosing N and ∆λi has remained open. Clearly, if each
state is equally sampled, increasing N should improve accuracy at the expense of
efficiency. There is, however, no general and practical method for striking the per-
fect balance between these two conflicting criteria, because that would require prior
knowledge of the dependence of ∆A on λ. One method for optimizing both N and
∆λi is to start with short runs with a large N , and then select the number of inter-
mediate states and the corresponding values of the coupling parameter on the basis
of these runs, such that the estimated variances in P (∆Ui,i+1) are sufficiently small
and approximately equal [13]. In practice, however, it might be simpler to make
reasonable, if not optimal choices, remembering that it is always possible to add
intermediate states if required. A deeper insight into this issue will come from the
error analysis discussed in Chap. 6.
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Stratification is not specific to FEP – it is a universal strategy that improves the
efficiency of many other methods for calculating free energies. Not surprisingly, we
will return to this strategy several times, in particular in Chaps. 3 and 6.

2.7 A Pictorial Representation of Free Energy Perturbation

In FEP calculations, configurations are sampled according to the probability, P0(U),
of finding the reference system in a state corresponding to the potential energy
U . Does this guarantee that the key quantity for calculating ∆A, i.e., P0(∆U),
is estimated accurately? Unfortunately, this does not have to be the case. As has
been discussed previously, FEP will only provide accurate estimates of free energy
differences under the sine qua non condition that the target system is sufficiently
similar to the reference system. This somewhat vague statement can be under-
stood better by introducing the concept of important regions in phase space. These
regions are volumes that encompass configurations of the system with highly proba-
ble energy values. More specifically, a configuration in the important region should
have a potential energy the probability of which is higher than a predefined value.
Configurations that belong to the important regions are expected to make significant
contributions to the free energy and, therefore, should be adequately sampled.

Using the concept of important regions, it is possible to develop a pictorial repre-
sentation of the relationship between the reference and the target systems, which has
proven to be a useful tool to detect inaccuracies caused by incomplete sampling [14].
This is depicted in Fig. 2.4. If the important region of the target system fully overlaps
with or, more precisely, is a subset of the important region of the reference system,
as shown in Fig. 2.4b, P0(∆U) estimated from FEP calculations should be reliable –
because good sampling of the important region in the reference system will also yield
good sampling of the important region in the target system. Conversely, if the impor-
tant regions of these two systems do not overlap (see Fig. 2.4a), the important region
of the target state is not expected to be sufficiently sampled during a simulation of
the reference system. Then, it is unlikely that satisfactory estimates of ∆A will be
obtained.

In many instances, the important region of the reference system overlaps with
only a part of the important region of the target system. This is shown in Fig. 2.4c.
The poorly sampled remainder of the latter important region contributes to inaccura-
cies in the estimated free energy differences, which, in some circumstances, could be
substantial. Note a special case of the situation discussed here, in which the important
region of the reference system is a subset of the important region of the target sys-
tem. Then only a part of the latter region will be adequately sampled. This deficiency,
however, can be readily remedied by switching the reference and the target systems.
If sampling is conducted from the target system, then the relationship between the
important regions corresponds to that shown in Fig. 2.4b.

If the two important regions do not overlap, or overlap only partially, it is usu-
ally necessary to use the enhanced sampling techniques introduced in Sect. 1.4. This
is schematically illustrated in Fig. 2.4d. One of these techniques, stratification, has
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Fig. 2.4. Schematic representation of the different relationships between the important regions
in phase space for the reference (0) and the target (1) systems, and their possible interpretation
in terms of probability distributions – it should be clarified that because ∆U can be distributed
in a number of different ways, there is no obvious one-to-one relation between P0(∆U), or
P1(∆U), and the actual level of overlap of the ensembles [14]. (a) The two important regions
do not overlap. (b) The important region of the target system is a subset of the important
region of the reference system. (c) The important region of the reference system overlaps with
only a part of the important region of the target state. Then enhanced sampling techniques of
stratification or importance sampling that require the introduction of an intermediate ensemble
should be employed (d)

been presented in Sect. 2.6, whereas the application of important sampling to FEP
will be discussed briefly in Sect. 2.9.1. This discussion will be expanded consider-
ably in Chap. 6. Anticipating these developments, we just mention that the optimal
enhanced sampling strategy is largely determined by the relationship between the
two important regions in phase space [14].

This pictorial representation is useful for understanding under what circum-
stances satisfactory estimates of P0(∆U) can be expected, and how to deal with
situations when this is not the case. It should, however, also be appreciated that the
reasoning behind this representation is only qualitative and may occasionally fail.
For example, if the energy landscapes in the important regions of the reference and
the target systems were markedly different, obtaining an accurate estimate of ∆A
would be a challenge even if these regions overlapped perfectly. A similar difficulty
would be encountered if a large fraction of the important region of the target sys-
tem overlapped with a low-probability part of the important region of the reference
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state. Conversely, it would be possible to obtain a reliable estimate of ∆A even if
the two regions overlapped only partially, providing that the nonoverlapping parts
corresponded to relatively low-probability, high-energy configurations.

2.8 ‘Alchemical Transformations’

In the earlier sections, we have developed the theoretical framework for the FEP
approach. In this section, we outline some specific methodologies built upon this
framework to calculate the free energy differences associated with the transforma-
tion of a chemical species into a different one. This computational process is often
called alchemical transformation because, in a sense, this is a realization of the
inaccessible dream of the proverbial alchemist – to transmute matter. Yet, unlike
lead, which was supposed to turn into gold in the alchemist’s furnace, the potential
energy function is sufficiently malleable in the hands of the computational chemist
that it can be gently altered to transform one chemical system into another, slightly
modified one.

Over the years, the FEP methodology has been employed widely to some of
the most computationally challenging problems in theoretical chemistry and biol-
ogy. Applications of this approach include, among others, protein–ligand binding,
host–guest chemistry, and solvation properties [5, 15–17]. The reader is referred to
Chap. 13 for a brief review of these applications. Here, we focus much of our discus-
sion on the free energy of binding between a protein and its potential ligands, which
is a problem of great interest to computer-aided drug design and protein engineer-
ing. This focus should help to make the following material less abstract, but without
limiting the generality of the methodologies discussed. It will be quite clear that they
can be applied to other, related problems without change. Before we proceed fur-
ther, however, we introduce the concept of an order parameter, which is essential
not only for further developments is this section but for free energy calculations in
general.

2.8.1 Order Parameters

The coupling parameter λ, discussed in Sect. 2.6, is an example of an order para-
meter. In different fields, this term has very specific and often somewhat different
meanings, but here, we use it in the most generic sense. An order parameter indicates
the degree of order in the system, or, even more generally, it is a variable chosen
to describe changes in a system. In the context of free energy calculations, order
parameters are collective variables that are used to describe transformations from the
initial, reference system to the final, target one. An order parameter may, although
does not necessarily have to, correspond to the path along which the transformation
takes place in nature. If this were the case, it would be called the reaction coordinate
or the reaction path.

Several examples of order parameters are shown in Fig. 2.5. Some of them, e.g.,
the torsional angles a, are dynamical variables, which means that they can be fully
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Fig. 2.5. Possible applications of a coupling parameter, λ, in free energy calculations. (a)
and (b) correspond, respectively, to simple and coupled modifications of torsional degrees of
freedom, involved in the study of conformational equilibria; (c) represents an intramolecu-
lar, end-to-end reaction coordinate that may be used, for instance, to model the folding of
a short peptide; (d) symbolizes the alteration of selected nonbonded interactions to estimate
relative free energies, in the spirit of site-directed mutagenesis experiments; (e) is a simple
distance separating chemical species that can be employed in potential of mean force (PMF)
calculations; and (f) corresponds to the annihilation of selected nonbonded interactions for the
estimation of e.g., free energies of solvation. In the examples (a), (b), and (e), the coupling
parameter, λ, is not independent of the Cartesian coordinates, {x}. Appropriate metric tensor
correction should be considered through a relevant transformation into generalized coordinates

represented as functions of Cartesian coordinates. Other order parameters, for in-
stance, the charging parameter – as part of point mutation d – introduced at the
end of Sect. 2.6, are not. This distinction is useful, because these two types of order
parameters may require different treatments, as will become clear in Chap. 4. For-
tunately, once these treatments are completed, it turns out that almost all theoretical
developments in this chapter apply to both cases.

The concept of order parameter is central to free energy calculations. Yet, even
a casual reader will easily observe that in most cases there is more than one way
to define it. This immediately raises the question: how to make the best, or at least
an appropriate, choice of an order parameter? Unfortunately, this remains a major,
essentially still unresolved, problem in the field. The choice of order parameters may
have a significant effect on the efficiency and accuracy of free energy calculations.
Some order parameters may map a smooth path between the reference and target
states whereas others may lead through a rough energy landscape. Then, estimating
∆A in the former case should be easier and should require fewer intermediate states
than in the latter. This does not mean, however, that we are totally helpless. In many
cases, there is a ‘natural’ choice of the order parameter, dictated by the physical
problem at hand. Furthermore, it is possible to formulate several criteria that should
guide our choices. A full discussion of this issue would, however, be premature at
this point. In several subsequent chapters, we will consider order parameters from
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different perspectives, and only in the last chapter will we summarize our under-
standing of the problem.

2.8.2 Creation and Annihilation

Central to the application of FEP to alchemical transformations is the concept of a
thermodynamic cycle. This is a series of reversible transformations of the system
constructed such that, at the end, the initial state is restored and, therefore, the total
change of free energy in the cycle is zero. The cycle may be hypothetical in the sense
that individual transformations can be carried out only on a computer. Usually, we
are interested in only one or two steps of the cycle. In practice, however, it might
be simpler to calculate free energy changes associated with all other steps of the
cycle and obtain the free energy of interest using this route. Considering that all
transformations are reversible, the cycle can be run in both directions and the free
energy of interest can be calculated from either forward or backward transformations
(with proper attention to the signs of the associated free energies). The computational
efficiencies of carrying out these transformations may, however, differ.

To illustrate how this approach works, we return to the first example given at the
beginning of Sect. 2.2, in which we considered the transfer of a molecule between
the aqueous solution and the gas phase. In the FEP framework this process can be
described by turning on the perturbation term in the Hamiltonian, which, in this
case, is responsible for solute–solvent interactions. This is represented by the upper
horizontal arrow in the thermodynamic cycle shown in Fig. 2.6. The corresponding
free energy change, viz. ∆Ahydration, can be obtained using the dual-topology app-
roach, described later in this section. As we have already pointed out in Sect. 2.2,
∆Ahydration calculated this way is the excess free energy over that in the gas phase.
This quantity is of interest because it is directly related to the solubility, s, of the
solute, which can be determined experimentally or calculated as

s = C exp (−β∆Ahydration) (2.46)

where C is a constant that determines the units of s.
When solute–solvent interactions are turned on, the solute–solvent potential

energy no longer vanishes. This is not the only change in the system. Usually,
the solvent undergoes substantial reorganization, and conformational equilibria in
flexible solutes may also be affected. For example, the trans–gauche equilibrium
in 1,2-dichloroethane shifts towards the gauche state upon hydration. All these
reorganization effects are correctly taken into account in the FEP formalism.

∆Ahydration can be also obtained from the reverse process, in which solute–
solvent interactions are turned off. This corresponds to moving the solute from the
aqueous solution to the gas phase. Then the calculated quantity is the negative of
∆Ahydration. If the same order parameter, λ, is used for the forward and
the reverse transformations, the changes in the free energy with λ should be re-
versible, and, consequently, the sum of the calculated free energies differences should
be zero. This is shown in Fig. 2.7. Discrepancies between the forward and the reverse



2 Calculating Free Energy Differences Using Perturbation Theory 53

C
H

∆Ahydration

(b)

H

O

H
H

1∆Aannihilation
0

[nothing]aq.[nothing]vac.
∆A = 0

∆Aannihilation

[solute]aq.[solute]vac.

(a)

O

H

H

C
H

H

water

air

water

Fig. 2.6. The thermodynamic cycle for estimating the hydration free energy, ∆Ahydration, of
a small solute (the right side of the figure). One route is the direct evaluation of ∆Ahydration

along the upper vertical arrow. The solute, originally placed in vacuum (a) is moved to the
bulk water (b). Another route consists of annihilating, or creating, the solute both in vacuo
and in the aqueous medium and corresponds to the vertical lines in the thermodynamic
cycle. As suggested by the cycle, these two routes are formally equivalent, as: ∆Ahydration =
∆A0

annihilation − ∆A1
annihilation
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Fig. 2.7. Hydration free energy of argon. Using NAMD [18], two molecular dynamics sim-
ulation were carried out in the isothermal–isobaric ensemble, at 300 K and 1 atm, to annihi-
late (solid curve, λ: 0 → 1) and create (dashed curve, λ: 1 → 0) an argon atom in liquid
water. Twenty one windows of uneven width, consisting of 40 ps of equilibration and 400 ps
of data collection, were utilized for each transformation. This corresponds to a total of 9.24 ns
of sampling for the creation and annihilation of argon. The equations of motion were inte-
grated with a time step of 2 fs. The TIP3P model was chosen to describe water molecules [19].
Long-range electrostatic interactions were taken into account using the particle-mesh Ewald
(PME) method. Van der Waals interactions were truncated smoothly beyond 10 Å. The calcu-
lated free energies in the forward (creation) and the backward (annihilation) transformations
are, respectively, +2.11 kcal mol−1 and to −2.08 kcal mol−1, which yields a negligible hys-
teresis. For comparison, the experimentally determined free energy of hydration at 298 K is
2.002 kcal mol−1
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transformations yield the hysteresis of the reaction, which constitutes a measure of
the error in the free energy calculation. If the hysteresis is markedly larger than the
estimated statistical errors, it is usually indicative of ergodicity issues during the
transformations. Yet, even if hysteresis is negligible and statistical errors are small,
this does not imply that the calculated free energy difference is accurate, because it
may be burdened with systematic errors, due, for instance, to unsuitable potential
energy functions. These points are fully developed in Chap. 6.

An alternative approach to calculating the free energy of solvation is to carry
out simulations corresponding to the two vertical arrows in the thermodynamic
cycle in Fig. 2.6. The transformation to ‘nothing’ should not be taken literally –
this means that the perturbed Hamiltonian contains not only terms responsible for
solute–solvent interactions – viz. for the right vertical arrow – but also all the terms
that involve intramolecular interactions in the solute. If they vanish, the solvent
is reduced to a collection of noninteracting atoms. In this sense, it ‘disappears’
or is ‘annihilated’ from both the solution and the gas phase. For this reason, the
corresponding computational scheme is called double annihilation. Calculations of
the corresponding free energy differences, ∆A0

annihilation and ∆A1
annihilation, are

amenable to the single-topology approach, which will be discussed shortly. Since
the total free energy change in the cycle must be zero it follows that ∆Ahydration =
∆A0

annihilation − ∆A1
annihilation.

As before, we can perform reverse simulations. Instead of annihilating the solute,
we can ‘create’ it by turning on the perturbation part of the Hamiltonian. The
resulting free energy differences are connected through the relation: ∆A1

creation −
∆A0

creation = ∆A0
annihilation − ∆A1

annihilation. Comparison of this creation scheme
with the transformation described by the horizonal arrow reveals two important dif-
ferences. First, the vertical transformations require two sets of simulations instead
of one, although one of them involves only solute in the gas phase and, is, there-
fore, much less computationally intensive. Second, the two methods differ in their
description of the solute in the reference state. In both cases the solute does not
interact with the solvent. For the vertical transformations, however, all interactions
between atoms forming the solute vanish, whereas in the horizontal transformation,
the molecule remains intact.

In closing, we note that FEP may not be the most efficient approach for calcu-
lating ∆A in the examples given in this section. The free energy of solvation can
be obtained efficiently by considering a system in which a water lamella coexists
with its vapor phase, and then using methods described in Chaps. 3 and 4 to compute
the free energy change associated with translating the solvent along the normal to
the interface formed by the liquid and the vapor phases [20, 21]. This path is shown
in Fig. 2.6a. The free energy of hydrating argon can be determined accurately using
the particle insertion method, described in Chap. 9 . For more-complicated problems
that require the determination of binding free energies, FEP, however, still remains
the method of choice.
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2.8.3 Free Energies of Binding

The free energy of binding of two molecules, ∆Abinding, defined as the free energy
difference between these molecules in the bound and the free, unbound states, can
be determined experimentally through the measurement of binding constants using,
for instance, BIAcore [22] or microcalorimetry techniques. If we focus on protein–
ligand binding, the computationally equivalent procedure corresponds to calculating
∆Abinding along the top, horizontal transformation of Fig. 2.8. This, in principle, can
be done via FEP, provided that we use an order parameter that measures the sepa-
ration between the ligand and the binding center of the protein. It should be appre-
ciated, however, that, in general, defining a relevant order parameter that describes
protein–ligand association may be quite difficult, in particular when the ligand is
buried deep in the binding pocket, and access to the latter involves large conforma-
tional changes in the protein. Furthermore, the choice of an order parameter that is
a function of the Cartesian coordinates, x, causes conceptual difficulties, because it
cannot be treated as an independent variable. This problem can be handled through a
transformation to generalized coordinates incorporating the appropriate mass tensor
correction to ∆Abinding. The theoretical formalism for this treatment will be devel-
oped in considerable detail in Chap. 4. Here, we only note that probability distribu-
tion methods or thermodynamic integration, described in Chaps. 3 and 4 are excellent
alternatives to FEP if the direct route for calculating ∆Abinding is used.

As in Sect. 2.8.2, there is an alternative route to calculating ∆Abinding. It req-
uires obtaining ∆A0

annihilation and ∆A1
annihilation along the vertical legs of Fig. 2.8.

It follows that ∆Abinding = ∆A0
annihilation − ∆A1

annihilation. If we opt for this
route, then FEP is an appropriate technique. This requires, however, some care.
The ligand in the binding pocket is annihilated from a strongly constrained position,
whereas the free, unbound ligand can rotate freely during annihilation. This means
that the free energy of the lower horizontal transformation may not be zero unless

protein ... nothing

protein ... ligand

∆A0
annihilation ∆A1

annihilation

∆Arestrain

∆A = 0

∆Abinding

protein + ligand

protein + nothing

Fig. 2.8. The thermodynamic cycle used for the determination of protein–ligand binding free
energy, ∆Abinding. In general, FEP cannot be used for calculating ∆Abinding directly, follow-
ing the upper horizontal transformation. Considering that the lower horizontal transformation
corresponds to a zero free energy change, annihilation of the ligand in the reference, free state
– i.e., the left, vertical transformation, and in the bound state – i.e., the right, vertical transfor-
mation, yields the binding free energy: ∆Abinding = ∆A0

annihilation − ∆A1
annihilation. The

contribution ∆Arestrain that appears in the reverse, lower horizontal transformation charac-
terizes the loss of rotational and translational entropies due to restraining the position of the
ligand
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∆AB
binding

∆AA
binding

∆A0
mutation ∆A1

mutation

protein     ligand A... 

protein     ligand B... 

protein + ligand A

protein + ligand B

Fig. 2.9. The thermodynamic cycle used for the determination of protein–ligand relative bind-
ing free energies. Instead of carrying the horizontal transformations one can mutate the ligand
in the free state – i.e., the left, vertical ‘alchemical transformation’, and in the bound state –
i.e., the right, vertical ‘alchemical transformation.’ This yields the difference in the binding
free energies: ∆AB

binding − ∆AA
binding = ∆A1

mutation − ∆A0
mutation

proper corrections for the loss of translational and rotational entropies are taken into
account [23, 24]. For flexible solutes, corrections associated with the conformational
degrees of freedom might also be required. Similar considerations apply to ligand
creation.

In many instances we are not interested in determining just a single binding free
energy, but rather the binding free energies of several different ligands. This is the
case, for example, if we want to evaluate a host of potential inhibitors of an enzyme
in the context of computer-aided drug design. Such evaluation can be, of course,
handled by repeating the transformations of Fig. 2.8 for each ligand of interest. An
alternative route, likely to be more efficient, is also available. It involves mutating
ligand A into ligand B in both the bound and the free states. The corresponding
thermodynamic cycle is shown in Fig. 2.9.

The basic FEP algorithm for ligand binding can be improved in several ways.
One method is to use a nonphysical ligand that serves as the common reference state
for a variety of ligands of interest [25]. This method, referred to as the one-step
perturbation approach, appears to be quite successful even for complex and fairly
diverse ligands [26].

2.8.4 The Single-Topology Paradigm

In this section, as well as the next, we shall discuss how in silico transformations
can be carried out in practice. The stratification scheme, as described in Sect. 2.6,
is almost always required. Two approaches have been devised for this purpose, in
which the reference, target and all intermediate states are described by either a unique
topology, or two separate topologies.

In the single-topology paradigm, a common topology is sought for the initial state
and the final states of the ‘alchemical transformation’ [4, 27]. In practice, the most
complex topology serves as the common denominator for both states, and the missing
atoms are treated as vanishing particles, the nonbonded parameters of which are pro-
gressively set to zero as λ varies from 0 to 1. For instance, in the mutation of ethane
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into methanol, the former serves as the common topology. As the carbon atom is
transformed into oxygen, two hydrogen atoms of the methyl moiety are turned into
noninteracting, ghost particles by annihilating their point charges and van der Waals
parameters. A single-topology transformation is shown schematically in Fig. 2.10a.
Modifications of the perturbation term in the Hamiltonian are represented as a linear
combination of the relevant atomic and interatomic parameters as a function of λ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qi(λ) = λ q
(1)
i + (1 − λ) q

(0)
i

R∗
ij(λ) = λ R

∗(1)
ij + (1 − λ) R

∗(0)
ij

εij(λ) = λ ε
(1)
ij + (1 − λ) ε

(0)
ij

(2.47)

Here, qi stands for the net atomic charge borne by atom i. R∗
ij and εij are the

van der Waals parameters for the pair of atoms {i, j} and the superscripts (1) and
(0) refer, respectively, to the target and the reference states. Clearly, this is just
one example of how modifications of the Hamiltonian can be handled. To opti-
mize performance of FEP simulations, one might use several order parameters in
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Fig. 2.10. Comparison of the single- (a) and the dual-topology (b) paradigms through the
example of a serine-to-glycine point mutation. In the single-topology approach, all atoms of
the side chain, except the β-carbon atom are annihilated by progressive cancelation of their
charge and van der Waals parameters. The β-carbon atom is altered into an aliphatic hydrogen
atom, bearing the appropriate net atomic charge. In the dual-topology paradigm, the side chain
of serine and glycine always coexist, yet without ‘seeing’ each other through a list of excluded
atoms. Interaction of the side chains with their environment is scaled progressively as λ varies
between 0 and 1



58 C. Chipot and A. Pohorille

lieu of a single λ parameter to transform the different nonbonded contributions
of the potential energy function. It might also be preferable to use a different
transformation of the parameters describing changes in the van der Waals energy.
Additional terms in (2.47) might also be needed, should the potential energy func-
tion contain terms other than point-charge electrostatics and Lennard-Jones
potentials.

It has been shown that, in the case of appearing or disappearing atoms, simulta-
neous modification of the electrostatic and the van der Waals terms in the potential
energy function leads to numerical instabilities in the molecular dynamics trajec-
tories, especially if the system contains vanishing atoms. When the van der Waals
parameters of these atoms become quite small, for λ approaching 0 or 1, they can
come extremely close to other particles in the system. Since the vanishing atoms
still carry residual charges, the resulting nonbonded interactions often increase dra-
matically, which is incompatible with the basic idea of the perturbative approach.
For this reason, a number of authors have opted for decoupling the mutation of the
electrostatic and the van der Waals contributions, taking advantage of the fact that
free energy is a state function, and, therefore, its value does not depend on the path-
way chosen for its evaluation [28, 29]. This implies that the computational effort
for estimating ∆A increases. Usually, this effort is smaller than it appears, because
P (∆U) for individual stages are narrower, and, consequently, easier to evaluate if
electrostatic and van der Waals energies are modified individually rather then con-
comitantly.

An important aspect of the single-topology paradigm that has not been discussed
so far is related to the modification of chemical bonds between the transformed
atoms. The lengths and force constants of these bonds change during the transfor-
mation. In particular, if atoms disappear, their bonds with other atoms progressively
shrink to zero length. In most ‘alchemical transformations’, the corresponding free
energy contributions in the bound and in the free states are expected nearly to can-
cel out, providing that the affected chemical bonds are not strongly deformed by
steric hindrances in the bound geometry. This explains why such bonded contribu-
tions were often neglected in free energy calculations [30, 31]. The same applies
to contributions from bending planar angles. If needed, they can be calculated
explicitly. In the simplest approach they can be approximated as the difference in the
corresponding average energies. Assuming that the second-order perturbation theory
is sufficiently accurate for these contributions, this is equivalent to taking an equal σ
for the bound and the free states. A more accurate approach consists of carrying out
FEP or thermodynamic integration (see Chap. 4) simulations to account for changes
in the bond lengths and the valence angles concurrently with the other modifications
of the Hamiltonian described in (2.47).

2.8.5 The Dual-Topology Paradigm

In sharp contrast with the single-topology paradigm, the topologies of the refer-
ence, 0, and the target, 1, states coexist in the dual-topology scheme throughout the
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‘alchemical transformation’ [32–34]. This is shown in Fig. 2.10b. Using an exclusion
list, atoms that are not common to 0 and 1 never interact during the simulation. Their
intra- and intermolecular interaction with other atoms in the system are scaled by λ,
which varies from 0 to 1. In the initial state, only topology 0 interacts with the rest
of the system, whereas in the final state, only topology 1 does

U(x;λ) = λU1(x) + (1 − λ)U0(x), (2.48)

where U0(x) and U1(x) are the potential energies characteristic of the reference and
the target states. The same scaling of the Hamiltonian in (2.42) has already been
introduced in Sect. 2.6.

This paradigm avoids several complications inherent to the single-topology app-
roach. First, the problem of growing or shrinking chemical bonds is not present here.
Second, decoupling the electrostatic and nonelectrostatic contributions during simu-
lations is no longer needed. Unfortunately, the dual-topology approach also suffers
from problems when λ approaches 0 or 1, which are often referred to as ‘end-point
catastrophes.’ At these end points, interaction of the reference or the target topology
with its environment is extremely weak, yet still nonzero, which in turn allows the
surrounding atoms to clash against the appearing or vanishing chemical moieties.
The resulting numerical instabilities cause large fluctuations in the estimated 〈∆U〉,
which are attenuated only after extensive sampling. Additional difficulties arise if the
mutated groups are flexible and more than one conformation needs to be taken into
account in the reference and/or target state.

A number of strategies have been devised to circumvent such undesirable effects.
The most trivial one consists in splitting the reaction pathway into windows of
uneven widths, δλ, and using a large number of narrow windows when λ approaches
0 or 1. In essence, this is equivalent to adopting a nonlinear dependence of the inter-
action potential energy on the coupling parameter. It may be shown, however, that
clashes between the appearing atoms and the rest of the system occur even for win-
dows as narrow as δλ 
 10−5. This difficulty may be overcome by modifying the
parametrization of the van der Waals term in the potential energy function that gov-
erns the interaction of an appearing, or disappearing, atom, i, with an unaltered one,
j [35]
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ij (rij ;λ) = 4 εij λn
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Here, αvdW is a positive constant, and σij and εij are the usual Lennard-Jones
parameters found in macromolecular force fields. The role played by the term
αvdW (1−λ)2 in the denominator is to eliminate the singularity of the van der Waals
interaction. Introduction of this soft-core potential results in bounded derivatives of
the potential energy function when λ tends towards 0.

2.8.6 Algorithm of an FEP Point-Mutation Calculation

In this section, we present a pseudocode for an FEP ‘alchemical transformation’
based on the dual-topology paradigm. The steps followed in this algorithm, specif-
ically (c)–(f), may be implemented independently of the core of the program that
generates an ensemble of configurations at a given λ state – either Monte Carlo or
molecular dynamics. This is probably the simplest scheme, which may be improved
in several ways, as will be discussed in Sect. 2.9.

(a) Build the topologies representative of state 0 and state 1, and est-
ablish an exclusion list to prevent atoms that are not common to 0
and 1 from interacting.

(b) Generate an ensemble of configurations that are representative of
the reference state, λ.

(c) For each configuration, evaluate the potential energy using the
reference-state Hamiltonian, U(x;λ = 0).

(d) Repeat the same calculations using the Hamiltonian of the target
state.

(e) For each configuration, evaluate the potential energy difference
using (2.48).

(f) Compute the ensemble average 〈exp{−β[U(x;λ + ∆λ) −
U(x;λ)]}〉λ, from which the free energy difference ∆A = A(λ +
δλ) − A(λ) can be derived.

(g) Increment λ and go to stage (b).

2.9 Improving the Efficiency of FEP

From Sect. 2.8.6, it is clear that FEP calculations for many systems of practical
interest are expected to be computationally very demanding. It is, thus, important
to develop numerical techniques that allow us to apply the theory outlined so far in
an efficient manner. If properly used, these techniques make calculations better in
every sense – i.e., they improve both their accuracy and efficiency. It is, therefore,
highly recommended that they be employed in practical applications of FEP. Chap-
ter 6 is devoted entirely to this topic. Here, we only give the reader a preview of
a few issues that will be covered in that chapter. In addition, we will discuss two
other promising techniques that fall outside the conceptual framework developed in
Chap. 6.
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2.9.1 Combining Forward and Backward Transformations

At every stage of a stratified free energy calculation, one can easily perform pertur-
bations to several states defined by different values of ∆λ. This is because the only
quantities that we need to evaluate are the differences in the potential energy between
the states λ and λ + ∆λ determined for configurations sampled from the ensemble
defined by λ. If we return to (2.42) or (2.48), we notice that for every value of ∆λ,
these differences can be obtained from the potential energy functions of the refer-
ence and the target states. If these values are stored in the course of the simulation,
the appropriate potential energy differences can be conveniently calculated by means
of post-simulation processing.

Computing ∆U for several different values of λ might be helpful in optimiz-
ing choices of intermediate states for stratification. The main power of this strategy,
however, was realized in techniques that are aimed at improving the accuracy of free
energy estimates through appropriate choices of positive and negative values of ∆λ
or, equivalently, through combining forward and backward calculations. The sim-
plest implementation of this idea is to calculate the free energy difference, ∆Ai,i+1,
between two consecutive stages i and i + 1 in the forward and backward directions,
starting from i or i + 1 and using (2.8) and (2.9), respectively. The results of these
two calculations may then be combined, for example by simple averaging. This pro-
cedure, however, has a serious drawback. In general, the accuracies of estimating
∆Ai,i+1 from the forward and the backward simulations are not identical. In fact, it
is common that they differ substantially, because the corresponding probability dis-
tributions, Pi (∆Ui,i+1) and Pi+1 (∆Ui+1,i) have different widths. This means that
combining free energy differences obtained from the forward and the backward cal-
culations might turn out to be less accurate than the results of a calculation carried
out along a single direction.

Another simple idea consists in performing a forward calculation from state i,
corresponding to λi, to an additional intermediate at λi + ∆λ/2, and a backward
calculation from state i+1 – which corresponds to λi +∆λ – to the same additional
intermediate. The difference in the free energies obtained from these calculations is
equal to ∆Ai,i+1. Combining (2.8) and (2.9), we obtain

∆Ai,i+1 = − 1
β

ln
[
〈exp (−β∆Ui,i+1/2)〉i
〈exp ( β∆Ui,i+1/2)〉i+1

]
. (2.50)

In this equation, we used the fact that the potential energy difference between the
states λi, or λi + ∆λ, and state λi + ∆λ/2 is equal to ∆Ui,i+1/2, which is a conse-
quence of the linear form of (2.42).

This approach is one of the oldest techniques for improving FEP calculations [36].
It is often called the simple overlap sampling (SOS) method and is usually markedly
more accurate than simple averaging. It requires that one forward and one backward
calculation be performed at every intermediate state. It is worth noting that no sam-
pling is performed from the ensemble characterized by λi+∆λ/2, so that the number
of stages is the same as in the pure forward, or backward calculation.
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From what has been seen so far, it is obvious that the additional intermediate
does not have to be located at λi + ∆λ/2, but, instead, may be chosen at any value
between λi and λi + ∆λ. What we would like to do is to find the location of this
intermediate that minimizes the statistical error of the calculated free energy differ-
ence, ∆Ai,i+1. This problem was studied 30 years ago by Bennett [37]. As it turns
out, it is equivalent to calculating ∆Ai,i+1 from the formula

exp(−β∆Ai,i+1) =

〈
{1 + exp[β(∆Ui,i+1 − C)]}−1

〉
i〈

{1 + exp[−β(∆Ui,i+1 − C)]}−1
〉

i+1

exp(−βC), (2.51)

in which the constant, C, that determines the position of the additional intermediate
is chosen such that

C = ∆Ai,i+1 +
1
β

ln
ni

ni+1
. (2.52)

Here, ni and ni+1 are the sample sizes collected in the states i and i + 1. Equa-
tion (2.52) cannot be solved directly because it involves the unknown value of
∆Ai,i+1. Instead, (2.51) and (2.52) may be solved iteratively during post-simulation
processing.

A detailed presentation of the overlap sampling approach will be given in
Sect. 6.6 of Chap. 6. In the present chapter, we merely note that applying this scheme,
or any other similar technique that will be discussed extensively later on in the book,
almost always improves the quality of the results. It is, therefore, highly recom-
mended that they be routinely used in FEP calculations, perhaps in combination with
other techniques.

2.9.2 Hamiltonian Hopping

It is not unusual that one encounters problems with quasi-nonergodicity along some
segments of the transformation pathway from the reference to the target state. These
problems can be solved, at least in part, by employing the Hamiltonian hopping tech-
nique. In essence, Hamiltonian hopping is just a special case of a general strategy,
called parallel tempering. This method will be presented in detail in Chap. 8. Here,
it also serves as an illustration of a recurring theme of this book – it is often advan-
tageous to combine several strategies for free energy calculations in order to exploit
the strength of each of them.

Hamiltonian hopping, as any other version of parallel tempering, is highly effi-
cient if it is implemented on parallel computer architectures. In a stratified FEP cal-
culation involving N states of the system, the simulations of the different λ states
are carried out in parallel on separate processors. After a predefined number of
steps, Nsample, N/2 swaps between two randomly chosen simulation cells are
attempted [38]. This procedure is illustrated in Fig. 2.11. Acceptance of the proposed
exchange between cells i and j is ruled by the following probability [39]:

exp
{
−β
[
∆H1(x,px)i→j − H0(x,px)i→j

]}
≥ rand[0; 1], (2.53)
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Fig. 2.11. Schematic representation of a parallel tempering simulation, in which the N states
of a stratified FEP calculation are run concurrently. After a predefined number of steps,
Nsample, the cells are swapped randomly across the different processors. A Metropolis-based
acceptance criterion is used to determine which of the N / 2 exchanged λ-states should be
accepted. Pairs of boxes that fail the test are swapped back. Then additional sampling is per-
formed until the next exchange of the replicas

where ∆H0(x,px)i→j = H0(x,px)j − H1(x,px)i denotes the change in the
Hamiltonian representative of state a between simulation cells i and j. rand[0;1]
represents a uniform random number generated from 0.0 ≤ rand[0;1] ≤ 1.0. If the
random exchange for a given pair of λ states is rejected, the simulation cells are
swapped back. Nsample steps are being performed again, until the next exchange.

Provided that the modeler has access to parallel architectures, this approach
offers an advantage over sequential update of the interaction Hamiltonian as a func-
tion of the coupling parameter: for a given λ-state, swapping the simulation cells
allows regions of phase space that might be separated by large barriers to be
visited with appropriate statistical weights and over reasonable simulation times.
This strategy may be valuable in quasi-nonergodic systems, in which satisfactory
sampling of different conformational states is important for the accurate estimation
of free energy differences.



64 C. Chipot and A. Pohorille

2.9.3 Modeling Probability Distributions

Let us return to (2.12). As we have already discussed in Sect. 2.3, the probability
distribution P0(∆U) is integrated in this equation with the Boltzmann weighting
factor exp(−β∆U). This means that, especially for broad P0(∆U), the poorly
sampled, negative-∆U tail of the distribution provides the dominant contribution
to the integral, whereas the contributions from the well-sampled region around the
peak of P0(∆U) is small. Thus, the range of P0(∆U) which is known with a high
accuracy is not useful for calculating ∆A, unless the perturbation is small and the
corresponding probability distribution is sufficiently narrow.

It is only natural to consider ways that would allow us to use our knowledge of
the whole distribution P0(∆U), rather than its low-∆U tail only. The simplest strat-
egy is to represent the probability distribution as an analytical function or a power-
series expansion. This would necessarily involve adjustable parameters that could
be determined primarily from our knowledge of the function in the well-sampled
region. Once these parameters are known, we can evaluate the function over the
whole domain of interest. In a way, this approach to modeling P0(∆U) constitutes
an extrapolation strategy.

In general, this type of extrapolation is not very successful, because its reliability
deteriorates, often rapidly, as we move away from the region in which the function is
known with a good accuracy. In the particular case of P0(∆U), we might, however,
be more successful, because this function is smooth and Gaussian-like. We shall
exploit these features by considering three different representations of P0(∆U).

In fact, we have already used a modeling strategy when P0(∆U) was approxi-
mated as a Gaussian. This led to the second-order perturbation theory, which is only
of limited accuracy. A simple extension of this approach is to represent P0(∆U) as
a linear combination of n Gaussian functions, pi (∆U), with different mean values
and variances [40]

P0(∆U) =
n∑

i=1

cipi (∆U) (2.54)

where ci is the weight of the ith Gaussian function, subject to the constraints ci ≥ 0,∑
ci = 1. Then, using (2.12), (2.13), and (2.54), we obtain

∆A = − 1
β

ln
n∑

i=1

ci exp(−β〈∆U〉i + β2σ2
i /2), (2.55)

where 〈∆U〉i and σi are the mean and the variance of the ith Gaussian, respectively.
In numerical tests it was shown that the free energy of hydrating a water molecule
or an ion can be recovered accurately by taking n = 6 or 7, even for fairly large
perturbations [40].

A different expansion relies on using Gram–Charlier polynomials, which are the
products of Hermite polynomials and a Gaussian function [41]: These polynomials
are particularly suitable for describing near-Gaussian functions. Even and odd terms
of the expansion describe symmetric and asymmetric deformations of the Gaussian,
respectively. To ensure that P0(∆U) remains positive for all values of ∆U , we take
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P0(∆U) =

(
n∑

i=1

ciϕi (∆U)

)2

, (2.56)

where ci are coefficients of the expansion and φi are the normalized Gram–Charlier
polynomials

ϕi (x) =
1√

2nπ1/2n!
Hi (x) exp

(
−x2/2

)
. (2.57)

In the last equation Hi(x) is the ith Hermite polynomial. The reader may readily
recognize that the functions φi look familiar. Indeed, these functions are identical
to the wave functions for the different excitation levels of the quantum harmonic
oscillator. Using the expansion (2.56), it is possible to express ∆A as a series, as has
been done before for the cumulant expansion. To do so, one takes advantage of the
linearization theorem for Hermite polynomials [42] and the fact that exp(−t2 +2tx)
is the generating function for these polynomials. In practice, however, it is easier to
carry out the integration in (2.12) numerically, using the representation of P0(∆U)
given by expressions (2.56) and (2.57).

The expansion in (2.56) is complete and convergent. This means that any positive
function normalized to unity can be represented in this form, and, for sufficiently
large n, the absolute values of the coefficients in the expansion for i > n will be
smaller than any arbitrary small, predefined value, ε. This nice and formal property
is, however, not particularly useful in practice because, by and large, only the first
few coefficients in the expansion can be determined from simulations with sufficient
accuracy. This means that (2.56), or any other expansion, is useful only if it converges
quickly.

These considerations raise a question: how can we determine the optimal value
of n and the coefficients {ci}, i ≤ n in (2.54) and (2.56)? Clearly, if the expansion is
truncated too early, some terms that contribute importantly to P0(∆U) will be lost.
On the other hand, terms above some threshold carry no information, and, instead,
only add statistical noise to the probability distribution. One solution to this prob-
lem is to use physical intuition [40]. Perhaps a better approach is that based on the
maximum likelihood (ML) method, in which we determine the maximum number
of terms supported by the provided information. For the expansion in (2.54), calcu-
lating the number of Gaussian functions, their mean values and variances using ML
is a standard problem solved in many textbooks on Bayesian inference [43]. For the
expansion in (2.56), the ML solution for n and {ci} also exists. Just like in the case
of the multistate Gaussian model, this equation appears to improve the free energy
estimates considerably when P0(∆U) is a broad function.

The two expansions discussed so far appear to be quite different. In the multi-
state Gaussian model, different functions are centered at different values of ∆U . In
the Gram–Charlier expansion, all terms are centered at 〈∆U〉0. The difference, how-
ever, is smaller that it appears. In fact, one can express a combination of Gaussian
functions in the form of (2.56) taking advantage of the addition theorem for Hermite
polynomials [44]. Similarly, another, previously proposed representation of P0(∆U)
as a Γ function [45] can also be transformed into the more general form of (2.56).
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The third model for P0(∆U) that we discuss here is sometimes called the ‘uni-
versal’ probability distribution function (UPDF) [46]. The origin of this name can
be traced to the suggestion that the model describes well the statistical properties of
global quantities in a broad class of finite-size, equilibrium or nonequilibrium sys-
tems characterized by strong correlations and self-similarity. It has been proposed
that the UPDF applies even if a macroscopic system cannot be divided, on account of
strong correlations, into statistically independent mesoscopic subsystems. For such
systems, the underlying assumption of the central limit theorem is not satisfied, and,
therefore, fluctuations are not expected to be Gaussian distributed. UPDF can be
represented in the following form [46, 47]:

P (y) = K exp {a[b(y − s) − exp{b(y − s)}]} , (2.58)

where a, b and the shift, s, are adjustable parameters, and K is a normalization con-
stant. Here, y = (∆U −〈∆U〉0)/σ, so that the distribution has zero mean and a unit
variance. UPDF was used with success to model P0(∆U) obtained from ‘alchemical
transformations’ involving an anion, adenosine and a fatty acid [47].

Even though modeling the probability distributions has not been utilized nearly
as extensively as some other techniques for increasing the efficiency of FEP calcula-
tions, it appears to be a highly promising area for further research. Initial applications
of this technique lead to the conclusion that it can considerably improve estimates of
∆A, especially when the tails of P0(∆U) are poorly sampled. Furthermore, it can
be readily combined with other techniques, such as forward and backward calcula-
tions [47]. The method also has drawbacks. The physical underpinnings for choosing
a model distribution are, so far, not very strong, and estimates of the errors introduced
by the procedure are presently not available.

2.10 Calculating Free Energy Contributions

The free energy difference associated with a given process is not the only thermo-
dynamic quantity of interest. In many instances, one would also like to know the
entropic and energetic, or enthalpic in the isobaric–isothermal ensemble, contribu-
tions to ∆A. This is because they may reveal something new about the nature of the
process that is not necessarily apparent from knowledge of the free energy alone.
Indeed, we often say that a process is enthalpy- or entropy-driven, or the barrier to
a transformation is enthalpic or entropic. This information not only improves our
understanding of the process, but it also provides clues about how to control it. For
example, if ligand–enzyme interactions are primarily entropy-driven, then preorga-
nization, which relies on making either the ligand or the active center more rigid,
might be an effective strategy to enhance ligand–enzyme affinity.

Similarly, we often try to interpret changes in the free energy in terms of contribu-
tions to the potential energy function. For instance, one might want to know whether
∆A is primarily driven by electrostatic or van der Waals interactions. Alternatively,
one might be interested in finding out what are the contributions to ∆A arising from
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changes in the internal structure of the solute and the solute–solvent interactions, as
well as in the reorganization of the solvent.

Addressing these issues from an FEP perspective is the main goal of this sec-
tion. The main conclusions that we reach are, however, of a general nature and are
independent of the method used for calculating the free energy.

2.10.1 Estimating Energies and Entropies

The three quantities of interest — the free energy difference, ∆A, the difference
in potential energies, ∆U0→1, and the entropy difference, ∆S0→1, are connected
through a basic thermodynamic relation

∆A = ∆U0→1 − T∆S0→1, (2.59)

in which
∆U0→1 = 〈U1〉1 − 〈U0〉0 (2.60)

and
∆S0→1 = 〈S1〉1 − 〈S0〉0. (2.61)

Here, U0 and U1 are the potential energies of the reference and the target system, re-
spectively. Note that ∆U0→1 is not the same quantity as the previously used 〈∆U〉0,
because the latter is the average of energy differences between the target and the
reference states taken over the reference ensemble.

It would appear at first glance that, once ∆A has been calculated, obtaining
∆U0→1 and ∆S0→1 with comparable accuracy should be a simple task. Unfortu-
nately, this is not the case. The simplest approach would be to calculate 〈U0〉0 and
〈U1〉1 from simulations of the reference and the target state, respectively, and then
to extract ∆S0→1 from (2.59). This naive strategy is, however, not very successful.
This is because the average total energies are usually large, approximately propor-
tional to the number of particles in the system. Estimating a small quantity, ∆U0→1,
from a difference of two, independently measured, large numbers, subject to large
fluctuations, is usually unreliable. It has been shown that the uncertainty in estimat-
ing ∆U0→1 based on this approach can be one to two orders of magnitude larger
than the uncertainty in the corresponding ∆A [48].

The difficulty in calculating a small number as a difference of two large ones,
both known with limited accuracy, is not new and arises in many other fields. It
often justifies using perturbation theory, which is aimed at estimating the quantity
of interest directly. We will attempt to follow the same approach here. To do so, we
combine (2.60) with (2.11) from Sect. 2.2, in which we substitute U1 for F . This
yields

∆U0→1 =
〈U1 exp (−β∆U)〉0
〈exp (−β∆U)〉0

− 〈U0〉0 (2.62)

If this equation is used, ∆A and ∆U0→1 can be calculated from a single simulation,
or, as is usually the case, from a single series of stratified simulations. This is why it
is sometimes called a ‘single-state perturbation’ method. Unfortunately, the problem
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discussed in the context of (2.60) persists in this approach, i.e., ∆U0→1 is again
obtained as a difference between two large numbers. This time, however, both num-
bers are obtained from the same simulation, which improves the accuracy because of
partial error cancelation.

Another approach to calculating ∆S0→1 or ∆U0→1 relies on the classical ther-
modynamic relationships

∆S0→1 = −
(

∂∆A

∂T

)
N,V

, (2.63)

∆U0→1 =
(

∂β∆A

∂β

)
N,V

. (2.64)

These relations may be utilized to calculate ∆S0→1 or ∆U0→1 in a finite-difference
approximation

∆S0→1 (T ) = −∆A (T + ∆T ) − ∆A (T − ∆T )
2∆T

(2.65)

∆U0→1 =
β+∆A (β+) − β−∆A (β−)

2∆β
, (2.66)

where β+ = β + ∆β and β− = β − ∆β. To estimate the energetic and entropic
contributions employing this approach, it is required that ∆A be determined not only
at the temperature T , but also at T + ∆T and T − ∆T . As a result, at least three
different series of simulations are needed. In a concrete application, ∆T should be
properly chosen. If it is too large, then deviations from the linear dependence of
∆A on the temperature, implicitly assumed in the finite-difference method, become
large. If it is too small, then statistical errors in evaluating the numerator overwhelm
the calculation. It has been reported that, at least in some applications, 30–50 K rep-
resents a reasonable choice for ∆T [48]. The estimates can be further improved, at
an additional cost, by using more points in the finite-difference formulas.

The finite-difference method can be combined with the perturbation technique
that was previously used to derive the basic formulas in Sect. 2.2. This yields another
single-state perturbation formula [49, 50]. Starting from (2.66), we get

β+∆A
(
β+
)

= − ln〈exp
(
−β+∆U

)
〉0,β+

≡ − ln

∫ ∫
exp
(
−β+∆U

)
exp
(
−β+U0

)
dx dpx∫ ∫

exp
(
−β+U0

)
dx dpx

= − ln

∫ ∫
exp
(
−β+∆U − ∆βU0 − βU0

)
dx dpx∫ ∫

exp (−∆βU0 − βU0) dx dpx

= − ln
〈exp (−∆βU0 − β+∆U)〉0

〈exp (−∆βU0)〉0
. (2.67)
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Similarly,

β−∆A
(
β−) = − ln

〈exp (∆βU0 − β−∆U)〉0
〈exp (∆βU0)〉0

, (2.68)

where 〈. . .〉0,β+ , 〈. . .〉0,β− and 〈. . .〉0 denote ensemble averages over the reference
system at β+, β−, and β, respectively.

After inserting (2.67) and (2.68) to (2.66) we obtain

∆U0→1 =
1

2∆β
ln
[
〈exp (∆βU0 − β−∆U)〉0〈exp (−∆βU0)〉0
〈exp (−∆βU0 − β+∆U)〉0〈exp (∆βU0)〉0

]
. (2.69)

This is the desired formula, which requires only statistical averages over the refer-
ence system at temperature T . If, instead, we start from (2.65) and perform identical
steps, we obtain a similar, single-state perturbation formula for ∆S0→1. As it turns
out, that formula, however, is more cumbersome to use than (2.69) but does not seem
to offer any benefits in terms of accuracy.

One way to improve this approach it to carry out simultaneous perturbations for
several, different values of ∆T or, equivalently, ∆β, and then estimate the appro-
priate derivative through averaging or graphical interpolation. This can be done with
only small additional computational effort.

At this point, the reader might ask: which of the three methods is the most accu-
rate? Unfortunately, there is no clear-cut theoretical guidelines to answer this ques-
tion, and empirical evidence is inconclusive. This has been discussed by Lu [50],
where the reader can also find many references to earlier studies on extracting
entropies and enthalpies from free energy calculations. In general, it appears that
even in the simple case of the ‘zero-sum’ ethane → ethane alchemical transformation,
the accuracy of determining ∆U0→1 and ∆S0→1 is inferior to the accuracy of ∆A.
This is illustrated in Fig. 2.12. The rule of thumb appears to be that stratification is
more effective for increasing the accuracy of the computed free energy components
than the actual choice of the computational method. Additional considerations about
the system of interest may also come into play. For instance, for systems close to
phase transitions, such as some membrane systems, taking temperature derivatives
might not be appropriate. An approach based on (2.62) would then be the method of
choice.

2.10.2 How Relevant are Free Energy Contributions?

The total potential energy of the system can easily be divided into physically
meaningful terms. Depending upon the problem of interest, one might wish to con-
sider it, for instance, as a sum of electrostatic and van der Waals contributions, or as
a sum of terms representing interactions within and between different subsystems.
The average change in each component of the total potential energy upon the trans-
formation of the system can be estimated using an expression analogous to (2.62).
Unfortunately, a similar division is not possible for entropy, and, consequently, for
free energy.

To understand better the difficulties connected with the partitioning of free energy
into contributions, let us break down the potential energy into a sum of two terms,
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Fig. 2.12. Enthalpy, entropy, and free energy differences for the ethane → ethane ‘zero-sum’
alchemical transformation in water. The molecular dynamics simulations are similar to those
described in Fig. (2.7). 120 windows (thin lines) and 32 windows (thick lines) of uneven widths
were utilized to switch between the alternate topologies, with, respectively, 20 and 100 ps of
equilibration and 100 and 500 ps of data collection, making a total of 14.4 and 19.2 ns. The
enthalpy (dashed lines) and entropy (dotted lines) difference amount to, respectively, −0.1
and +1.1 kcal mol−1, and −0.5 and +4.1 cal mol−1 K−1. For comparison purposes, the free
energy difference is equal to, respectively, +0.02 and −0.07 kcal mol−1, significantly closer
to the target value. Inset: Convergence of the different thermodynamic quantities

Ua and Ub. Assume further that the second-order perturbation theory applies. This
means that P0(∆U) can be represented as a bivariate Gaussian. Then, ∆A, from
(2.30), is given by

∆A = 〈∆Ua〉0 + 〈∆Ub〉0 −
β

2
(
σ2

a + σ2
b + 2ρσaσb

)
, (2.70)

where
σa = 〈∆U2

a 〉0 − 〈∆Ua〉20 (2.71)

is the variance of the probability distribution P0(∆Ua) and

ρ = 〈(∆Ua − 〈∆Ua〉0) (∆Ub − 〈∆Ub〉0)〉0/σbσb (2.72)

is the correlation coefficient for fluctuations in ∆Ua and ∆Ua.
From (2.70), it follows that the free energy cannot be divided simply into two

terms, associated with the interactions of type a and type b. There are also coupling
terms, which would vanish only if fluctuations in ∆Ua and ∆Ub were uncorre-
lated. One might expect that such a decoupling could be accomplished by carrying
out the transformations that involve interactions of type a and type b separately.
In Sect. 2.8.4, we have already discussed such a case for electrostatic and van der
Waals interactions in the context of single-topology ‘alchemical transformations.’
Even then, however, correlations between these two types of interactions are not
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eliminated. Let us consider a simple example of transforming a hydrated argon atom
into a sodium ion. Even if charging is carried out separately from the modifications
to the Lennard-Jones parameters, the van der Waals energy of the system changes in
a way that is correlated with charging. In particular, as the charge borne by the solute
increases, negatively charged oxygen atoms of water can approach it closer, which in
turn causes not only the electrostatic, but also the van der Waals energies to change.

In addition, separation of the free energy into contributions depends on the path
taken to transform the reference system into the target one. In other words, in contrast
to ∆A, the contributions from the interactions of type a, type b and their coupling
change if the transformation is performed along a different pathway. This is due to
the fact that free energy is a state function of the system, but its contributions are not.

From this discussion, it would appear that decomposition of free energy into
components may not be very helpful. This is, however, not necessarily so, espe-
cially if a physically meaningful path can be identified. For instance, dividing the free
energy of dissolving a solute into contributions for creating a cavity in the solvent
that is sufficiently large to accommodate the solute, and subsequently ‘turning on’
solute–solvent interactions have proven to be highly informative. Also, it is possible
to obtain valuable results from free energy decomposition along a dynamical variable
that closely approximates the reaction coordinate [51]. The formalism associated
with this decomposition is based on thermodynamic integration and, therefore, will
be discussed in Chap. 4. Another possible approach to make the partition of free
energy useful is to find paths that minimize the correlation term in (2.70) [52].

2.11 Summary

Thermodynamic perturbation theory represents a powerful tool for evaluating free
energy differences in complex molecular assemblies. Like any method, however,
FEP has limitations of its own, and particular care should be taken not only when
carrying out this type of statistical simulations, but also when interpreting their
results. We summarize in a number of guidelines the important concepts and features
of FEP calculations developed in this chapter:

(a) Formally, FEP is exact for any perturbation. In practice, however, even for mod-
erately large perturbations, the method suffers from convergence issues. It is,
therefore, recommended to use a stratification strategy by breaking the reaction
pathway into a series of intermediate states through the introduction of an order,
or ‘coupling’ parameter. The choice of the number of intermediate states in a
staged FEP calculation should not be dictated by the corresponding change in
free energy, but rather by the similarity between the reference and the target
ensembles.

(b) Although the general FEP theory applies equally to both forward and backward
simulations, the efficiencies of these two types of simulations may differ consid-
erably. A properly converged FEP calculation for a 0 → 1 transformation does
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not necessarily imply that the reverse, 1 → 0, transformation converges equally
efficiently to the correct free energy difference.

(c) The free energy difference between the reference and the target states can be
represented as a cumulant expansion. Retaining only the first two terms of this
expansion is equivalent to assuming that P0(∆U) is a Gaussian. Second-order
perturbation theory is a very useful tool for analyzing free energy calculations
and developing approximate theories. Beyond the second order, however, the
cumulant expansion diverges, and should, therefore, be used with extreme care.

(d) Since free energy is a state function, free energy differences are independent of
the pathway chosen for their evaluation. Consequently, ‘alchemical transforma-
tions,’ during which a chemical species is mutated into an alternate one, may be
carried out using either a single- or dual-topology paradigm by scaling the non-
bonded parameters or the potential energy functions with the order parameter.

(e) Several techniques are available for improving the efficiency and accuracy of
free energy calculations. These techniques require only very modest additional
computational effort. Carrying out forward and backward simulations in an
appropriate way is one of the more powerful schemes. It is strongly advised
that these techniques be used in practice.

(f) The FEP methodology may be extended to the computation of potential energy,
enthalpy and entropy differences. Yet, compared to free energy differences, these
quantities are more difficult to estimate with good accuracy, because they inher-
ently depend upon all molecular interactions in the system, and not only on those
that are perturbed during the transformation.

(g) Particular attention should be paid to the interpretation of free energy compo-
nents obtained by perturbing individual contributions of the potential energy
function. These free energy components reflect the pathway defined for their
determination, which is not unique.
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Methods Based on Probability Distributions
and Histograms

M. Scott Shell, Athanassios Panagiotopoulos, and Andrew Pohorille

3.1 Introduction

One of the most powerful tools molecular simulation affords is that of measuring
distribution functions and sampling probabilities. That is, we can easily measure the
frequencies with which various macroscopic states of a system are visited at a given
set of conditions – e.g., composition, temperature, density. We may, for example, be
interested in the distribution of densities sampled by a liquid at fixed pressure or that
of the end-to-end distance explored by a long polymer chain. Such investigations
are concerned with fluctuations in the thermodynamic ensemble of interest, and are
fundamentally connected with the underlying statistical–mechanical properties of a
system.

In order to reconstruct probability distributions, we employ histograms in our
simulation. These are simply arrays (or matrices), the indices of which correspond
to variations in some parameter of interest, such as the number of particles, energy,
distances, etc. For cases in which this variable is continuous, like the energy, we must
be careful to discretize the histogram to sufficient resolution. During the course of
the simulation, we then treat each bin of the histogram as an indicator of counts, or
the number of visits to that state. Counts are added to the appropriate bins at either
each step in the simulation or after a predetermined block of steps of specified length.
Typically one requires a simulation with a length that is at least several correlation
times of the system at hand in order to accrue data with good accuracy.

The utility of histograms stems from their rigorous connection to statistical
mechanics, and the ability to extract from them fundamental thermodynamic poten-
tials which can be used to predict properties of the system at conditions other than
those of the original simulation. In this chapter, we provide an overview of the theory
of histograms, their implementation in simulations, and free energy algorithms which
make use of them. We begin by reviewing the statistical foundation of histograms
and how they might be ‘reweighted’ in order to obtain information at multiple state
conditions. We subsequently review a class of algorithms called flat-histogram meth-
ods, which utilize histograms to obtain entropies and free energies of model systems
directly. Finally, we briefly comment on the use of histograms in extended ensemble
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and reaction coordinate formulations. Several examples of the methods described
here – as applied to phase equilibria – may be found in Chap. 10.

3.2 Histogram Reweighting

Early in the history of development of simulation methods it was realized that a sin-
gle calculation can, in principle, be used to obtain information on the properties of a
system for a range of state conditions [1–3]. However, the practical application of this
concept was severely limited by the performance of computers available at the time.
Many groups have now confirmed the usefulness of this concept, first in the context
of simulations of spin systems [4–6] and later for continuous-space fluids [7–11].
In the following sections, we give a pedagogical review of histogram reweighting
methods as applied to one-component systems.

Since many of the histogram-based methods we will outline in the following sec-
tions make use of the density of states, the reader may wish to review the material
in Chap. 1 regarding its correct treatment in continuum systems. That chapter pro-
vides a brief discussion of the subtleties involved, although the reader who is already
comfortable with the physical significance behind the density of states may wish to
proceed directly.

3.2.1 Free Energies from Histograms

The connection between histogram measurements in simulation at a given temper-
ature and the statistical mechanics of a system is given by the macrostate proba-
bility distribution. That is, when the partition function is expressed as a sum over
macroscopic states of a system, the individual terms in the sum are proportional to
the probability with which those states will be visited in the associated ensemble. A
histogram taken from a simulation measuring the frequency with which macrostates
are sampled therefore reflects the same probabilities. For example, the canonical
partition function illustrates that the probability of observing a potential energy at a
given temperature obeys:

℘(U ;N,V, T ) =
e−βUΩ(N,V, U)

Z(N,V, T )
, (3.1)

where Z is the configurational integral introduced in (1.10) and normalization
constant. A normalized histogram taken from an equilibrated canonical simulation
provides an estimate of ℘(U ;N,V, T ). Hereafter we will drop the dependence on N
and V for simplicity.

Note that the expression in (3.1) is a continuous probability distribution in that
℘(U ;T )dU gives the probability of macrostates with energy U ±dU/2. In an NV T
simulation, we measure this distribution to a finite precision by employing a nonzero
bin width ∆U . Letting f(U) be the number of times an energy within the range
[U,U +∆U ] is visited in the simulation, the normalized observed energy distribution
is then
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℘̃(U ;T ) =
f(U)

∆U
∑
U ′

f(U ′)
(3.2)

where the tilde indicates a simulation estimate. For ergodic systems and in the joint
limit of ∆U → 0 and

∑
f(U) → ∞, we will find that ℘̃(U) → ℘(U). We clearly

cannot take this limit rigorously in a simulation, but a reasonable bin width can usu-
ally be selected by a very short test run, while the total number of bin entries required
(as dictated by the simulation duration) can depend more substantially on details
of the molecular interactions and state point. Given a well-formed measurement ℘̃,
however, one can substitute this into (3.1) and rearrange to obtain an estimate of the
density of states:

Ω̃(U) = ℘̃(U ;T0)eβ0UZ(T0). (3.3)
Notice that this equation allows us to calculate Ω(U) from a probability distribution
measured from a simulation at temperature T0. We do not know the value of Z(T0),
but it is a constant independent of U . Furthermore, since Ω has no dependence on
T , measurement of ℘ at any temperature should in principle permit its complete
determination. In practice, however, the potential energies in a canonical simulation
are sharply distributed around their average, away from which the statistical quality
of ℘̃ and hence Ω̃ in (3.3) becomes extremely poor.

Proceeding conceptually for a moment without these logistical difficulties, once
we have determined the density of states we can calculate thermodynamic properties
at any temperature of interest. The average potential energy is

〈U〉 (T ) =

∫
Ue−βU Ω̃(U)dU
∫

e−βU Ω̃(U)dU

, (3.4)

or, substituting (3.3),

〈U〉 (T ) =

∫
U℘̃(U ;T0)e−(β−β0)UdU
∫

℘̃(U ;T0)e−(β−β0)UdU

. (3.5)

It is clear here that any multiplicative factor in the density of states, such as Z(T0)
from (3.3), will not affect 〈U〉. Notice that in the case of T = T0, this expression sim-
ply returns the original average energy at T0, which we would have obtained through
integrating the probability distribution. Beyond the energy, we might also wish to
determine the configurational heat capacity, kT 2CV (T ) =

〈
U2
〉
− 〈U〉2. When we

allow additional fluctuating quantities in the simulation such as volume or number of
particles, this approach also allows calculation of thermodynamic properties which
depend on density derivatives of the entropy. The corresponding reweighting equa-
tions can be derived in exactly the same manner, replacing (3.3) with the NPT
(fluctuating volume and energy) or grand-canonical (fluctuating particle number and
energy) ensemble expressions for the probability distribution. This general tech-
nique, in which measured distributions at one set of state conditions are projected
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onto another, is termed ‘histogram reweighting’ because the macrostate probabilities
are adjusted along changes in the microstate weight factors.

A more general version of the canonical reweighting scheme in (3.5), in which
the value of any order parameter ξ is reweighted to different temperatures, is given by:

〈ξ〉 (T ) =

∫
ξ̃(U)℘̃(U ;T0)e−(β−β0)UdU
∫

℘̃(U ;T0)e−(β−β0)UdU

, (3.6)

where ξ̃(U) is the average value of ξ for a particular potential energy, a calculation
which needs to occur alongside histogram collection during the simulation course.
Compare this formula with equation (2.11). Formally, the expression for ξ(U) is
given by the microcanonical expression:

ξ(U ′) =

∫
V N

ξ(q)δ[U(q) − U ′]dq
∫

V N

δ[U(q) − U ′]dq
, (3.7)

where ξ(q) is the value of ξ for a particular configuration q. Such order
parameters have already been defined in Sect. 2.8.1 and are discussed in more detail
at the end of this chapter in Sect. 3.5.

As alluded to previously, numerical issues actually create a more complex
situation than that just been described. For starters, the density of states is almost
never calculated directly, as it typically spans many orders of magnitudes. This,
in turn, would quickly overwhelm standard double-precision calculations in per-
sonal computers. This is easily remedied by working instead with the dimensionless
entropy: S = lnΩ, which for the purposes of this chapter will inherit all of the same
notation used for the density of states in Chap. 1 – subscripts “tot,” “ex,” etc.

The more important issue concerns the statistics in the tails of the measured
probability distributions. We clearly cannot get a good estimate for the density of
states from data at energies which are rarely visited at our run temperature. The solu-
tion is to use multiple run temperatures to generate the estimate. The exact procedure
will be presented more comprehensively later, but anticipating that discussion, let us
first consider the situation when two separate Ω predictions are made from data col-
lected at two temperatures T1 and T2. If the temperatures are close enough, there is
a range of energies that are visited with sufficient frequency during both simulations
to provide estimates of Ω from each of them. We know that the two density of states
predictions must be the same, and so dividing (3.3) for T1 by the same for T2, taking
the logarithm, and using βA = − ln Z, we obtain

β1A(T1) − β2A(T2) = ln
[
℘̃(U ;T1)
℘̃(U ;T2)

]
+ (β1 − β2)U (3.8)

which provides an estimate of the free energy difference between the system at tem-
peratures 1 and 2. Notice that the right-hand side of this equation is a function of U .
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In principle, any value of U should return the same free energy difference; how-
ever, we can choose the value of U so as to minimize the statistical error in the
prediction. Assuming the histograms from both runs have the same total number of
entries and that var(℘̃) ∝ ℘̃ (i.e., the variance in a histogram bin is proportional
to its number of entries), we find that the squared relative error in the argument of
the logarithm in (3.8) is proportional to f1(U)−1 + f2(U)−1, where f1 and f2 are
the numbers of counts of energy U in the histograms corresponding to T1 and T2,
respectively. Therefore, the optimal U in (3.8) will minimize this expression. These
kinds of arguments involving propagation of statistical error were used by Ferrenberg
and Swendsen to create a comprehensive methodology for extracting accurate free
energy estimates from multiple simulation runs [12], described next.

3.2.2 Ferrenberg–Swendsen Reweighting and WHAM

In the earlier sections, we saw that the density of states could be reconstructed
to a multiplicative constant from probability distributions measured during canon-
ical simulations. This enables, in principle, the application of reweighting tech-
niques to predict ensemble averages at conditions other than those of the original
simulation. However, the statistical errors at the tails of the measured distribution
from a single run limit the practical application of this approach. We hinted that the
way around this problem was to use data from multiple runs and temperatures to
reconstruct the density of states. The optimal procedure for incorporating multiple
run results in this way, which has since become standard practice, was initially
developed in 1989 by Ferrenberg and Swendsen [12] and later generalized by Kumar
et al. [13]. The approach is often called Ferrenberg–Swendsen reweighting, multi-
ple histogram reweighting, or the weighted histogram analysis method (WHAM).
The basic idea proposed by these authors is that the contribution of each run to a
reweighting estimate should be weighed based on the magnitude of errors in their
histograms. That is, runs that have greater overlap with the reweighting conditions
should contribute more to the estimation of property averages.

A brief sketch of the derivation of the WHAM equations follows; we note that
a detailed explanation is available in the book by Frenkel and Smit [14]. Consider
the canonical reweighing (3.5). Our goal will be to combine the histograms ℘̃i(U)
from several runs at different temperatures Ti to predict the distribution of potential
energies at a new temperature T . Individually, each run enables us to reweight its
histogram to obtain the distribution at T

℘̃r,i(U ;T ) =
℘̃(U ;Ti)e−(β−βi)U∫
℘̃(U ;T0)e−(β−βi)UdU

=
Zi

Z
℘̃(U ;Ti)e−(β−βi)U (3.9)

with Zi = Z(Ti) and Z = Z(T ). The subscript “r” simply indicates that ℘̃ has been
reweighted from a measured ℘̃. The ratio of the partition functions in the last line of
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this equation imparts a multiplicative constant to the probability distribution that is
related to the free energy difference between the run temperature Ti and the target
temperature T . Practically speaking, we could simply normalize the probabilities
to determine this constant, but for this discussion it will be instructive to leave the
partition functions explicit. Recall that each run provides an estimate of ℘(U ;T )
according to (3.9). Ferrenberg and Swendsen proposed to combine all of these esti-
mates linearly using a weighting factor w that depends both on the energy and the
run number

℘̃r(U ;T ) =
∑

i

wi(U)℘̃r,i(U ;T )

=
∑

i

wi(U)
Zi

Z
℘̃(U ;Ti)e−(β−βi)U . (3.10)

The weighting function wi(U) is normalized such that the sum total contribution
to ℘̃r from each run at a given U is equal to one:

∑
i wi(U) = 1. Within this

constraint, we determine the optimal functional form of w by minimizing the sta-
tistical error in the predicted ℘̃r. Note that the variance in histogram measurements
changes as the number of counts in a bin, f(U), divided by the total number of
counts, ftot =

∑
k f(Uk), squared. This translates to a variance in the measured dis-

tributions ℘̃(U ;Ti) that is dependent both on the energy and the run number. Using
standard error propagation rules, we can predict the expected variance in the com-
posite ℘̃r at the target temperature. Hence, we minimize this error by optimizing the
weight function w, using Lagrange multipliers to ensure normalization of w. Here,
we simply present the final result when the optimal w is substituted

℘̃∗
r (U ;T ) =

∑
i

fi(U) exp(−βU)

∑
i

ftot,i exp(βiÃi − βiU)
, (3.11a)

exp(−βiÃi) =
∑
U

℘̃∗
r (U ;Ti), (3.11b)

℘̃r(U ;T ) =
℘̃∗

r (U ;T )∑
U

℘̃∗
r (U ;T )

. (3.11c)

Here, ℘̃∗
r (U ;T ) is the un-normalized probability distribution, Ãi gives the free en-

ergy for run i, fi(U) is the number of counts of energy U for run i, and ftot,i is the
total number of counts in run i. The values for Ãi are solutions to the set of (3.11a)
and (3.11b), and are usually solved by iterating between the two; initial values are
often taken to be Ãi = 0 and iteration between (3.11a) and (3.11b) proceeds until
the values no longer change significantly. Actually, it is only possible to determine
relative values for the free energies using these equations, so typically one run is cho-
sen to be the reference state for which Ã is always set to zero. When the free energies



3 Methods Based on Probability Distributions and Histograms 83

have converged, the final probability distribution is given through normalization via
(3.11c). This distribution can then be used directly to calculate various moments of
the potential energy.

We can make several observations about the WHAM equations. First, the op-
timal weights depend on the target reweighting temperature through (3.11a) only.
This means that, once the free energies Ãi have been determined, they do not need to
be recalculated upon reapplication of (3.11b) at different temperatures, meaning the
iteration procedure only needs to happen once. Second, the optimal weights entail
the free energies of each run. This has a practical benefit, as it allows us to extract
free energy estimates using WHAM, but in addition it implies a deep connection
between free energies and optimal ensemble overlap. In fact, there is a close con-
nection between WHAM and Bennett’s method [4] – which yields the optimal free
energy estimate between two ensembles – as discussed in Chaps. 5 and 6 and in [14].

The WHAM equations can be generalized to many simulation settings. In par-
ticular, it is fairly straightforward to adapt them to other ensembles. Chapter 10, for
instance, demonstrates the use of the reweighting equations in the grand canonical
ensemble, where the calculated probability distribution is a function of N in addition
to U . The general derivation of the WHAM equations in [13] allows runs to differ
not only in temperature, but in the potential energy function as well, and it per-
mits reweighting of general order parameters as (3.6). Here, one assumes that the
energy function of each run can be expressed as a set of values λj that are coef-
ficients to component energy functions Vj in a master potential energy expression
U =

∑
j λjVj . Thus, for one of the individual runs, the energy function is expressed

as: Ui =
∑

j λi,jVj . For this case, the WHAM equations become

℘̃∗
r (V, ξ;T ) =

∑
i

fi(V, ξ) exp

⎛
⎝−β

∑
j

λjVj

⎞
⎠

∑
i

ftot,i exp

⎛
⎝βiÃi − βi

∑
j

λi,jVj

⎞
⎠

, (3.12a)

exp(−βiÃi) =
∑
U

℘̃∗
r (V, ξ;T ), (3.12b)

℘̃r(V, ξ;T ) =
℘̃∗

r (V, ξ;T )∑
U

℘̃∗
r (V, ξ;T )

. (3.12c)

Here, V is vector notation for the set of all component energies Vj , and λi,j gives
the coefficient of Vj in the ith run. The λj , without subscript i, indicate the values of
λ in the target ensemble. The histograms collected in the runs are multidimensional
in that they are tabulated as functions of the component energies as well as the order
parameter ξ. Similarly, the final result of the WHAM calculation is a multidimen-
sional probability distribution in Vj and ξ.
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3.3 Basic Stratification and Importance Sampling

In this section, we describe briefly the most basic applications of two fundamen-
tal enhanced sampling techniques – stratification and importance sampling – to
probability density and histogram-based methods for free energy calculations. We
cover such popular approaches as the ‘windows’ method, non-Boltzmann sampling,
and umbrella sampling, all which are routinely combined with histogram reweight-
ing and WHAM. Their popularity is well deserved – they are not only among the
oldest, but also among the most successful methods for improving the efficiency of
free energy calculations. For this reason, these methods have been described numer-
ous times before, and are probably well known to readers who have even rudimentary
knowledge of the field.

The emphasis of this section is slightly different from that in the rest of this
chapter. Instead of focusing on the density of states, we will consider probability
density functions and we will not specifically discuss the methods in the context
of Monte Carlo simulations. Also, the applications that we have in mind here are
slightly different. We are particularly interested in problems in which we want to
know not only the free energy difference between the initial and final states of the
system, but also the free energy change along an order parameter. This allows us to
estimate the relative stabilities of different local free energy minima and the mag-
nitude of the barriers that separate them. Typical problems of this sort are confor-
mational transitions associated with rotation around flexible bonds, for example in
macromolecules. In some instances, the free energy between the initial and final
states is known and the real focus of a calculation is on the shape of the free energy
in between. This is the case, for example, in assisted or protein-mediated ion trans-
port across membranes. In the absence of transmembrane electrical field and ionic
gradients, the free energy difference between the ion on both sides of the membrane
is zero. The interest is in determining the free energy profile associated with the
transport, as it reveals valuable information about the mechanism and kinetics of this
process.

Even though we take a specific perspective on the topics addressed in this sec-
tion, we will make an effort not to obscure two important points. First, the methods
described here are highly versatile and can be used for many different problems.
Second, there are deep conceptual connections between the material covered in this
section and the methods described in the remainder of this chapter and in many other
chapters.

3.3.1 Stratification

Assume that we are interested in how the free energy of a system changes as a
function of an order parameter, ξ, which changes between ξ0 and ξ1. A direct
approach to this problem is to carry out MD or MC simulations long enough to
obtain a sufficiently accurate estimate of the probability density function, P(ξ), of
finding the system in a state corresponding to ξ. Then, it follows from (1.22) of
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Chap. 1 that the free energy difference, ∆A(ξ), between the states described by ξ
and ξ0 is

∆A (ξ) = A (ξ) − A (ξ0) = −β−1 ln
℘ (ξ)
℘ (ξ0)

. (3.13)

In practice, the continuous function ℘(ξ) is represented as a histogram consisting of
M bins. If all bins have equal size ∆ξ = (ξ1 − ξ0) /M then

℘ [ξ0 + (i − 0.5) ξ] =
fi∑

j

fj

(3.14)

where fi is the number of sampled configurations for which the order parameter
takes a value between ξ0 + (i − 1) ξ and ξ0 + iξ.

Combining (3.13) and (3.14) leads to a formula for histogram-based estimates
of ℘ (ξ)

∆A (ξ0 + (i − 0.5) ξ) = −β−1 ln
fi

f1
. (3.15)

In practice, this simple formula will hardly ever work, especially if the free energy
changes appreciably with ξ. Consider, for example, two states of the systems, ξi

and ξj such that ∆A(ξi) − ∆A(ξj) = 5kBT . Then, on average, the former state
is sampled only seven times for every 1,000 configurations sampled from the latter
state. Such nonuniform sampling is undesirable, as it leads to a considerable loss of
statistical accuracy. For the free energy profile shown in Fig. 3.1, transitions between
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Fig. 3.1. Free energy of isomerization of butane as a function of the C–C–C–C torsional angle,
Θ. Because of high energy barriers, transitions between stable trans and gauche rotamers are
rare, which makes calculation of the free energy in a single simulation highly inefficient.
Instead, the calculation was performed in four overlapping windows, whose edges are marked
on the x-axis. In each window, the probability density functions and the free energies were
determined as functions of Θ. They were subsequently shifted so that they matched in the
overlapping regions, yielding the free energy profile in the full range of Θ
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stable regions are rare because they require traversing a free energy barrier. This
impedes equilibration along ξ, which in turn yields poor estimates of the free energy
in the whole range of the order parameter.

The problem described earlier is perfectly suited for applying stratification, out-
lined in Sect. 1.4. The full range of ξ is divided into strata, or ‘windows’, for which
separate simulations are performed. The system can be restrained to remain mostly
within a window by adding to the potential energy function an extra term that
depends only on ξ and is equal to zero inside the window, but increases, for example
harmonically, as the system moves beyond the edge of the window. In Monte Carlo
simulations, it is also possible to reject outright those moves which take the sys-
tem outside of the current window, which corresponds to an added energy that is
infinite outside of the window bounds. Clearly, ℘(ξ) within each window changes
less than in the whole range of ξ, which leads to a more uniform sampling of ξ and
improved efficiency of free-energy calculations.

For each window, ℘(ξ) is estimated by using the exact analog of (3.14). However,
reconstruction of the full probability distribution directly is not possible because the
total normalization constant is not known. Instead, we exploit the fact that ℘(ξ) (or,
equivalently, the free energy) is a continuous function of ξ. If consecutive windows
overlap one can build the complete probability distribution by matching ℘(ξ) in
the overlapping regions, as illustrated in Fig. 3.1. How to do this in a systematic
fashion will be discussed later in this section.

From the discussion so far, it might appear that stratification is advantageous only
if the free energy changes as a function of ξ. This is, however, not so. Stratification
improves efficiency even if the free energy is constant and the motion along ξ is
strictly diffusive. If the full range of the order parameter is divided into L windows of
equal size, the computer time needed to acquire the desired statistics in each window,
τw, is proportional to the characteristic time of diffusion within a window

τw ∝ [(ξ1 − ξ0) /L]2

Dξ
. (3.16)

Then, if we neglect overlaps between consecutive windows the total computer time,
τ , is

τ = Lτw ∝ (ξ1 − ξ0)
2

LDξ
. (3.17)

This means that τ decreases linearly with the number of windows, at least for large
windows. For small windows, other factors can influence τ . First, the statistics accu-
mulated in small windows are more correlated than the statistics obtained from larger
windows. Second, for any widow size, τw must be longer than the time needed to
equilibrate the system along the degrees of freedom orthogonal to ξ. For this reason,
at some point reduction of window size no longer reduces τ . Finally, for some sys-
tems, motions along ξ and along orthogonal degrees of freedom are highly corre-
lated. If windows become too small, motion in the ξ direction is so restricted that
equilibration along other degrees of freedom becomes severely impeded, causing
quasi-nonergodicity. We will return to these issues in Chaps. 4 and 14.
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3.3.2 Importance Sampling

As outlined in Sect. 1.4, a powerful strategy to improve the efficiency of free energy
calculations is based on modifying the underlying sampling probability such that
important regions in phase space are visited more frequently. Not surprisingly, this
method is called importance sampling. To see how it works we continue to con-
sider an example of a system that is transformed along an order parameter ξ. The
conventional Boltzmann distribution for this system, ℘(ξ), is given by:

℘ (ξ) =

∫
exp [−βU(Γ )] δ

(
ξ − ξ̂

)
dΓ

∫
exp [−βU(Γ )] dΓ

, (3.18)

where dΓ denotes integration over all degrees of freedom in the system and ξ̂ can
be either the value of ξ for the coordinates Γ or one of the coordinates themselves,
depending on the nature of the order parameter. Contrary to the Boltzmann scheme,
we wish to sample from a modified distribution, ℘′(ξ), defined as

℘′ (ξ) =

∫
ω(ξ̂) exp [−βU(Γ )] δ

(
ξ − ξ̂

)
dΓ

∫
ω(ξ̂) exp [−βU(Γ )] dΓ

= ω(ξ)

∫
exp [−βU(Γ )] δ

(
ξ − ξ̂

)
dΓ

∫
ω(ξ̂) exp [−βU(Γ )] dΓ

, (3.19)

where ω (ξ) is a positive function of ξ. In the second line, the ω(ξ̂) term in the nu-
merator can be taken outside of the integral and switched to ω(ξ) due to the presence
of the delta function. Because ℘′(ξ) differs from the correct Boltzmann distribution
for the system, the methods based on sampling ℘′(ξ) are often called non-Boltzmann
sampling techniques.

If we combine (3.13), (3.18), and (3.19), we get

∆A (ξ) = −β−1 ln
ω (ξ0) ℘′ (ξ)
ω (ξ) ℘′ (ξ0)

= −β−1

[
ln

℘′ (ξ)
℘′ (ξ0)

+ lnω (ξ0) − ln ω (ξ)
]

. (3.20)

Consider the free energy difference, ∆A′(ξ), obtained from sampling the system
with the non-Boltzmann probability density ℘′(ξ), given by:

∆A′ (ξ) = −β−1 ln
℘′ (ξ)
℘′ (ξ0)

. (3.21)
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Substituting this expression into (3.20), we obtain the important result

∆A (ξ) = ∆A′ (ξ) + β−1 [lnω (ξ) − ln ω (ξ0)] . (3.22)

This formula provides a prescription for recovering the free energy of interest from
a simulation carried out using non-Boltzmann sampling. Note that the left-hand side
corresponds to the usual Boltzmann-weighted free energy difference, while the right-
hand side contains the sampling probabilities (℘′) and measurements (∆A′) from a
non-Boltzmann simulation. A slightly different and more frequent casting of this
formula can be obtained by rewriting ω as

ω (ξ) = exp [−βV (ξ)] . (3.23)

Since ω is always positive this can be done without loss of generality. We also define

U ′(ξ) = U(ξ) + V (ξ). (3.24)

Then, after substituting (3.23) and (3.24) in (3.19), we obtain

℘′ (ξ) =

∫
exp [−βU ′ (Γ )] δ

(
ξ − ξ̂

)
dΓ

∫
exp [−β U ′ (Γ )] dΓ

, (3.25)

and ∆A (ξ) can be expressed as

∆A (ξ) = ∆A′ (ξ) + [V (ξ) − V (ξ0)] . (3.26)

The last two equations mean that ℘′(ξ) can be interpreted as the Boltzmann distri-
bution for a system in which the original potential energy function has been modified
by a ‘biasing’ potential V (ξ). They also provide clues how to choose ω or, equiva-
lently, V . The desired choice is such that V (ξ) ‘counterbalances’ (is the negative of)
∆A(ξ). This would make ∆A′(ξ), and consequently ℘′(ξ), in a biased simulation
as uniform as possible. Then, in most cases, calculations would approach optimal
efficiency. Of course, perfect uniformity is difficult to achieve because this implies
that the free energy profile along ξ is accurately anticipated before the simulation.
In many instances, however, a reasonable guess can be made based on our under-
standing of the problem at hand. If this guess is correct, the benefits from increased
efficiency could be substantial, as shown in Fig. 3.2. However, if the guessed V (ξ)
does not provide a good estimate of the negative of ∆A, the gains from applying a
biasing potential will be negligible and can even lead to a loss of efficiency. Such a
situation is shown in the bottom panel of Fig. 3.2. This occurs most often for new and
challenging problems for which we lack good intuition about the shape of ∆A(ξ).

Despite this deficiency, importance sampling is a very powerful and versatile
technique. It can be used with different types of order parameters, including those
which describe an actual Hamiltonian coordinate of the system and those which
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Free Energy

Free Energy

Fig. 3.2. The unbiased free energy ∆A(ξ) (solid line), the biasing potential V (ξ) (dashed
line), and the free energy from the importance sampling (biased) simulation ∆A′(ξ) (dotted
line) as functions of the order parameter ξ. ∆A′(ξ) was obtained by subtracting V (ξ) from
∆A(ξ). In the top panel, the biasing potential was well chosen because ∆A′(ξ) is more uni-
form than ∆A(ξ). In the bottom panel, this is not the case and determining the free energy
from the importance sampling simulation is not expected to be more efficient than from the
unbiased simulation. Note that V (ξ) in this case has exactly the same shape as ∆A(ξ), but
a slightly wrong guess was made regarding its position along ξ. If V (ξ) and ∆A(ξ) were
aligned the resulting free energy profile would be flat

are calculated parameters. It is equally easy to apply in both molecular dynamics
and Monte Carlo simulations, and it can be seamlessly combined with stratification
simply by applying separate biasing potentials to different windows. Finally, it is
compatible with all general methods for free energy calculations. Not surprisingly, it
is used in some form in almost every chapter of this book. In fact, we could have
introduced it in the previous chapter, in that one of its first and most influential
applications was in the context of free energy perturbation (FEP) [15].
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The connection between importance sampling and FEP can be easily established
by noting that free energy difference between the reference and the target system in
(2.8) can be rewritten as

〈exp (−β∆U)〉0 =

∫
exp (−β∆U) exp (−βU0) dx
∫

exp (−βU0) dx
(3.27)

=

∫
exp (−β∆U) w−1w exp (−βU0) dx
∫

w−1w exp (−βU0) dx

=

〈
w−1 exp (−β∆U)

〉
w

〈w−1〉w
,

where ω = ω(x) is a weighting function and < · · · >ω denotes the ensemble average
over the distribution

℘′ (x) =
w exp (−βU0)∫
w exp (−βU0) dx

. (3.28)

If we substitute
w (x) = exp [−βV (x)] (3.29)

into (3.27), we obtain

〈exp (−β∆U)〉0 =
〈exp [−β∆U + βV ]〉w

〈exp (βV )〉w
. (3.30)

The same expression for free energy is obtained if one calculates ∆A between the
reference and the target system by sampling from an ‘intermediate’ state, for which
the potential energy is U0 + V . This approach was discussed in Sect. 2.9.1.

As we have stressed in the previous chapter, reliable calculations of ∆A require
that the range of ∆U around the peak of the integrand in (2.12) of Chap. 2 is well
sampled. This peak coincides with the peak of the probability distribution function,
℘1(∆U) obtained through sampling ∆U from the target state. This means that ℘′

needs to be sufficiently wide in ∆U to extend to both ℘0(∆U) and ℘1(∆U). For this
reason it has been called an ‘umbrella distribution,’ and the corresponding sampling
technique is referred to as ‘umbrella sampling’ (US) [15]. The name has become so
popular that it is commonly used for many different implementations of importance
sampling and their combination with stratification.

3.3.3 Importance Sampling and Stratification with WHAM

The material presented earlier in this section raises several interesting practical ques-
tions. How can one optimally reconstruct the total probability distribution from
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histograms recorded in overlapping windows? Is it possible to combine statis-
tics acquired in importance sampling simulations with different biasing potentials
(weighting functions)? Is there a systematic way to improve the choice of the bi-
asing potential, so that it yields uniform sampling along the order parameter? As
it turns out, the weighted histograms analysis method (WHAM) [16] described in
Sect. 3.2.2 provides answers to all of these questions. As discussed there, WHAM
provides a systematic approach for reconstructing the free energy profile, ∆A(ξ),
from histograms tracking the probability distribution function for finding a system
at different locations along ξ, acquired from a series of simulations that employed
different biasing potentials. The relevant equations are the general case described by
(3.12a)–(3.12c).

As we mentioned in the previous subsection, efficient sampling along the order
parameter ξ is typically achieved if the biasing potential, V (ξ) is chosen such that it
is equal to −∆A(ξ) [see (3.26)]. This implies that the free energy profile, ∆A′(ξ)
obtained from the biased simulation is flat and ξ is sampled uniformly in its full
range. Another criterion for efficiency might be that statistical errors in all bins of
the histogrammed ℘(ξ) are equal. These two criteria are closely related and become
identical if the diffusion coefficient along ξ is constant. In either case, it is clearly
possible to use the WHAM equations to refine the choice of V in an adaptive fash-
ion [17]. One simply makes an initial guess of V and performs a number of MD or
MC steps sufficiently large to obtain a reasonably accurate histogram representing
℘′(ξ). These results are used to reconstruct ∆A(ξ), which is applied as an improved
guess for V in the next simulation. The process continues iteratively until satisfactory
convergence of the free energy profile is reached. In each iteration, the histograms
obtained from all of the previous runs are used to solve the WHAM equations for
the latest estimate of ∆A(ξ). If applied carefully, iterative WHAM is a very useful
strategy. This is, however, not the only adaptive method for free energy calculations.
Later in this chapter, we will learn about several strategies for adaptive biasing in
so-called flat-histogram simulations. Furthermore, Chap. 4 presents another, power-
ful method of this type.

We close this section with some comments about errors arising from the dis-
cretization of the probability density in histogram-based free energy calculations.
The bin width in histograms must be sufficiently small that the probability density
does not change significantly within a single bin. Otherwise a systematic error arises
because the probability density averaged in a bin is higher than the probability den-
sity at its center, yielding free energy estimates that are systematically too low [18].
On the other hand, as the bin size decreases, statistical fluctuations in each bin in-
crease. Thus, the optimal choice for bin size reflects a balance between systematic
and statistical errors. Since systematic error depends on the shape of the free energy
profile, which is known only after the calculations have been completed, the optimal
choice can be done only in post-simulation analysis. The existence of both statistical
and systematic errors is common to different methods for estimating free energy and
can be traced to rapid changes in the underlying probability distributions. This issue
will be discussed at length in Chap. 6 in the context of FEP and nonequilibrium work
methods for free energy calculation.
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3.4 Flat-Histogram Methods

We turn now to a powerful class of algorithms called ‘flat-histogram’ methods that
rely fundamentally on the ideas of importance sampling mentioned in Sect. 3.3.3.
A flat-histogram simulation simply aspires to what its name suggests: equal visits to
states defined by one or more macroscopic parameters, such as the potential energy
or number of particles. Generally speaking, the MC sampling scheme which one
must employ to recover such a flat histogram is unknown at the start of the simu-
lation. This is because, as we will see later, the configurational probabilities entail
thermodynamic partition functions, which are not known a priori. Therefore, the goal
of these methods is to determine, over the course of the simulation, the appropriate
state weights which will produce the flat histogram. These weights, in turn, provide
information about the free energy or entropy of the system.

Why would one want to use flat-histogram sampling in a simulation, rather than
that of conventional ensembles? There does not seem to be any immediate advantage,
since there is no connection to systems in nature – where, for example, would we
find a liquid, the potential energy of which fluctuates uniformly between its value
at freezing and vaporization? Indeed, the flat-histogram technique is not a direct
simulation of any physical state of the system; rather, it is a way of exploring nu-
merous states in a single run. When we employ this approach, the nature of our
results differs from that of conventional ensembles in that run averages have little
significance. Instead of quantities such as the average potential energy or virial, we
use information from the calculated state weights and the observed distribution of
visited states (which we desire to be very nearly flat) to determine post-simulation
the expected averages in conventional ensembles. Equivalently, we are approximat-
ing the density of states or a partition function in generating the correct flat-histogram
sampling scheme. This information is then used to ‘reweight’ state probabilities for
the calculation of ensemble averages, as in the histogram reweighting method dis-
cussed in Sect. 3.2.

Flat-histogram sampling is a very flexible and powerful addition to our library of
Monte Carlo techniques. It allows us to sample a range of macrostate space explicitly.
Take the case of potential energy, for example. In the canonical ensemble, the range
of potential energies explored by the system becomes increasingly narrow as the sys-
tem size grows, scaling as N1/2 (compared to the average energy as N ) [19]. Thus
if one wanted to perform an overlapping histogram method in potential energy, with
canonical results obtained over a range of temperatures, the number of histograms
required would increase significantly as the system size grew. This feature would
be prohibitive for very large simulations. Alternatively, one could use the flat his-
togram approach to force the system to explore a predetermined range of potential
energy. It would be possible to perform a single simulation corresponding to the
entire temperature range of interest, or the potential energy range could be divided
arbitrarily into various overlapping ‘windows’ if multiple processors were available.
Though in the latter case, the mathematical details of patching the data from the
multiple runs would differ from the Ferrenberg–Swendsen approach, the underlying
conceptual task would be identical.
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Flat-histogram sampling is also often useful in successfully surmounting ergodic
bottlenecks. The foremost example of this is its application to first-order phase
transitions, which was one of the earliest applications of the approach [6]. Consider a
liquid in an NPT simulation at its liquid–vapor coexistence pressure, but well below
the critical temperature. Although we would expect the system volume to alternate
between its values in the gas and liquid states, in reality this is an extremely slow
if not negligible process in simulation because the intermediate densities have an
extremely low probability of being visited. In applying flat-histogram sampling to
the volume moves, we can weight these intermediate states with higher probabil-
ity, thereby encouraging the system to travel more frequently between liquid and
vapor states. Flat-histogram sampling can also be implemented in potential energy
space, which may facilitate the attainment of equilibrium simulation data by allow-
ing greater mobility in the system’s crossing of energy barriers. This is in contrast
with the conventional Boltzmann weights at low temperature, for which high energy
barriers are rarely crossed.

3.4.1 Theoretical Basis

Historically, there have been two approaches to flat-histogram simulation. In the
‘weights’ scheme, one begins with a conventional MC ensemble and adds a weight-
ing factor to the state probabilities, which later forces an equiprobable distribution
in one or more macroscopic parameters [6, 20]. In the direct partition function app-
roach, one samples explicitly according to an initially unknown partition function
(possibly the density of states), which is systematically determined over the course
of the simulation and which produces a flat histogram [21, 22]. The two methods
yield identical sampling although the implementation often differs and in specific
cases one might be conceptually more straightforward than the other.

We begin with the weights formalism in general form. Starting from a conven-
tional ensemble, we introduce a weighting factor into the microscopic sampling
probabilities which contains the weights η [23]. We construct this factor such that
the original sampling distribution is recovered when the weights are zero

℘(q) ∝ ρ0(q) exp[−η(X)], (3.31)

where ρ0 is the configuration space density in a conventional unweighted ensemble,
and X = {X1,X2, · · · } contains all the parameters for which we wish to generate a
flat distribution, such as the potential energy, number of particles, or volume. We
have introduced the exponential involving the weights η(X), which we will later
tune to obtain this flat distribution. Integrating (3.31) over all configurations with
specific values of X to find the macroscopic distribution, we obtain

℘(X) ∝ Ξ0(X) exp[−η(X)], (3.32)

where Ξ0(X) is a generic partition function, which depends on the parameters X
as well as the original ensemble density ρ0. When the weights are zero, we find
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that this partition function is proportional to the observed macroscopic distribution:
℘0(X) ∝ Ξ0(X), where again the subscript zero indicates the unweighted case.
In order to sample according to a flat distribution, therefore, we must choose the
weights as

η(X) ∝ lnΞ0(X) ∝ ln ℘0(X). (3.33)

In other words, we simply introduce a factor in the microstate probabilities which is
inversely proportional to the conventional macroscopic distribution. As a result, this
factor cancels the integrated macroscopic probabilities and leaves the distribution
constant – exactly the flat-histogram scenario of interest.

Let us illustrate this procedure with the grand-canonical ensemble, and take the
scenario in which we desire to achieve a uniform distribution in particle number N
at a given temperature. In the weights formalism, we introduce the weighting factor
η(N) into the microstate probabilities from (3.31) so that

℘(q, N) ∝ 1
Λ3NN !

exp [−βU + βµN − η(N)] (3.34a)

℘(N) ∝ Q(N,V, T ) exp [βµN − η(N)] , (3.34b)

where µ is the chemical potential. Note that we have made the dependence of ℘ on
V , T , µ, and η implicit. In order to achieve a uniform distribution in N , we require
the second of these expressions to be constant. According to (3.33), this implies that
our weights should be

η(N) ∝ βµN + lnQ(N,V, T )
= βµN − βA. (3.35)

This last expression contains the Helmholtz free energy and is reminiscent of the
familiar thermodynamic identity βµN − βA = βPV . The converged flat-histogram
weights in this scheme, therefore, seem to contain information related to the pressure
(although not necessarily the true pressure due to the fixed µ). This will be a recurring
theme: by calculating the correct weights to obtain uniform sampling, we obtain
thermodynamic information about the system. If we insert the ideal weights back
into (3.34a), we see that a flat histogram in N in the grand-canonical ensemble yields
microscopic sampling according to the inverse canonical partition function weighted
by the Boltzmann factor

℘(q, N) ∝ 1
Λ3NN !

exp [−βU ]
Q(N,V, T )

. (3.36)

In general, any flat-histogram technique corresponds to sampling microstates accord-
ing to an inverse partition function. This is because, when the microstate sampling
probability is integrated to determine the overall macrostate distribution, any par-
tition function must be canceled out to obtain a uniform scheme. In the weights
approach, we never directly reference this partition function: we implement (3.34a)
as our MC sampling scheme and adjust η until a flat histogram is obtained. The
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acceptance probabilities for particle insertions and deletions are straightforwardly
extended from those in the pure grand-canonical ensemble

Pacc(N → N + 1) = min
[
1,

V

Λ3(N + 1)
exp (−β∆U + βµ − ∆η)

]
(3.37a)

Pacc(N → N − 1) = min
[
1,

Λ3N

V
exp (−β∆U − βµ − ∆η)

]
, (3.37b)

where ∆η is the change in the weight factor for the move.
In contrast to the weights formalism, the partition function approach directly

employs the ideal flat-histogram expression in (3.36). Its goal is not to determine η
but Q(N,V, T ) directly, or more precisely in this case, the N dependence of Q. Due
to numerical reasons, we usually work instead with the associated thermodynamic
potential which is the logarithm of the partition function of interest; in this case it
is ln Q = −βA ≡ F , where we have used script F as an abbreviation. Thus our
sampling scheme becomes

℘(q, N) ∝ 1
Λ3NN !

exp [−βU − F (N)] , (3.38a)

℘(N) ∝ Q(N,V, T ) exp [−F (N)] , (3.38b)

where F is now what we will tune in order to obtain a flat histogram, and which will
converge upon the true Helmholtz free energy expression (−βA). Again, we find that
determining the correct flat-histogram sampling scheme provides thermodynamic
information. The corresponding acceptance criteria differ somewhat from (3.37a)
and (3.37b)

Pacc(N → N + 1) = min
[
1,

V

Λ3(N + 1)
exp (−β∆U − ∆F )

]
, (3.39a)

Pacc(N → N − 1) = min
[
1,

Λ3N

V
exp (−β∆U − ∆F )

]
. (3.39b)

To reach a flat histogram in either approach, eventually we must determine an
unknown thermodynamic function of N , whether it be η or F . Both functions play
into the microstate sampling scheme and hence the acceptance probability in our
simulation. Usually we can only determine these functions to an arbitrary constant
since additive shifts in them have no effect on the resulting probability distribution
(the reason is identical to that discussed in Sect. 3.2.1). We, therefore, usually set
their minimum value to be zero and shift accordingly. Typically we also start off each
simulation by setting η or F to be zero for all values of N . This has a distinct effect
in the two approaches, as the initial ensembles yield different distributions. During
the course of the simulation, we then have a nice feedback mechanism for systematic
adjustment: if we obtain a flat histogram, we have converged to the true functions of
interest; otherwise we must make changes to our working approximation.
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If we wish to generate a uniform distribution in all of the macrostates that fluctu-
ate during the simulation (in this case both N and U ), the same arguments necessitate
the following microstate sampling scheme:

℘(q, N) ∝ 1
N !

Ω(N,V, U)−1, (3.40)

where the relevant quantity is the density of states. This expression is actually quite
general, as it applies to all situations in which we wish to generate equiprobable
distributions in all fluctuating macroscopic parameters of interest – a specific flat-
histogram scenario we will term a density-of-states simulation (Fig. 3.3). In fact,
it is possible to define density-of-states expressions for and run flat-histogram
simulations using arbitrary macroscopic parameters, beyond the familiar N,V, U .
In such cases, the sampling scheme in (3.40) is simply modified by introducing
additional dependent variables into Ω. We elaborate on this in Sect. 3.5, but for the
present discussion we simply emphasize that any density-of-states simulation re-
quires us to determine the dependence of Ω on the fluctuating quantities of interest.
Again in practice, we usually determine its logarithm instead, S = lnΩ, where S
is the dimensionless entropy. The acceptance criterion for single-particle displace-
ments, additions and deletions, and volume scaling moves for these simulations can
all be written as [24]

Pacc(o → n) = exp [−∆Sex] , (3.41)

where o and n are the original and new states, and Sex = lnΩex = S − ln N !
− N ln V is the dimensionless excess entropy, as defined in Chap. 1.

Ultimately from these simulations, we would like to recover thermodynamic
data appropriate to natural ensembles. This is readily accomplished by histogram-
reweighting techniques, in which we convert a measured probability distribution
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Fig. 3.3. Typical results from a density-of-states simulation in which one generates the entropy
for a liquid at fixed N and V (i.e., fixed density) (adapted from [29]). The dimensionless entropy
S = ln Ω is shown as a function of potential energy U for the 110-particle Lennard-Jones
fluid at ρ = 0.88. Given an input temperature, the entropy function can be reweighted to obtain
canonical probabilities. The most probable potential energyU∗ for a given temperature is related
to the slope of this curve, dS /dU(U∗) = 1/kBT , and this temperature–energy relationship
is shown by the dotted line. Energy and temperature are expressed in Lennard-Jones units
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from one set of state conditions to another. In the weights approach, for example,
we can combine the weighted and unweighted (η = 0) instances of (3.34b) to give

℘(N ;µ) ∝ ℘̃(N ;µ0, η) exp [β(µ − µ0)N + η(N)] , (3.42)

where ℘̃ is the measured probability distribution using the weights and µ0 is the
original chemical potential at which the weights were run. This expression allows
us to determine the N distribution for any chemical potential at β, as the propor-
tionality is fixed by the normalization condition. In practice, we will be limited by
chemical potentials corresponding to the range of N explored in the flat-histogram
simulation. There is an underlying generality here: for each fluctuating macroscopic
parameter for which we enforce a flat histogram, we can reweight simulation re-
sults in the conjugate thermodynamic field.1 So if we had enforced a flat distribu-
tion of both particle number and energy, for example, it would be straightforward to
determine ℘(N,U ;µ, T ) for arbitrary chemical potential and temperature. For the
partition function approach, we instead divide the unweighted grand canonical prob-
ability by (3.38b)

℘(N ;µ) ∝ ℘̃(N ;F ) exp [βµN + F (N)] , (3.43)

where ℘̃(N ;F ) is the distribution measured from the ensemble using F in (3.38a).
In general for either the weights or partition function approach, the reweighting
procedure is easily determined by dividing the macrostate probability scheme of
the desired ensemble by that of the simulated flat-histogram one. The flat-histogram
sampling and reweighting procedures for common ensembles are summarized
in Table 3.1.

The reader may be concerned by the appearance of ℘̃ in (3.42) and (3.43). After
all, the very definition of a flat-histogram simulation says that this expression should
be a constant, independent of N , so why do we need to measure it? The answer
is simple: we do not, provided our weights are determined to sufficient statistical
accuracy. Occasionally, however, extremely precise determination of η can become
computationally demanding, and rather than perform very long simulations which
guarantee a completely flat histogram, it is more efficient to run for moderate
length with a rough estimate of η which provides a ‘flat enough’ histogram – one
in which all macrostates are visited. In this latter case, measurement of ℘̃ for (3.42)
compensates for the statistical uncertainty in the weights. Still, recent algorithms
[21, 25–28] have emerged which permit both efficient and accurate determination
of flat-histogram sampling schemes, from which the calculated weights or parti-
tion function is used directly. If we apply these methods using the partition function

1 Of course we need not implement a flat-histogram scheme to perform histogram reweight-
ing. Practically speaking, however, we are always limited in reweighting to the finite range
of macrostate space explored by the original simulation. Flat-histogram sampling often
greatly increases this range relative to single runs in conventional ensembles, and therefore
significantly increases our reweighting ability in the associated macrostates.
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Table 3.1. Common flat-histogram ensembles and their reweighing procedures

Variable(s) Microstate probabilities Reweighting probabilities
U ℘(q) ∝ e−S (U) ℘(U ; T ) ∝ ℘̃(U)eS (U)−βU

U, N ℘(q, N) ∝ 1
N !

e−S (N,U) ℘(N, U ; µ, T ) ∝ ℘̃(N, U)Λ−3N

×eS (N,U)−βU+βµN

U, V ℘(q, V ) ∝ e−S (V,U) ℘(V, U ; P, T ) ∝ ℘̃(V, U)

×eS (N,V )−βU−βPV

N
℘(q, N ; T0) ∝ 1

N !Λ3N

×e−β0U−F(N) ℘(U ; µ, T0) ∝ ℘̃(N)eF(N)+β0µN

V ℘(q, V ; T0) ∝ e−β0U−F(V ) ℘(V ; P, T0) ∝ ℘̃(V )eF(V )−β0PV

The first column indicates the flat-histogram variables, the second the prescribed microstate
sampling scheme, and the third the appropriate reweighing probabilities. The script variables
S and F are the weights to be determined, which converge on ln Ω and ln Q, respectively,
in the flat-histogram limit. ℘̃ is the measured distribution from the flat-histogram simulation,
frequently dropped if the weights are calculated to high accuracy

formalism, we can directly determine quantities such as the free energy (F ) or en-
tropy (S ) along various macrostate coordinates.2

We have hitherto overlooked two important points. One is that we certainly
cannot perform a flat-histogram simulation over the entire range of many macro-
scopic parameters, including N,V, U which are all unbounded to the right. For prac-
tical reasons, we also desire to sample a range of macrostate space of our choosing,
for example a particular potential energy range corresponding to the temperatures
we wish to study. Therefore, these simulations always entail macrostate bounds,
and moves are rejected which would take the system beyond them. Algorithmically,
these rejection moves are treated as any other rejection. The second important point
is that reaching ‘equilibrium’ in a run is no longer indicated by the convergence
of simulation averages, but rather by the accurate determination of state weights.
An important measure of the dynamics in these MC simulations, analogous to the
structural relaxation time in conventional ensembles, is the so-called tunneling time,
generically defined as the time it takes the system to sample all of its macrostates
[6, 29]. For example, this might be the number of steps required to move between
the minimum and maximum energy boundaries during a flat-histogram simulation in
potential energy.

Not surprisingly, the essential component of flat-histogram algorithms is the
determination of the weights, η, or the thermodynamic potential, e.g., F or S . There
exist a number of techniques for accomplishing this task. The remainder of this sec-
tion is dedicated to reviewing a small but instructive subset of these methods, the
multicanonical, Wang–Landau, and transition-matrix approaches. We subsequently
discuss their common and sometimes subtle implementation issues, which become
of practical importance in any simulation.

2 More accurately, we can determine free energy and entropy differences, since their absolute
value remains unspecified.
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3.4.2 The Multicanonical Method

The multicanonical algorithm of Berg and Neuhaus [6] is a weights approach to flat-
histogram simulation, building closely upon the ideas of reweighting in Sect. 3.2.1.
In this method, near-ideal flat-histogram weights η are first iteratively determined
through several small preproduction runs, and then a longer simulation interval us-
ing these results is performed to collect histogram data for reweighting [20]. We
again take the grand canonical ensemble as our example, with weights in the particle
number N . The multicanonical approach specifies the state probabilities as:

℘(q, N ; ηi) =
1

Λ3NN !
exp [−βU + βµN − ηi(N)]

Ξ(µ, V, T ; ηi)
, (3.44a)

℘(N ; ηi) =
Q(N,V, T ) exp [βµN − ηi(N)]

Ξ(µ, V, T ; ηi)
, (3.44b)

where the difference from (3.34a) and (3.34b) is the subscript on η and the specifi-
cation of the denominators. For two sets of weights η1 and η2 at the same µ, V , and
T , we have two instances of (3.44b) which can be combined to yield:

ln ℘(N ; η1) − ln ℘(N ; η2) = η2(N) − η1(N) + lnΞ(η2) − ln Ξ(η1). (3.45)

This expression forms the basis of the weight update scheme in our multicanoni-
cal simulation. For the set of weights η1, we can perform a short simulation and
measure the ℘(N ; η1) distribution. Then, by setting ℘(N ; η2) in (3.45) to a uniform
distribution, we are able to estimate a new set of weights η2 corresponding to a flat
histogram. When we run with this new set of weights, however, we still may not
find a completely flat histogram owing to numerical uncertainty in our original mea-
surements at the tails of ℘(N ; η1). Therefore, we may have to iterate this process
several times until the statistics of the measured ℘(N) become good enough over
the complete N range to permit accurate estimation of all the weight values. In more
general terms, therefore, we can write this iterative process as

ηi+1(N) = ln f(N ; ηi) + ηi(N) + k, (3.46)

where i refers to the ith simulation run, f gives the raw histogram counts of N , and
k is a constant which we simply adjust such that the minimum value of ηi+1 is zero.
Here we have omitted all terms from (3.45) which are additive and independent of
N , as they have no effect on the probability scheme. An immediate problem with
(3.46), however, is that weight estimates become ill-defined for values of N at which
f = 0. Using a Bayesian-statistical framework, Smith and Bruce have shown that an
alternate update scheme is justified and avoids this shortcoming [25]

ηi+1(N) = ln [f(N ; ηi) + 1] + ηi(N) + k. (3.47)

The procedure implied by (3.46) is simple: we start off with any weights of our
choice, although often the most convenient choice is simply η1(N) = 0. We perform
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a short simulation with these values, measuring ℘(N ; η1), and use this information
to predict the next set of weights. We continue this process until η is reasonably
converged and until we achieve, more or less, an equal sampling in particle number.
At this point, we fix our final weights ηf and perform a much longer simulation in or-
der to gather accurate statistics for ℘̃(N ; ηf ). The resulting data set ηf and ℘̃(N ; ηf )
can then be used in conjunction with (3.42) to generate conventional averages at the
desired chemical potential. A typical evolution of the weights for a grand-canonical
simulation of the Lennard-Jones system is shown in Fig. 3.4.

Beyond our grand canonical example, the multicanonical procedure for deter-
mining η is quite general and straightforward. In most cases, the weights update
scheme is nearly identical to (3.46) and (3.47), with changes only in the dependent
variables of η and f . This is intuitive, as a flat f will leave the weights unchanged
from the previous iteration, as desired. A weakness of the multicanonical approach,
however, is that statistical information from previous runs is discarded as one iterates
the weights. That is, only data from run i is directly utilized for the i + 1 weights,
not the cumulative data from runs 1, 2, . . . , i. A remedy developed by Smith and
Bruce [25] is to incorporate uncertainties in the weight update scheme

ηi+1(N)
σ2

i+1(N)
=

ηi(N)
σ2

i (N)
+

η̂i+1(N)
σ̂2

i+1(N)
(3.48)
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Fig. 3.4. Evolution of the weights ηi(N) and the histograms fi(N) in a grand-canonical
implementation of the multicanonical method for the Lennard-Jones fluid at V = 125. The
temperature is T = 1.2 and the initial chemical potential is µ = −3.7. The weights are
updated after each 10-million-step interval, and the numbers indicate the iteration number.
The second peak in the weights at large particle numbers indicates that the initial chemical
potential is close to its value at coexistence
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with:
1

σ2
i+1(N)

=
1

σ2
i (N)

+
1

σ̂2
i+1(N)

(3.49a)

η̂i+1(N) = 〈ln f(N ; ηi) + ηi(N) + k〉 (3.49b)

σ̂2
i+1(N) = var [ln f(N ; ηi) + ηi(N) + k] , (3.49c)

where η̂ and σ̂ are the average weights and their uncertainties predicted from iteration
i. Unlike previously, this procedure requires one to determine the uncertainty in each
ηi+1(N). Smith and Bruce suggested subdividing the total histogram f(N ; ηi) into
M subhistograms, each producing an estimate of ηi+1 from which means and vari-
ance are extracted. They had moderate success with this particular approach, which
required special attention in the initial iterations and local averaging of σ̂ for good
convergence.

3.4.3 Wang–Landau Sampling

The Wang–Landau (WL) method is a flat-histogram technique of the partition func-
tion variety, and is designed to calculate thermodynamic potentials directly to a high
level of accuracy [21, 22]. Originally designed for discrete lattice systems, the WL
approach was successfully adapted to continuum fluids by Yan et al. [30] and Shell
et al. [24]. Wang and Landau originally introduced their algorithm for the calculation
of the density of states. For that reason, we will take as our example the determina-
tion of Ω(U) for a fixed-density fluid. However, the method is equally applicable to
the calculation of other partition functions as discussed in Sect. 3.4.1.

Unlike the multicanonical method, the WL algorithm does not consist of separate
weight-determining and production periods, but entails a series of stages over which
the density of states is successively approximated with increasing precision. Perhaps
the defining feature of the WL approach is the continuous modification of its sam-
pling scheme at each step, which would be analogous to multicanonical updating of
η with each Monte Carlo move. We begin with the microstate probabilities in our
example

℘(q) = exp [−S (U)], (3.50)

the single-particle displacement acceptance criterion of which is

Pacc(Uo → Un) = min {1, exp [S (Uo) − S (Un)]} , (3.51)

where the “ex” subscript from (3.41) can be dropped owing to constant N and V .
Here we have written the sampling scheme in terms of the dimensionless entropy
rather than the density of states; for convenience and its connection with the actual
implementation, we will deal with the former in this example, although we note that
the original formulation differs in this respect. The initial estimate for S is set to zero
for all U , and the simulation proceeds according to (3.51). The crucial element is that
after each MC move, the value of the entropy at the ending energy (or in general, the
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value of the logarithm of the partition function at the current macroscopic state) is
updated according to

S (Uend) ← S (Uend) + g, (3.52)

where g is a parameter greater than zero, termed the modification factor. Equation
(3.52) is applied regardless of whether the ending state is the original configuration
after a rejection or a new configuration after an acceptance. In this way, the estimate
for the partition function is dynamically modified, with g controlling the magnitude
of those modifications. Another way to think about it is that we are ‘building up’ an
estimate for S as we go. The particular form of the update scheme in (3.52) has
an important property: when all energies are visited on an equal basis, on average
the entire S (U) curve will simply shift by an increasing amount with time. We
immediately realize that this does not affect the entropy calculation, since we always
adjust S (U) so that its minimum value is zero (recall that additive shifts in the
entropy have no effect on the microstate probabilities). Therefore, the convergence of
the entropy and the attainment of a flat histogram are directly linked in this update
scheme. Initially the system will sample only energies of the highest entropy, but as
S (U) is built up, those states will be sampled less frequently according to (3.50)
until ultimately a flat histogram is reached.

The modification factor plays a central role in a WL simulation and has several
effects. First, its presence violates microscopic detailed balance because it continu-
ously alters the state probabilities, and hence acceptance criterion. Only for g = 0 do
we obtain a true Markov sampling of our system. Furthermore, we obviously cannot
resolve entropy differences which are smaller than g, yet we need the modification
factor to be large enough to build up the entropy estimate in a reasonable amount of
simulation time. Wang and Landau’s resolution of these problems was to impose a
schedule on g, in which it starts at a modest value on the order of one and decreases
in stages until a value very near to zero (typically in the range 10−5–10−8). In this
manner, detailed balance is satisfied asymptotically toward the end of the simulation.

Wang and Landau proposed several heuristics for automating the modification
factor schedule. A stage is deemed ‘complete’ when the histogram for that stage is
deemed flat enough, which they suggested was the point at which no histogram bin
was less than 80% of the average bin value. Yan and de Pablo [27] showed that tuning
this percentage higher has the effect of increasing the statistical efficiency of method,
but at the expense of greater simulation time. Other heuristics have also been sug-
gested; for example, Shell et al. suggest that a stage is complete when each histogram
bin has been visited a minimum number of times [24]. Regardless, once a stage is
finished the modification factor must be decreased. Wang and Landau suggested

g ← 1
2
g, (3.53)

which has proved adequate in numerous studies (some discussion of this choice is
provided in [22]).

The WL simulation terminates when the last stage takes g below some cutoff
value; at that point, the output is the calculated S . Contrary to the multicanonical



3 Methods Based on Probability Distributions and Histograms 103

scheme, the flat-histogram probability distribution is not reweighted, but instead the
converged entropy is used directly as the true entropy. Canonical averages such as
the energy, for example, follow (3.4)

〈U〉 (T ) =

∫
Ue−βU+S (U)dU
∫

e−βU+S (U)dU

. (3.54)

The same approach applies to alternate partition functions; the WL output is used di-
rectly in the macroscopic probability scheme. For example, in the previous grand
canonical scenario, the WL simulation would yield F , which would be substituted
directly into the macrostate probabilities as Q = exp(F ) for subsequent results
generation.

A nice feature of the WL algorithm is that it is readily amenable to labor division
by multiple processors. As suggested by the original authors, the energy range of
interest can be divided into multiple overlapping windows, and an individual simu-
lation can be performed on each subrange. Such stratification has been described in
greater detail in Sect. 3.4.2. The procedure is illustrated graphically in Fig. 3.5. Mul-
tiple windows are especially useful when attempting to explore large energy ranges,
as otherwise the long tunneling time of the complete range might be prohibitive. At
the end of the subrange simulations, the data are patched together by shifting the
entropy functions to obtain agreement in their overlap. Assuming the statistical error
in S is uniform, one minimizes the following variance [24]

energy range
(a)

(b)

S

U

Fig. 3.5. (a) Schematic of a parallel processing setup for a flat-histogram simulation in energy.
Each processor is assigned a ‘window’ of energy, and moves which take the system outside of
the window are rejected. To restore ergodicity, periodic configurations swaps are performed
between adjacent windows when the respective configurations are both within the overlapping
region. (b) Illustration of the postsimulation patching procedure for the generation of an over-
all entropy curve from adjacent windows. The two curves are shifted to obtain overlap in the
region of common energy; entropy values at the overlapping energies are then averaged
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σ2
tot =

∑
i<j

∑
k

[Si(k) + Ci − Sj(k) − Cj ]
2
, (3.55)

where i and j are indices of the subrange results, the constants C are the values
by which the entropies are to be shifted, and k is an index for all overlapping
points between subranges i and j. In our example, k runs over the overlapping
energies between two subranges. One C value must be specified to obtain a solution
to this equation; once the remainder are determined, the overall entropy is pieced
together from each shifted section with values at areas of overlap averaged. For two
adjacent S (U) curves, minimization of σ2

tot is given by:

Cj − Ci = 〈Si(U) − Sj(U)〉overlap , (3.56)

where the average is performed over the overlap region. The equivalent patching
procedure for multiple macrostate variables simply involves the introduction of
additional sums in (3.55) over the appropriate parameters, although its minimization
may be more complex than (3.56).

An important caveat associated with multiple-range patching is the possible
restriction of system ergodicity. It is possible that a small window would not per-
mit the system sufficient flexibility in exploring ergodically all of the states in
that window. This might occur, for example, if the system is trapped in a local
potential energy minimum, the escape energy of which resides outside of the sub-
range upper energy bound. To avoid restricting the system’s ability to explore its
phase space, one can link each subrange together in a parallel computing fashion
with occasional configuration swaps between adjacent windows. This is reminiscent
of the replica exchange or parallel tempering methods [31–33] discussed in Chap. 8.
Configurations in the overlapping region of adjacent energy windows are periodically
swapped with an acceptance probability of

Pacc(1 ↔ 2) = min {1, exp [S1(U1) + S2(U2) − S1(U2) − S2(U1)]} . (3.57)

However, since S1 and S2 asymptote to the same function, one might approxi-
mate S1(U) = S2(U) in (3.57) so that the acceptance probability is a constant.3

The procedure allows trial swaps to be accepted with 100% probability. This general
parallel processing scheme, in which the macrostate range is divided into win-
dows and configuration swaps are permitted, is not limited to density-of-states
simulations or the WL algorithm in particular. Alternate partition functions can be
calculated in this way, such as F from previous discussions, and the parallel imple-
mentation is also feasible for the multicanonical approach [34] and transition-matrix
calculations [35].

The principle benefits of the WL method are its wide applicability, ease of
implementation, and rapid initial sampling of the macrostate space of interest. It

3 This simplification of the acceptance criterion must be justified a posteriori by the obser-
vation that S1 and S2 are statistically identical in their overlap region. Otherwise, strict
detailed balance is not reached toward the end of the WL simulation.
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can be used in both continuum and lattice systems, and a number of methodolog-
ical variants exist, including ‘multibondic’ [36], N -fold way [37], quantum [38],
and reverse MC [39] extensions. It has since been recognized, however, that the ap-
proach can reach a limiting statistical accuracy, beyond which additional stages of the
modification factor do not diminish the errors in the calculated density of states [27].
This appears particularly problematic in the simulation of fluids, when ultimately
the changes in the modification factor occur too quickly relative to the ability of
the calculations to adjust to them. Not surprisingly, increasing the stringency of the
flat-histogram requirement – say, from 80% to 90% flatness – postpones this statisti-
cal deadlock, but at the expense of increased computational time [27]. The problem
is illustrated in Fig. 3.6, which plots the typical evolution of the statistical error in S
for a density of states simulation of the Lennard-Jones fluid.

Several authors have proposed improvements to the precision of WL calcula-
tions through the incorporation of additional ‘estimators’ of the entropy. For random
walks in potential energy, Yan and de Pablo [27] have suggested the incorporation
of temperature estimators which contain information about the slope of the entropy
curve, β = ∂S /∂U , and hence can be integrated to produce an estimate of S . Dur-
ing the WL simulation, they record instantaneous temperatures from each configura-
tion based on an expression due to Butler and co-workers [40]: β =

〈
∇2U/|∇U2|

〉
,

where the derivatives are with respect to the configurational coordinates. They tab-
ulate the average temperature as a function of potential energy and, at the end of at
each modification factor stage, generate an entirely new entropy curve by integrat-
ing this data. This procedure generates entropy estimates of higher statistical quality
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Fig. 3.6. Evolution of a WL simulation for the Lennard-Jones fluid at ρ = 0.88 and N = 110.
The calculated quantity of interest is the dimensionless entropy, S , as a function of potential
energy. The average statistical error is determined from the standard deviation of S from 10
independent runs. The modification factor curve (the dotted line) has also been averaged over
these runs, and consequently appears smoother than would normally be the case
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than the original method, but requires computational overhead in the calculation of
forces and their derivatives.

Building on these ideas, Shell and co-workers proposed the incorporation of
transition-matrix estimates of S [28]. They record the move proposal statistics
during the simulation, which are used to calculate transition probabilities from one
macrostate to another. Then, rather than integrating a temperature–energy curve at
the end of each stage, they determine a new entropy estimate from this history of
move proposals (see Sect. 3.4.4 for formal details). As with the configurational tem-
perature approach, the calculations for S are much improved with the additional
estimator; however, no energy derivatives are required and the transition-matrix
formalism remains general to arbitrary macroscopic variables.

Finally, Zhou, and Bhatt have performed a mathematical analysis of the WL
method, which explores the relationship between the modification factor schedule,
flat-histogram requirement, and rate of calculation of S [41]. In particular, they
suggests that an optimal strategy for making changes to the modification factor is to
make the flatness requirement increasingly stringent with each stage.

In summary, Wang and Landau’s algorithm appears to be a robust and straight-
forward tool for generating rapid flat-histogram sampling and reasonably accurate
estimates of the entropy or free energy. Highly precise calculations, though, may
require the incorporation of additional estimators.

3.4.4 Transition-Matrix Estimators

Whereas the histograms we have discussed deal with the raw number of visits to
each state, a transition matrix concerns itself with the number of moves between
pairs of states. Transition-matrix calculations are bookkeeping schemes for transi-
tion probabilities between macrostates, and typically generate excellent estimates of
thermodynamic functions with high statistical accuracy. This latter observation was
originally made by Smith and Bruce [25, 42], and later explored by Oliveira [43, 44];
Wang and Swendsen [26, 45]; and Fitzgerald, Picard, and Silver [46, 47] as the
basis of several simulation methods. We present here a general outline of their use in
simulation.

We begin with the microstate probability t(i → j) of making a move from con-
figuration i to j, each characterized by a volume, number of particles, and set of
coordinates q. This probability and its reverse satisfy the detailed balance condition:

℘(i)t(i → j) = ℘(j)t(j → i). (3.58)

Now consider the macrostates I and J to which the microstates belong. These
macrostates may be characterized by a combination of N,V, U or any other
well-defined order parameter. If we sum all instances of (3.58) for the pairs of
microstates i ∈ I and j ∈ J , we can write

∑
i∈I

∑
j∈J

℘(i)t(i → j) =
∑
i∈I

∑
j∈J

℘(j)t(j → i). (3.59)
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Note that we have employed discrete notation, although rigorously this sum is an
integral in configuration space. The choice is for clarity in the following derivations,
and our conclusions will be unaffected by the notation. With minor manipulation,
(3.59) gives this important result

℘(I)T (I → J) = ℘(J)T (J → I), (3.60)

where we have made the definitions

T (I → J) =

∑
i∈I

∑
j∈J

℘(i)t(i → j)

∑
i∈I

℘(i)
, (3.61a)

℘(I) =
∑
i∈I

℘(i). (3.61b)

The physical significance of T (I → J) in this definition is crucial to its practical
use: it gives the probability a move will be made from macrostate I to J , and thus
is the macroscopic analog of t(i → j). Essentially, T (I → J) is the ensemble
average of all of the microstate transition probabilities for moving from a member
of macrostate I to any member of macrostate J . The function ℘(I), on the other
hand, gives the total probability of macrostate I in the ensemble, and is related to
a partition function (see, for example, Sect. 3.2). Equation (3.60) is therefore rather
remarkable, implying that the macrostate transition probabilities also satisfy detailed
balance. That is, the equilibrium flux from macrostate I to J equals that of J to I .
Even more importantly, it provides a key thermodynamic estimator. Given numerical
values for T (I → J) and T (J → I), we can determine the ratio ℘(I)/℘(J), which
is related to a free energy difference.

Fortunately for us, measurement of the macroscopic transition probabilities is
straightforward. We could accomplish this, for example, by counting the number of
times moves are made between every I and J macrostate in our simulation. The esti-
mate for T (I → J) would then be the number of times a move from I to J occurred,
divided by the total number of attempted moves from I . The latter is simply given by
the sum of counts for transitions from I to any state. A more precise procedure that
retains more information than simple counts is to record the acceptance probabilities
themselves, regardless of the actual acceptance of the moves [46, 47]. In this case,
one adds a fractional probability to the running tallies, rather than a count (the num-
ber one). This data is stored in a matrix, which we will notate C(I, J) and which
initially contains all zeros. With each move, we then update C as

C(I, J) ← C(I, J) + Pacc

C(I, I) ← C(I, I) + [1 − Pacc] . (3.62)

The estimates for the transition probabilities are then given by

T̃ (I → J) = C(I, J)/
∑
K

C(I,K). (3.63)
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Note that (3.63) would also be the appropriate expression if C recorded counts. By
recording the actual acceptance probabilities, however, we are in effect maintain-
ing more information than the binary accept or reject data. This approach is also
more flexible; if the acceptance probabilities change during the simulation, due to
changes in temperature or weighting function, for example, the C matrix does not
need to be re-zeroed.4 Instead, one simply calculates what the acceptance probabil-
ity would have been in the original sampling scheme – with the original temperature
or weights – for use in (3.62). In other words, all of the Pacc data used to update
C are derived from or adjusted to the original ensemble. The general expression for
updates to the C matrix is therefore

C(I, J) ← C(I, J) + (Pacc)0
C(I, I) ← C(I, I) + [1 − (Pacc)0] , (3.64)

where the subscript “0” indicates that the acceptance probabilities are calculated in
the reference “0” ensemble. This feature also permits a straightforward implemen-
tation in a parallel processing scenario like the one described in Sect. 3.4.3; each
processor simply updates a section of the overall transition matrix [35].

Of practical importance, we must consider the situation in which the proposed
move J lies outside our macrostate boundaries. For such moves, we only need to
update the diagonal term as

C(I, I) ← C(I, I) + 1. (3.65)

Actually, any time a move is proposed to a region outside the bounds of our transition
matrix, whether or not it actually takes the system outside of some constraint, the
equivalent transition-matrix update is to add the extrinsic Pacc to the diagonal C term
instead. Since the diagonal terms enter in the final calculations only to normalize the
transition probabilities [i.e., they appear only in the denominator of (3.63)], adding
such data to the diagonal maintains the correct normalization without affecting the
results.

Let us illustrate the transition-matrix procedure with the grand-canonical example
[48]. Initially, we will consider the unweighted case (pure grand-canonical ensem-
ble). Here, I and J denote particle numbers and C(I, J) records only the statistics
of particle addition and deletion moves. This means that C(I, J) is a tridiagonal
matrix. Substituting the macrostate probabilities of (3.34b) into (3.60) and taking
the logarithm, we find that the transition probabilities provide an estimate of the
Helmholtz free energy

βA(N + 1, V, T ) − βA(N,V, T ) − βµ = lnT (N + 1 → N) − ln T (N → N + 1)
(3.66)

4 If the sampling scheme is changed, C(I, J) can continue to be updated with an adjusted
Pacc provided that the distribution of states within the macrostates does not change. This
would not be the case, for example, if we were only monitoring transition probabilities
between particle numbers and the temperature changed, as it would redistribute the
microstate probabilities within each value of N .
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or more compactly,

F (N) − F (N + 1) − βµ = lnT (N + 1 → N) − ln T (N → N + 1). (3.67)

Implicitly, the T (I → J) are a function of the chemical potential and temper-
ature at which they were measured. After our simulation, we can determine the
complete Helmholtz function (to an additive constant) by considering the transition
probabilities between each neighboring pair of particle numbers. Of course, our re-
sults will be practically limited to the range of N explored by the simulation, beyond
which the statistics of T (I → J) will be too poor. In order to broaden this range, we
could change the chemical potential. By continuing to add data to the C matrix as if
the chemical potential had not changed, i.e., by calculating Pacc for the original µ,
the C matrix would not need to be re-zeroed between the change.

A more systematic approach for sampling a wider range of particle numbers is to
incorporate flat-histogram sampling. The remarkable feature of the transition-matrix
approach is that it yields exactly the information we need to do this. Recall that, in
order to achieve a flat distribution in N in the grand canonical ensemble, we need
an estimate for the macrostate probabilities ℘ ∝ Q(N) exp(βµN). From (3.66), this
is precisely the information we obtain from the transition probabilities. In general,
the relevant T (I → J) will always provide us with the necessary flat-histogram
information because they relate directly to the macroscopic probabilities as in (3.60).
The usual flat-histogram procedure in this case is to update periodically the weights
η or potential F from the transition-matrix data, in the same sense as multicanonical
iterations [25, 47–49]. Detailed balance is violated at the step after an update, and so
each iteration should be sufficiently long to guarantee ergodic sampling. Regardless
of the iteration procedure, however, the transition matrix is always updated with the
acceptance probabilities of the original ensemble, for which the weights are zero (see
Fig. 3.7).

As we have seen one of the most attractive features of this formalism is that it
permits the continual addition of data to a transition matrix – when state probab-
ilities change, we can continue calculating acceptance probabilities for the tran-
sition matrix according to the original ensemble weights. If the original weights
do not matter because they will be systematically adjusted (as in a flat-histogram
setting, for example), we can choose a simple transition-matrix scheme which is
based exclusively on move proposal probabilities. In this case, we let the original
microstate probabilities be such that the acceptance of moves is always 100%, which
for single-particle displacements corresponds to ℘(q) = const. Even though the
actual acceptance of moves is tuned to less than 100% by adjusting a weight factor,
the transition matrix is then always updated in the following manner: entries in the
C(I, J) matrix are incremented by a numerical value of 1 whenever a move is pro-
posed between macrostates I and J . This procedure is often identical to an initial
infinite-temperature ensemble, and is sometimes referred to as such [26]. The pro-
posal approach is readily implemented in a density-of-states algorithm. The desired
sampling scheme is exp(−S ), and by incrementing C(I, J) by one every time a
move is proposed from I to J , an estimate for entropy can be extracted [28]
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Propose and accept/reject moves: 
℘acc(o→n) ~ ρ (n)/ρ (o) exp[η(o)-η(n)]

Collect transition
 matrix in C(I, J )

Collect histogram
 data in ƒ(I  )

Update η  : 
ηnew(I ) = ηnew(J ) +

 ln T(I → J ) /T(J → I )

Keep C (I, J ) and
add subsequent entries

as if η(I ) = 0 for all I

Update η:
 ηnew(I ) = ηold(I ) +

 ln[ƒ(I )+1] +k

Rezero ƒ (I  )
for next iteration of

 histogram data

Start with η = 0transition matrix multicanonical

Fig. 3.7. Schematic comparison of the multicanonical and iterative transition-matrix methods.
The light gray box indicates a single iteration of several thousand or more individual Monte
Carlo steps. The acceptance criterion includes the configuration-space density of the original
ensemble, ρ, and is presented for symmetric moves such as single-particle displacements

S (I) − S (J) = lnTprop(J → I) − ln Tprop(I → J), (3.68)

where Tprop is the proposal probability. This expression is applicable to symmetric
moves, such as single-particle displacements in continuum systems and single-spin
flips in lattice models. A typical proposal transition matrix in potential energy for
single-particle displacements is shown in Fig. 3.8.

An iteration process similar to the multicanonical approach can also be applied
to density-of-states transition-matrix calculations; the function S is updated from
the proposal probabilities over several iterations. In the density-of-states formula-
tion, there is no need to ‘adjust’ the additions to C to be congruent with the initial
ensemble, since the move proposal probabilities are naturally ensemble independent.
In practice, however, the actual convergence of this iterative procedure can become
quite slow when one is trying to sample large ranges of energy. The problem is
that, for each iteration, a large number of MC steps are required to reach previously
unexplored states, which means that numerous iterations are necessary in order to
generate an initial estimate of S over the macrostate range of interest. To sidestep
this difficulty, Shell et al. [28] suggested the addition of dynamic WL modification
of S in the early stages of the simulation, with the transition-matrix calculations
taking over once an initial estimate is determined.

In some cases, the data in a single transition matrix provides more thermodynamic
estimates than there are unknowns. This routinely occurs when one examines
transition probabilities among potential energy levels, since each energy is usu-
ally connected to a handful of neighbors rather than two. The simplest approach
is to consider only immediate neighbors, and to discard the information provided
by transitions between energy levels which are not consecutive. However, Wang
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Fig. 3.8. Transition matrix of move proposal probabilities for the Lennard-Jones fluid at ρ =
0.88 and N = 110. The energy range of −700 to −500 in Lennard-Jones units has been
discretized into 100 bins. Due to the adjustment of the random displacement moves to achieve
50% acceptance, the transition probabilities are highly banded. The tuned moves change the
potential energy by only a small amount, and as a result, each energy level is effectively only
connected to a few neighbors

and Swendsen suggested incorporating the complete set of data by minimizing the
variance among the predicted values of ln ℘(I) [26], where the variance is defined by

σ2
tot =

∑
I,J

[ln ℘̃(I) − ln ℘̃(J) + ln T̃ (I → J) − ln T̃ (J → I)]2

σ2
IJ

, (3.69)

where σ2
IJ is the variance of the single prediction for [ln ℘̃(I) − ln ℘̃(J)]. The indi-

vidual variances might be estimated using the number of observed transitions; in the
density-of-states version, for example, one might assume var [C(I, J)] ∝ C(I, J),
which yields

σ2
IJ = C(I, J)−1 + f(I)−1 + C(J, I)−1 + f(J)−1, (3.70)

where f contains the histogram counts. Once a form for σIJ has been selected, one
value of ln ℘̃ must be fixed and the remainder are determined from minimization of
(3.69). Thermodynamic estimates then follow from the ensemble-specific relevance
of ln ℘̃.

Transition-matrix estimators are typically more accurate than their histogram
counterparts [25, 26, 46], and they offer greater flexibility in accumulating simulation
data from multiple state conditions. This statistical improvement over histograms is
likely due to the ‘local’ nature of transition probabilities, which are more readily
equilibrated than global measures such as histograms [25]. Fenwick and Escobedo
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[50, 51] have shown that transition-matrix calculations are closely related to Bennet’s
acceptance ratio method [4], in which minimization of the statistical error is
attempted in order to predict free energy differences. In general, these estimators
are an excellent tool for the measurement of free energies and entropies in simula-
tion, and can usually be appended to existing simulation methodologies with little
overhead.

3.4.5 Implementation Issues

Flat-histogram methods are a significant departure from simulation in conventional
ensembles, and this warrants additional discussion about the logistics of their
implementation. We have already seen that it is necessary to determine the logarithm
of partition functions rather than the partition functions themselves, owing to finite
numerical precision. In the case of continuous macroscopic variables, such as the
potential energy, we must also discretize our calculations for η, S , or F . This
requires some consideration; smaller bin widths yield better approximations, but
necessitate longer simulation times in order to sample each bin accurately. Treating
the discretized function as an interpolation can sometimes lower the number of bins
necessary, particularly in the WL algorithm [24]. However, such interpolation is
often not compatible with transition-matrix calculations unless nontrivial accommo-
dations are made to (3.61a) [28]. Fortunately with transition probabilities, the num-
ber of thermodynamic estimates scales as the square of the number of bins, which
can help offset the statistical loss at high bin number if using an error-minimization
scheme such as (3.69). Practically speaking, though, past work has suggested that a
reasonable bin width for energy can be selected from simple consideration of the pair
potential; in the Lennard-Jones case, values of 1 to 2ε have fared well [24, 27, 28, 30].

In conventional MC simulations, it is not uncommon for the range of move
attempts to be varied to achieve a desired acceptance rate. For example, in single-
particle displacement moves, δrmax is routinely tuned to obtain around 50% accep-
tance. During this dynamic adjusting, detailed balance is not rigorously satisfied;
however, the distribution of sampled states in a conventional simulation is sharply
peaked and fluctuations in δrmax are small. In a flat-histogram simulation, however,
these fluctuations are large. It is imperative, therefore, to explicitly maintain constant
δrmax after finding a suitable initial value.

In transition-matrix simulations, the memory demands can often grow quite
large since the size of the C matrix grows as the square of the number of bins
n in the parameter of interest. In the case where two parameters are studied, the
matrix is four-dimensional and quickly becomes unwieldy. One way to minimize
the memory requirements is to use a neighbor format for C, which takes advantage
of the fact that most entries are concentrated along its diagonal elements. Rather
than tabulate data in C(1 . . . n, 1 . . . n), where n is the number of bins, one records
C ′(1 . . . n,−∆n . . . 0 . . . ∆n), where the second index is measured relative to the
first and ∆n is the preset number of neighbors covered by the matrix, typically in
the range 1–10. Many moves can be exactly accommodated by ∆n = 1, including
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single-particle additions and deletions when C ′ measures transitions between N val-
ues, and volume scaling moves of fixed ∆V for transitions between V values. For
moves which take the system beyond ∆n, one simply updates the diagonal element
C ′(I, 0) instead [46].

3.5 Order Parameters, Reaction Coordinates, and Extended
Ensembles

We can generalize the density of states to include arbitrary macroscopic parame-
ters, which allows us to perform extended ensemble simulations in which we wish
to generate flat histograms in particular variables. Such simulations are useful for
studying the behavior of the system in specific states or along particular paths. We
may, for example, wish to use some geometric order parameter to bias our system
toward a particular configuration or to sample the complete reaction coordinate for
chemical events or protein folding. Here, we will let ξ denote the variables associ-
ated with these additional parameters, and assume they are continuous functions of
the configurational coordinates only. We will consider ξ simply as additional proper-
ties of the system, rather than as new variables which form a new set of generalized
coordinates, but note that a more in-depth discussion of such issues can be found
in Chap. 4. Let the functions ξ̂i(q) return the value of ξi for a given configuration.
Then, the extended density of states simply incurs additional delta functions in the
configurational integral

Ωξ(N,V,E, ξ) =
∫

V N

δ[U(q) − E]

(∏
i

δ[ξ̂i(q) − ξi]

)
dq, (3.71)

where ξ is vector notation for the collection of ξi. Notice that, if any of the additional
coordinates are dimensional, the density of states will acquire the inverse units on
account of the delta function. This is normal, as it is the quantity ΩξdEdξ which is
dimensionless and proportional to the number of microstates with E and ξ. We can
recover the usual density of states by integrating the extended one

Ω(N,V,E) =
∫

Ωξ(N,V,E, ξ)dξ, (3.72)

where the integral is multidimensional for more than one coordinate. Similarly,
we can define an extended canonical partition function by integrating Ωξ over the
Boltzmann factor as

Qξ(N,V, T, ξ) = Λ−3N

∫
e−βEΩξ(N,V,E, ξ)dE, (3.73)

where likewise:
Q(N,V, T ) =

∫
Qξ(N,V, T, ξ)dξ. (3.74)
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Notice that Qξ also assumes the inverse units of any dimensional coordinates.
Associated with both the extended density of states and canonical partition func-

tion are the coordinate entropy Sξ and free energy Aξ, respectively. Often Aξ is
termed a generalized potential of mean force. Much of the same discussion regard-
ing flat-histogram methods and free-energy estimators in the last section also applies
to these extended thermodynamic functions. We simply need to introduce additional
independent variables in our calculations of η, S , or F , and realize that, in order
to obtain conventional thermodynamic results, we must integrate over these coordi-
nates as in (3.72) and (3.74). Let us say we wish to examine the free energy along
some reaction pathway ξ at a given temperature. The extended canonical partition
function in (3.74) is our starting point, as it tell us that the probability of observing a
specific point in the pathway is proportional to Qξ(N,V, T, ξ). In order to generate
a flat histogram along this coordinate, we must bias our microstate probabilities by
the inverse factor, as

℘(q) ∝ exp [−βU − Fξ(ξ)] , (3.75)

which leads to
℘(ξ) ∝ Qξ(N,V, T, ξ) exp [−Fξ(ξ)] , (3.76)

where Fξ ≡ lnQξ = −βAξ for the ideal flat histogram. We can then use any
of the previous techniques for determining Fξ. We could, for example, use WL
modification to generate an estimate as Calvo has done [52], in which case the rel-
evant histograms for the dynamic updating and the changing of the modification
factor would be along the coordinate ξ. Alternatively, we could employ a transition-
probability estimator

Fξ(ξ1) − Fξ(ξ2) = lnT (ξ2 → ξ1) − ln T (ξ1 → ξ2), (3.77)

which is a direct extension of (3.60). Once we have performed a flat-histogram sim-
ulation and converged Fξ, normal thermodynamic quantities are recovered using
(3.74). The energy is given by 〈U〉 (T ) = −∂ ln Q/∂β, and combining this expres-
sion with (3.74) and (3.76) yields

〈U〉 (T ) =

∫
〈U〉 (T ; ξ)℘̃(ξ)eFξ(ξ)dξ
∫

℘̃(ξ)eFξ(ξ)dξ

, (3.78)

where 〈U〉 (T ; ξ) is the average potential energy at a given coordinate value, which
is easily measured in the simulation. Furthermore, if Fξ is determined to sufficient
precision, we can drop the measured ℘̃(ξ) from this expression.

It is also possible to build the order parameter directly into the potential energy
function. This would enable one to determine the free energy difference between a
given potential and a reference potential. In a sense, this is complementary to the
previous discussion of reaction coordinates; rather than further subdividing configu-
ration space by various order parameters, we are considering multiple configuration
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spaces, each defined by a different potential. We again take ξ as our additional
coordinate, only this time we let Uξ(q) be the energy of a configuration evalu-
ated using the ξ version of the potential energy function. A simple choice might
be Uξ(q) = (1− ξ)U1(q)+ ξU2(q), which is a linear interpolation between the two
functions U1 and U2. The microscopic sampling is identical to (3.75), and so the lo-
gistics of the simulation follow the same considerations outlined earlier. Once Fξ(ξ)
has been calculated, it provides an estimate of the free energy between the different
potentials at a given T .

One advantage offered by these expanded-ensemble techniques is greater flexi-
bility in studying metastable phenomena. Although a formal treatment of metasta-
bility is beyond the scope of this chapter (the interested reader is referred to [53]),
it is useful to mention the practical simulation aspects of it. Generally speaking, a
metastable state is one that persists for an observable amount of time, but which is not
the true thermodynamically stable state at the conditions of interest. Classic examples
include superheated or supercooled liquids. Microscopically, the partition function
corresponding to a metastable state must exclude those configurations which do not
correspond to it. We write this as

Q′(N,V, T ) =
1

Λ3NN !

∫
Γ0

e−βUdq, (3.79)

where Γ0 is the metastable state’s subset of configuration space. Equation (3.79)
shows that the metastable free energy will always be greater than the associated sta-
ble one, because the integral must be less for the restricted space (the exponential is
always positive) [19]. The essential difficulty in metastability is the determination
of precise and nonheuristic methods for identifying which configurations belong
and which do not. In fact, it is this element which creates problems when one
wants to rigorously define metastable properties such as spinodals [53]. The pre-
cise microscopic definition of metastable states can be a deep and often ill-defined
issue. For this discussion, we will skip over this subtle difficulty. We assume that we
have found a specific microscopic function ξ̂(q) which is able to make the distinction
between metastable and stable configurations, for instance by assigning ξ > ξ0 to the
metastable state. Then, a flat-histogram simulation in the extended parameter ξ will
cast our results in a form relevant to studying the metastable averages. For example,
the average energy of a metastable state could be calculated as

〈U〉 (T ) =

∫
ξ>ξ0

〈U〉 (T ; ξ)℘̃(ξ)eFξ(ξ)dξ

∫
ξ>ξ0

℘̃(ξ)eFξ(ξ)dξ

, (3.80)

where the only differences with (3.78) are the limits on the integral. In other words,
we are limiting the contribution of specific configurations to the partition func-
tion through selecting classes of configurations as defined by the order parameter.
The order parameter does not need to be exotic; for example, averages restricted to
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specific densities are frequently encountered when generating single-phase proper-
ties at points of liquid–vapor phase coexistence.
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4

Thermodynamic Integration Using Constrained
and Unconstrained Dynamics

Eric Darve

4.1 Introduction

In Chaps. 2 and 3 we discussed two general approaches for calculating free energies:
free energy perturbation and probability density (histogram) methods. In this chapter
we introduce another, general approach, which relies on calculating and subsequently
integrating the derivatives of the free energy with respect to an order parameter (or
several order parameters) along a transformation path. Not surprisingly, this class of
methods is called thermodynamic integration (TI).

The order parameter can be defined in two different ways. It can be either a
function of atomic coordinates or just a parameter in the Hamiltonian. Examples
of both types of order parameters are given in Sect. 2.8.1 in Chap. 2 and illus-
trated in Fig. 2.5. This distinction is theoretically important. In the first case, the
order parameter is, in effect, a generalized coordinate, the evolution of which can
be described by Newton’s equations of motion. For example, in an association
reaction between two molecules, we may choose as order parameter the distance
between the two molecules. Ideally, we often would like to consider a reaction co-
ordinate which measures the progress of a reaction. However, in many cases this
coordinate is difficult to define, usually because it cannot be defined analytically and
its numerical calculation is time consuming. This reaction coordinate is therefore
often approximated by simpler order parameters.

In contrast, no equations of motion exist naturally for a parameter in the
Hamiltonian. It is, however, possible to extend the formalism to include the dynamics
of such a parameter. This approach goes back to Kirkwood [1].

The case of order parameters is more difficult to consider. However, since it is
applicable to parameterized Hamiltonians as well, we will discuss TI in this broader
setting.

Figure 4.1 represents the typical free energy profile or potential of mean force
(PMF) along a reaction coordinate. The x-axis is the reaction coordinate, which
could be the distance between two molecules, a torsion angle along the backbone
of a protein, or the relative orientation of an α-helix with respect to a membrane.
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Fig. 4.1. Stratification consists of splitting the interval of interest into subintervals, thereby
reducing the free energy barriers inside each window. The umbrella sampling method can bias
the sampling and attempt to make it more uniform

The y-axis is the free energy. In general the free energy is related to the probability
density function P (ξ) of the reaction coordinate through

A(ξ) = −kBT ln P (ξ). (4.1)

This equation means that when there is a free energy difference of a few kB T the
probability P (ξ) is reduced considerably, that is, those conformations with large
A(ξ) are sampled very rarely. This is a very important observation in terms of
numerical efficiency. At the transition region for example, the free energy is max-
imum and typically very few sample points are obtained during the course of mole-
cular dynamics simulation. In turn this results in very large statistical errors. Those
errors can only be reduced by increasing the simulation time, sometimes beyond
what is practically feasible.

A basic but powerful method to improve the efficiency of such computations
is to split the interval of computation along the reaction coordinate ξ into subin-
tervals, an approach termed stratification. In addition, in each window a biasing
potential can be used in order to improve the sampling further: this is the umbrella
sampling method [2–8], see also Sect. 2.2.1. In this way, the energy barriers inside
each window can be made smaller. If this biasing potential is a function Ub(x), the
new Hamiltonian (or energy function) for the system is H (x) + Ub(x). In general
the biasing potential needs to be guessed beforehand or can be gradually improved
using an iterative refinement process. This process consists of first running a short
simulation to estimate the free energy, A(0)(x) and then using this estimate to bias
the system using U

(0)
b (x) = −A(0)(x). With this first bias, we improve the sampling

and obtain a more accurate approximation of the free energy A(1)(x). The biasing
potential U

(i)
b (x) can be gradually improved in this fashion. Within each window, we

obtain a relatively uniform sampling. This leads in general to small statistical errors.
It is clear, however, that in complex situations it is not possible to make an edu-

cated guess of the biasing potential. In particular the position of the transition regions
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or the height of the barrier may be quite difficult to guess. There might be several
intermediate states between A and B (see Fig. 4.1) corresponding to the local min-
ima of the free energy. In addition, given the dependence of P (ξ) on A(ξ) [see (4.1)]
even relatively small errors in the biasing potential can lead to regions of space which
are not sampled adequately (for example, if one maximum in the free energy is not
correctly estimated, see Fig. 3.2).

Many other approaches have been designed such as slow growth. In this approach,
an external operator is exerting a force on the system such that ξ varies infinitely
slowly from A to B. In the limit of infinitely slow speed, a classical result of sta-
tistical mechanics is that the work needed to change ξ is equal to the free energy
difference ∆A. In practice, this works well if ξ̇ is so small that the system stays
close to equilibrium. An extension of this technique has been proposed by Jarzynski
and coworkers [9–17] who provided an exact equation for the free energy difference
for finite switching times. If ξ̇ is not negligible, significant nonequilibrium effects
will be present. These lead in general to a heating of the system and larger energies
than usual. Despite this deviation from equilibrium statistics, the equation given by
Jarzynski is exact. However, it has been observed by several authors [18] that, even
though the equation is exact mathematically, this method leads to relatively large
statistical errors which require very long simulation times to be reduced. For further
discussion see the next chapter.

In this chapter, we focus on another class of techniques called TI. For a suf-
ficiently smooth function, the free energy difference can always be written as the
following integral A(ξ1) − A(ξ0) =

∫ ξ1

ξ0
dA/dξ dξ. The key observation is that it is

possible to calculate dA/dξ by recognizing that it is in fact equal to the following
statistical average:

dA

dξ
=
〈

∂H

∂ξ

〉
ξ

. (4.2)

The subscript ξ indicates that the average is computed for a fixed value of ξ, i.e., at a
given point on our free energy plot (Fig. 4.1). Such an average corresponds very natu-
rally to a ‘generalized’ force acting on the reaction coordinate ξ. Of course in general
ξ is not a particle and therefore no ‘real’ mechanical force is acting on it. But if ξ is
indeed a particle coordinate then this expression reduces to the mechanical force act-
ing on this coordinate, i.e., −∂U/∂ξ, where U is the potential energy. Therefore this
equation generalizes the notion of force to arbitrary variables which are functions of
the atomic positions.

4.2 Methods for Constrained and Unconstrained Simulations

Several techniques are available to calculate 〈∂H /∂ξ〉. Ciccotti and coworkers [17,
19–27] have developed a technique, called blue-moon ensemble method or the
method of constraints, in which a simulation is performed with ξ fixed at some
value. This can be realized by applying an external force, the constraint force, which
prevents ξ from changing. From the statistics of this constraint force it is possible to
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recover the derivative of the free energy dA/dξ. In fact, the constraint force is of the
form λ∇ξ, that is, it is pointing in the direction of the gradient of ξ. We will see later
that 〈∂H /∂ξ〉 ∼ 〈λ〉 (the actual equation is more complicated, as we will show).
This means that the constraint force is a direct measurement of the derivative of the
free energy.

An advantage of this technique is that it allows for getting as many sample points
as needed at each location ξ along the interval of interest. In particular, it is possi-
ble to obtain very good statistics even in transition regions which are rarely visited
otherwise. This leads in general to an efficient calculation and small statistical errors.
Nevertheless, despite its many successes, this method has some difficulties. First, the
system needs to be prepared such that ξ has the desired value (at which dA/dξ needs
to be computed) and an equilibration run needs to be performed at this value of ξ.
Second, it is not always obvious to determine how many quadrature points are needed
to calculate the integral

∫ ξ1

ξ0
〈∂H /∂ξ〉dξ.

Finally, it may be difficult to sample all the relevant conformations of the system
with ξ fixed. This problem is more subtle, but potentially more serious, as illustrated
by Fig. 4.2. Several distinct pathways may exist between A and B. It is usually rel-
atively easy for the molecule to enter one pathway or the other while the system is
close to A or B. However, in the middle of the pathway, it may be very difficult
to switch to another pathway. This means that, if we start a simulation with ξ fixed
inside one of the pathway, it is very unlikely that the system will ever cross to explore
conformations associated with another pathway. Even if it does, this procedure will
likely lead to large statistical errors as the rate-limiting process becomes the transi-
tion rate between pathways inside the set ξ = constant.

These difficulties can be circumvented by using the adaptive biasing force
(ABF) method of Darve, Pohorille, and coworkers [18, 28, 29], which is based on
unconstrained molecular dynamics simulations. This is a very efficient approach
which begins by establishing a simple formula to calculate dA/dξ from regular
molecular dynamics in which ξ is not constrained. This derivative represents the
mean force acting on ξ. Therefore if we remove this force from the system we obtain

Energy barrier

Surface at constant
reaction coordinate

Reaction pathways

A B
x

q
Energy barrier

A B
x

q

Fig. 4.2. Free energy computation using constraint forces. It may be difficult to sample the
surface ξ(x) = ξ using a constrained simulation because of the presence of energy barriers
separating different reaction pathways. Left: a barrier is shown in the middle of the pathway
from reactant A to product B. Right: two barriers are shown at B
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uniform sampling along ξ. This is done by adding an external, biasing force which is
opposite to the one acting on ξ. In fact this biasing force is equal to dA/dξ ∇ξ. What
is the resulting motion of the system? There is no average force acting on ξ. However,
a nonzero fluctuating force with zero mean remains. Therefore, the dynamics of ξ is
similar to a diffusive system or a random walk in 1D. Clearly the uniform sampling
along ξ markedly reduces statistical error and yields an excellent convergence to the
exact free energy profile.

Importantly, in contrast to constrained simulations, the system is allowed to
evolve freely and in particular to explore the various pathways connecting A and
B, see Fig. 4.2. This is one of the reasons why ABF can converge much faster than
the method of constraints.

ABF shares some similarities with the technique of Laio et al. [30–34], in which
potential energy terms in the form of Gaussian functions are added to the system
in order to escape from energy minima and accelerate the sampling of the system.
However, this approach is not based on an analytical expression for the derivative of
the free energy but rather on importance sampling.

Organization of the Chapter

In this chapter, we focus on the method of constraints and on ABF. Generalized
coordinates are first described and some background material is provided to intro-
duce the different free energy techniques properly. The central formula for practi-
cal calculations of the derivative of the free energy is given. Then the method of
constraints and ABF are presented. A newly derived formula, which is simpler to
implement in a molecular dynamics code, is given. A discussion of some alternative
approaches (steered force molecular dynamics [35–37] and metadynamics [30–34])
is provided. Numerical examples illustrate some of the applications of these tech-
niques. We finish with a discussion of parameterized Hamiltonian functions in the
context of alchemical transformations.

4.3 Generalized Coordinates and Lagrangian Formulation

In this section, we discuss some of the equations used to calculate the derivative of
the free energy. In a different form, those results will be used in ABF to both calculate
dA/dξ and bias the system in an adaptive manner.

4.3.1 Generalized Coordinates

To calculate dA/dξ, we need to evaluate partial derivatives, such as ∂H /∂ξ,
which measures the rate of change in energy with the order parameter. To do so
we need to define generalized coordinates of the form (ξ, q1, · · · , qN−1). Classical
examples are spherical coordinates (r, θ, φ), cylindrical coordinates (r, θ, z) or polar
coordinates in 2D. Those coordinates are necessary to form a full set that determines
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the positions of all atoms. For example, given (r, θ, φ), we can calculate the Carte-
sian coordinates (x, y, z). In the context of protein modeling, order parameters are
often defined as internal coordinates such as torsion angle, angle between three bonds
or more generally groups of atoms, hydration number, gyration radius (distance
between end points of a protein or polymer), etc.

Once an order parameter, ξ, is specified we can define the free energy A as a func-
tion of ξ through the relation A(ξ) = −kBT ln P (ξ). In the canonical ensemble, the
probability density function P (x,px) is equal to exp(−H (x,px)/kBT )/Q, where
Q is the partition function:

Q =
∫

exp(−H (x,px)/kBT ) dxdpx.

The variables x and p are the positions and momenta of all the particles. With those
definitions, it is possible to define A(ξ) in terms of an integral in the phase space

A(ξ) = −kBT ln
∫

e−βH

Q
δ(ξ − ξ(x)) dxdpx (4.3)

The Dirac delta function δ(ξ − ξ(x)) means that we are effectively integrating over
all coordinates x such that ξ(x) = ξ. In the rest of this chapter, since we will be
interested in free energy differences only, we will omit the factor Q.

The delta function is not convenient to handle mathematically. However, if
we define a set of generalized coordinates of the form (ξ, q1, · · ·, qN−1) and their
associated momenta (pξ, pq

1, · · ·, p
q
N−1) then this integration simplifies to:

A(ξ) = −kBT ln
∫

e−βH dq
1 · · · d

q
N−1dpξ · · · dpq

N−1. (4.4)

How are the generalized momenta defined? The easiest way to do so is to formulate
our equations using the Lagrangian L . Let us assume that a configuration of our
mechanical system can be represented by a set of coordinates q. Then

L (q, q̇) = K(q, q̇) − U(q, q̇),

where K is the kinetic energy and U is the potential energy.
As an example, consider a simple system defined by two Cartesian coordinates x

and y

L (x, y, ẋ, ẏ) =
1
2

mẋ2 +
1
2

mẏ2 − U(x, y).

We may express the same Lagrangian using, for example, polar coordinates r and θ.
The equation for L will then read

L (r, θ, ṙ, θ̇) =
1
2

m
(
(ṙ)2 + (rθ̇)2

)
− U(r, θ). (4.5)

In general, if we have q = q(x) we can write

q̇i =
∑

j

∂qi

∂xj
ẋj

def= [J−1(q)ẋ]i,



4 Thermodynamic Integration Using Constrained and Unconstrained Dynamics 125

where J(q) is the Jacobian matrix, [J(q)]ij = ∂xi/∂qj . The kinetic energy K can
be expressed as

∑
i

1
2

miẋ
2
i =

1
2

ẋt · M · ẋ (4.6)

=
1
2

q̇t · [J t(q)MJ(q)] · q̇, (4.7)

where M is a diagonal matrix with Mii = mi and ẋt is the transpose of vector ẋ.
We denote by Z and MG the following matrices:

Z
def= J−1M−1(J−1)t (4.8)

MG def= Z−1 = J tMJ, (4.9)

where Zξ is the first element in the matrix Z

Zξ =
∑

i

1
mi

(
∂ξ

∂xi

)2

. (4.10)

For our 2D example we obtain for J and Z

J =
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
,

Z =
1
m

(
1 0

0
1
r2

)
.

The kinetic energy is given by

K(ṙ, θ̇) =
1
2
(
ṙ θ̇
)

Z−1

(
ṙ

θ̇

)
=

1
2

m
(
(ṙ)2 + (rθ̇)2

)
.

This is identical to (4.5).
For the general case of coordinates q, the generalized momenta are defined by

pi =
∂L

∂q̇i
.

If we use (4.7) and (4.8) to calculate pi we obtain:

pi =
∂

∂q̇i

(
1
2

q̇t · Z−1 · q̇
)

,

=
[
Z−1q̇

]
i
.

The Hamiltonian in generalized coordinates is then defined as:

H (q,p) = K(q,p) + U(q,p), (4.11)

=
1
2

pt Z p + U(q,p). (4.12)
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The equations of motion are given by

dqi

dt
=

∂H

∂pi
= [Zp]i,

dpi

dt
= −∂H

∂qi
= −1

2
pt ∂Z

∂qi
p − ∂U

∂qi
.

Let us return to our 2D example to see how those equations are applied. The momenta
are defined by

pr = mṙ,

pθ = mr2θ̇,

where pθ is the angular momentum of the particle. The equations of motion for the
momenta are:

dpr

dt
=

1
m

1
r3

p2
θ −

∂U

∂r
= mrθ̇2 − ∂U

∂r
,

dpθ

dt
= −∂U

∂θ
.

It can be verified that −∂U/∂θ is the torque acting on the particle, and the second
equation is the equation for the angular momentum.

Using the formalism we just developed for generalized coordinates we can now
derive an expression for the derivative of the free energy. Let us differentiate (4.4)
with respect to ξ

dA

dξ
=

∫
∂H

∂ξ
e−βH dq1 · · · dqN−1dpξ · · · dpq

N−1∫
e−βH dq1 · · · dqN−1dpξ · · · dpq

N−1

=
〈

∂H

∂ξ

〉
ξ

. (4.13)

The angular brackets 〈· · · 〉ξ correspond to an average computed with ξ fixed. One
way to calculate this average is to record the value of ∂H /∂ξ every time ξ(x) is
equal to ξ during the trajectory, and then average the recorded values.

Equation (4.13) has a very important interpretation as the PMF exerted on ξ. Let
us assume that ξ is one of the atomic coordinate, say x1. Then

− dA

dx1
= −

〈
∂H

∂x1

〉
x1

= −
〈

∂U

∂x1

〉
x1

= 〈F1〉x1
,

where F1 is the force on the atomic coordinate x1. −dA/dx1 is the force acting
on x1 averaged over all other variables and A(x1) can be thought of as the mean
potential or PMF for x1.

Let us denote P0(x1) = exp(−βA)/Z, the probability density function of x1.
Assume now that one simulates a system at temperature T with a single coordinate
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x1 that satisfies the equation of motion m1d
2x1/dt2 = −dA/dx1. Then the prob-

ability density for x1 at equilibrium will indeed be equal to P0(x1). Thus the
thermodynamic information about the variable x1, considered by itself, is completely
defined by the function A(x1).

More generally, ξ can be any function of atomic positions. Therefore, dA/dξ is
not necessarily a force. Its interpretation, however, remains the same, but in a more
general context: −dA/dξ is the mean force exerted on the generalized ‘particle’ ξ.

Computing the partial derivative of H with respect to ξ is in general a tedious
process. A complete set of generalized coordinates needs to be defined. The cor-
rect expression for the kinetic energy in terms of generalized momenta need to be
obtained. It involves a dense matrix which needs to be differentiated with respect to
ξ. A great simplification can be obtained by showing that the derivative of the free
energy can be written as

〈
∂H

∂ξ

〉
ξ

=
〈

∂U

∂ξ
− kBT

∂ ln |J |
∂ξ

〉
ξ

. (4.14)

The term |J | is the determinant of the Jacobian matrix upon changing from Cartesian
to generalized coordinates. It measures the change in volume element between
dxdpx and dξ dqdpξ dpq . For example in polar coordinate |J | = r and therefore
dxdy = r dr dθ. The derivative of A is therefore the sum of two contributions: the
mechanical forces acting along ξ (∂U/∂ξ), and the change of volume element. The
term −1/β ∂ ln |J |/∂ξ is effectively an entropic contribution.

Let us assume that ξ = r and we are using polar coordinates (r, θ). In this case,
|J | = r. The formula therefore reads

〈
∂H

∂r

〉
r

=
〈

∂U

∂r
− 1

βr

〉
r

.

As we explained earlier, the difficulty in this formulation is that generalized coor-
dinates appear explicitly in the form of the Jacobian |J |, which may be difficult to
calculate in many cases. It is therefore desirable to find an expression in which the
explicit knowledge of the generalized coordinates is not required. This is done in
Sect. 4.4. We end this section with a proof of (4.14).

Proof. We start from the following equation for A(ξ) expressed in terms of the posi-
tion x of all the atoms only (no momenta):

A(ξ) = −kBT ln
∫

e−βU δ(ξ − ξ(x)) dx.

We introduce generalized coordinates

A(ξ) = −kBT ln
∫

e−βU |J | dq1 · · · dqN−1.
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The Jacobian J appears because we have changed the variables of integration. We
now differentiate with respect to ξ:

dA(ξ)
dξ

=

∫
∂

∂ξ

(
−kBT e−βU |J |

)
dq1 · · · dqN−1∫

e−βU |J | dq1 · · · dqN−1

=

∫ (
∂U

∂ξ
|J | − kBT

∂|J |
∂ξ

)
e−βU dq1 · · · dqN−1∫

e−βU δ(ξ − ξ(x)) dx
.

We can change the variables back to Cartesian coordinates and we obtain

dA(ξ)
dξ

=

∫ (
∂U

∂ξ
− kBT

1
|J |

∂|J |
∂ξ

)
e−βU δ(ξ − ξ(x)) dx

∫
e−βU δ(ξ − ξ(x)) dx

=

∫ (
∂U

∂ξ
− kBT

∂ ln |J |
∂ξ

)
e−βU δ(ξ − ξ(x)) dx

∫
e−βU δ(ξ − ξ(x)) dx

=
〈

∂U

∂ξ
− kBT

∂ ln |J |
∂ξ

〉
ξ

.

We have proved (4.14).

4.4 The Derivative of the Free Energy

As we pointed out earlier, calculating the derivative of the free energy appears to
require a full set of generalized coordinates. However, this may seem quite surpris-
ing. Assume that we want to define the PMF as a function of the distance between
two molecules. This force is clearly independent of the particular choice of gener-
alized coordinates made to calculate it. In fact, we are now going to prove that an
equation can be derived which does not require an explicit definition of generalized
coordinates other than ξ.

For an arbitrary vector field w such that w · ∇ξ �= 0

dA

dξ
=
〈
∇U · w

w · ∇ξ
− kBT∇ · w

w · ∇ξ

〉
ξ

. (4.15)

This equation was also derived by den Otter [25] and Ciccotti et al. [38, 39]. It is not
obvious at first sight that this formula should hold for an arbitrary vector field. We
will come back to this point later on. Different convenient choices for w are possible
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wi =
∂ξ

∂xi
or wi =

1
mi

∂ξ

∂xi
.

The second choice will turn out to be the more natural one as it leads to a direct
interpretation in terms of the rate of change of the momentum pξ.

We prove this equation in the following proof. In Sect. 4.4.1, we discuss this
fundamental equation further.

Proof of (4.15). As usual in TI, we try to compute the derivative of A rather than A
itself. By differentiating directly equation (4.3) rather than introducing generalized
coordinates we obtain:

dA

dξ
= −kBT

∫
e−βU δ′(ξ − ξ(x)) dx
∫

e−βU δ(ξ − ξ(x)) dx
. (4.16)

In order to simplify this expression and get rid of the δ′ we are going to do an
integration by parts. In the previous expression the derivative is with respect to ξ.
To obtain derivatives with respect to x we use the chain rule of differentiation:

d δ(f(x))
dx

= f ′(x) δ′(f(x)).

Applying this equation to our case, we obtain:

∂ δ(ξ − ξ(x))
∂xi

= − ∂ξ

∂xi
δ′(ξ − ξ(x)). (4.17)

Let us assume now that we have a vector field w such that w·∇ξ �= 0. Equation (4.17)
leads to

(w · ∇) δ(ξ − ξ(x)) = −(w · ∇ξ) δ′(ξ − ξ(x)),

from which, after dividing by −w · ∇ξ

δ′(ξ − ξ(x)) = −
(

w
w · ∇ξ

)
· ∇ δ(ξ − ξ(x)).

Inserting this result in (4.16), we obtain for the numerator

∫
e−βU δ′(ξ − ξ(x)) dx = −

∫
e−βU

(
w

w · ∇ξ

)
· ∇ δ(ξ − ξ(x)) dx.

We can now integrate by parts

∫
e−βU δ′(ξ − ξ(x)) dx = −

∫
∇
(

e−βU w
w · ∇ξ

)
δ(ξ − ξ(x)) dx.
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The divergence can be computed using the product rule to obtain

∇
(

e−βU w
w · ∇ξ

)
= e−βU

(
−β

∇U · w
w · ∇ξ

+ ∇ · w
w · ∇ξ

)
.

For example, if w = ∇ξ we obtain the following expression:

e−βU

(
−β

∇U · ∇ξ

|∇ξ|2 + ∇ · ∇ξ

|∇ξ|2
)

.

We have a new expression for dA/dξ which is valid for any choice of w satisfying
the condition mentioned above

dA

dξ
= −kBT

∫
e−βU

(
−β

∇U · w
w · ∇ξ

+ ∇ · w
w · ∇ξ

)
δ(ξ − ξ(x)) dx

∫
e−βU δ(ξ − ξ(x)) dx

.

Using the notation 〈 〉 we get (4.15)

dA

dξ
=
〈
∇U · w

w · ∇ξ
− kBT∇ · w

w · ∇ξ

〉
ξ

.

4.4.1 Discussion of (4.15)

To give an example with a specific choice of w, consider w = ∇ξ. Then

dA

dξ
=
〈

1
|∇ξ|2

(
∇U · ∇ξ − kBT

(
∇2ξ − 2

∇ξ · H(ξ) · ∇ξ

|∇ξ|2
))〉

ξ

, (4.18)

where H(ξ) is the Hessian matrix of ξ:

H(ξ)ij =
∂2ξ

∂xi∂xj
,

and ∇2ξ is the Laplacian of ξ

∇2ξ =
∑

i

∂2ξ

∂x2
i

.

As previously observed, the choice of w is to some extent arbitrary. This can be
understood when one realizes that there is a direct connection between the choice
of generalized coordinates in (4.14) and the choice of w. Just as the choice of
(q1, . . . , qN−1) is arbitrary, so is the choice of w.

The connection can be made by defining

wi =
∂xi

∂ξ
.
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With this choice, the condition w · ∇ξ �= 0 is trivially satisfied since

w · ∇ξ =
∑

i

∂xi

∂ξ

∂ξ

∂xi
= 1.

We are now going to show that (4.15) is in fact identical to (4.14), which involved
the Jacobian J .

Let us consider first ∇U · (w/(w · ∇ξ)) in (4.15)

∇U · w
w · ∇ξ

=
∑

i

∂U

∂xi

∂xi

∂ξ
=

∂U

∂ξ
.

This is the same term as in (4.14). The second term is equal to

∂ ln |J |
∂ξ

= Tr
(

J−1 ∂J

∂ξ

)

=
∑
ij

∂qi

∂xj

∂

∂ξ

[
∂xj

∂qi

]

=
∑
ij

∂qi

∂xj

∂

∂qi

[
∂xj

∂ξ

]

=
∑

j

∂

∂xj

(
∂xj

∂ξ

)
= ∇w.

Thus we have proved that

∂U

∂ξ
− kBT

∂ ln |J |
∂ξ

= ∇U · w
w · ∇ξ

− kBT ∇ · w
w · ∇ξ

for wi = ∂xi/∂ξ .
The practical importance of this result is that choosing w can be done quite easily

without explicitly defining a set of generalized coordinates, e.g., wi = ∂ξ/∂xi or
wi = 1/mi ∂ξ/∂xi.

Let us consider an example with a specific choice of reaction coordinate. If we
choose, ξ = r and w = ∇ξ we recover

∇U · w
w · ∇ξ

− kBT∇ · w
w · ∇ξ

=
∂U

∂r
− 1

βr
.

4.5 The Potential of Mean Constraint Force

Having found a more convenient expression to calculate dA/dξ what remains to be
developed is an algorithm which overcomes the sampling difficulty associated with
high energy barriers. There are two approaches to this problem. The first one, called
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the method of constraints [19, 27], consists of imposing a constraint force on the
system such that ξ is constant. We will show that the average of this constraint force
is related to dA/dξ through a simple equation. The procedure is then as follows.
We discretize the interval of interest [ξ0, ξ1] into a number of quadrature points. At
each point, we run a constraint simulation from which dA/dξ can be computed.
A quadrature can then be used to estimate ∆A =

∫ ξ1

ξ0
dA/dξ dξ.

The second approach, ABF, consists of estimating the average force at different
ξ and removing it from the system. This leads to a diffusive-like motion along ξ and
a much better convergence of the calculation. We will describe ABF in Sect. 4.6.

4.5.1 Constrained Simulation

In the method of constraints, a force of the form λ∇ξ is applied at each step such
that ξ remains constant throughout the simulation. To see how λ can be related to
dA/dξ, we recall that the free energy A is the effective or average potential acting
on ξ. From physical intuition, it should be true that −dA/dξ is the average of the
force acting on ξ. In a constraint simulation, this force is equal to −λ. Therefore we
can expect to have dA/dξ ∼ 〈λ〉. We now make this statement more rigorous.

In constrained simulations, the Hamiltonian H is supplemented by a Lagrange
multiplier

H λ def= H + λ(ξ − ξ(x)) = K + U + λ(ξ − ξ(x)). (4.19)

The additional term λ(ξ− ξ(x)) is needed to enforce the constraint ξ(x) = constant.
This corresponds to an additional force equal to −∇(λ(ξ − ξ(x))). λ is chosen such
that ξ(x) = ξ. Therefore the force can be expressed more simply as λ∇ξ. Then, the
interpretation is quite natural. In order to enforce the constraint we are applying a
force parallel to ∇ξ which opposes the mechanical force acting on ξ.

The condition ξ(x) = constant implies in particular that ξ̈ = 0. With this
condition it is possible to derive an expression for λ as a function of positions and
velocities:

ξ̈ =
d
dt

ξ̇

=
d
dt

(∇ξ · ẋ)

= ∇ξ · ẍ +
d∇ξ

dt
· ẋ

=
∑

i

1
mi

∂ξ

∂xi

(
− ∂U

∂xi
+ λ

∂ξ

∂xi

)
+ ẋt · H · ẋ,

where we assumed that ξ(x) = ξ. Solving for ξ̈ = 0, we obtain

λ = Z−1
ξ

(∑
i

1
mi

∂ξ

∂xi

∂U

∂xi
− ẋt · H · ẋ

)
. (4.20)



4 Thermodynamic Integration Using Constrained and Unconstrained Dynamics 133

See (4.10) for the definition of Zξ. Therefore λ is in general a function of x and ẋ.
With this expression for λ, we see that if we start a simulation with ξ = ξ(x) and
ξ̇ = 0 then ξ = ξ(x) at all times. Note that different methods, such as SHAKE or
RATTLE [40], are employed numerically to avoid a ‘drift’ of ξ. Those methods are
not based on a direct application of (4.20).

4.5.2 The Fixman Potential

Before we derive the appropriate expressions to calculate dA/dξ from constrained
simulations, we note an important difference between sampling in constrained and
unconstrained simulations. There are two ways to gather statistics at ξ(x) = ξ. In
unconstrained simulations, the positions are sampled according to exp−βU while
the momenta are sampled according to exp−βK. If a constraint force is applied
to keep ξ fixed the positions are sampled according to δ(ξ(x) − x) exp−βU . The
momenta, however, are sampled according to a more complex statistical ensemble.
Recall that

pξ = (Z−1)ξξ ξ̇ +
∑

i≤N−1

(Z−1)ξi
dqi

dt
.

In constrained simulations, ξ̇ = 0 so that pξ is not an independent variable but rather
a function of q and pq. Let us discuss the implications of this fact. Consider an
arbitrary function f(x) and the following average:

∫
f(x)e−βH δ(ξ(x) − ξ) dxdpx∫

e−βH δ(ξ(x) − ξ) dxdpx

(4.21)

The Hamiltonian function of a system which is constrained with ξ(x) = ξ and ξ̇ = 0
is given by

Hξ =
1
2

(pq)t (MG
q )−1 pq + U(q), (4.22)

where the matrix MG
q is a submatrix of MG associated with q

[
MG

q

]
ij

=
∑

k

mk
∂xk

∂qi

∂xk

∂qj
. (4.23)

What is the difference between sampling according to H (unconstrained) and to
Hξ (constrained)? If H is used pξ is sampled according to the correct distribution
whereas, when Hξ is used, pξ is a function of q and p. However, averages obtained
using H can easily be connected to averages using Hξ. Indeed for H , we can
analytically integrate the contribution of pξ to the integral

∫
e−β/2 Zξp2

ξ dpξ ∝ Z
−1/2
ξ .
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Therefore, we have the following equality for the average of f in (4.21):
∫

f(x)e−βH δ(ξ(x) − ξ) dxdpx∫
e−βH δ(ξ(x) − ξ) dxdpx

=

∫
f(x)Z−1/2

ξ e−βHξ dqdpq∫
Z

−1/2
ξ e−βHξ dqdpq

.

This equation is often written as

〈f〉ξ =

〈
f Z

−1/2
ξ

〉
ξ,ξ̇〈

Z
−1/2
ξ

〉
ξ,ξ̇

, (4.24)

where 〈. . .〉ξ,ξ̇ denotes an average with ξ constant and ξ̇ = 0. Constrained and uncon-
strained simulations can therefore be easily connected through the additional weight
factor Z

−1/2
ξ . This factor can be rewritten as

Z
−1/2
ξ e−βHξ = e−β(Hξ+ 1

2β ln Zξ).

This means that the average of f 〈f〉ξ can be computed using a constrained sim-
ulation for a modified Hamiltonian

H F
ξ (q,pq) = Hξ(q,pq) +

1
2β

ln Zξ(q). (4.25)

The second term in this potential is the so-called Fixman potential. With this potential
we simply have

〈f〉ξ = 〈f〉F
ξ,ξ̇ ,

where the F denotes an average at ξ(x) = ξ, ξ̇ = 0 and for the Hamiltonian H F
ξ .

4.5.3 The Potential of Mean Constraint Force

We are now going to establish a connection between the free energy A(ξ) and
constrained simulations. Specifically, there is a very simple relation between A(ξ)
and H F

ξ .
A(ξ) is defined in terms of a partition function

A(ξ) = −kBT ln
∫

e−βH dq1 · · · dqN−1dpξ · · · dpq
N−1.

We have seen that the Hamiltonian H F
ξ is a function of q and pq only. Let us inte-

grate over pξ to get rid of this variable. The Hamiltonian H can be written as

H =
1
2

((
pξ
)t

Zξp
ξ + 2(pξ)Zξqpq + (pq)tZqpq

)
+ U(ξ,q).
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The integral over pξ can be calculated analytically and is equal to
∫

e−
β
2 ((pξ)tZξpξ+2(pξ)Zξqpq)dpξ =

√
π

2β
(Zξ)−1/2e

1
2 (pq)tZqξ(Zξ)−1Zξqpq .

With some additional algebra we get

A(ξ) = −kBT ln
∫

e−βH F
ξ dqdpq − kBT ln

√
π

2β

(we used the fact that the inverse of MG
q is equal to Zq − Zqξ(Zξ)−1Zξq).

A calculation similar to the one performed to obtain (4.13) finally gives

dA

dξ
=

〈
∂H F

ξ

∂ξ

〉F

ξ,ξ̇

. (4.26)

This equation is a very important result because it shows that constrained simulations
can be used to calculate dA/dξ. A possible algorithm would consist in running a
constrained simulation with the Hamiltonian H F

ξ [which contains the extra Fixman
potential 1/(2β) ln Zξ(q)], calculate the rate of change of H F

ξ with ξ at each step.
Finally by averaging this rate of change the derivative of A can be computed.

In general, computing ∂H F
ξ /∂ξ proves to be cumbersome. This derivative can

be interpreted in terms of a mean force acting on ξ, which can be simply related to
the external force λF∇ξ being exerted on the system to hold ξ constant. In fact, we
show in Appendix A that dA/dξ is equal to

dA

dξ
=
〈
λF〉F

ξ,ξ̇
. (4.27)

However, several authors took a slightly different route [17, 23, 25–27, 29] and
derived an expression which does not explicitly introduce the Fixman potential.

If the Fixman potential is not added to the Hamiltonian, the system is sam-
pled differently and therefore correction terms must be added to (4.27). First, the
weight Z

−1/2
ξ in (4.24) must be reintroduced. Second, the Lagrange multiplier is

different since the Fixman potential 1/(2β) ln Zξ is not used. Considering (4.20)
for λ, it is possible to show that the Lagrange multiplier λF simply needs to be
replaced by

λ +
1

2βZξ

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi
.

The final expression therefore reads

dA

dξ
=

〈
Z

−1/2
ξ

(
λ +

1
2βZξ

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

ξ,ξ̇〈
Z

−1/2
ξ

〉
ξ,ξ̇

. (4.28)
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Examples. Let us consider ξ = r in 2D. In this case:

∇ξ = ur, Zξ =
1
m

where ur = r/r. Thus
dA

dr
= 〈λ〉r,ṙ.

For ξ = r2:

∇ξ = 2r ur, Zξ =
4r2

m
, ∇ ln Zξ =

2
r
ur.

The expression for dA/dξ then reads

dA

dξ
= 〈λ〉ξ,ξ̇ +

1
2βξ

.

Let us consider another example, in which ξ = cos(θ), 0 ≤ θ ≤ π, in 3D, where θ
is the angle with the z-axis. Then

∇ξ = − sin θ
uθ

r
, Zξ =

sin2 θ

mr2
, ∇ ln Zξ =

2 cot θ

r
uθ −

2
r
ur,

where uθ is a unit vector defined by

uθ = ur ×
ur × uz

|ur × uz|
.

The vector uz is a unit vector pointing in the z-direction. We finally get

dA

dξ
=

〈rλ〉ξ,ξ̇

〈r〉ξ,ξ̇

− ξ

β(1 − ξ2)
. (4.29)

Compared with (4.15), we see that this new expression for constrained
simulations (4.28) is somewhat similar but a striking difference is that λ is a function
of the velocity ẋ whereas (4.15) involves only an average in configurational space.
Those two results are linked and we show in Appendix B that (4.28) is actually a
special case of (4.15).

4.5.4 A More Concise Expression

The formula that we gave for calculating the PMF in constrained simulations (4.28)
has the drawback of requiring knowledge of the second derivative of ξ with respect
to x. From a practical standpoint it would be convenient to have an expression
involving first derivatives of ξ only. This can be done by introducing the constrained
Hamiltonian Hξ and carrying out the following expansion:
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A(ξ) = −kBT ln
∫

e−βH δ(ξ − ξ(x)) dxdpx (4.30)

= −kBT ln
∫

e−βHξ dqdpq − kBT ln

∫
e−βH δ(ξ − ξ(x)) dxdpx∫

e−βHξ dqdpq

,

(4.31)

where Hξ is the Hamiltonian for the constrained system and is a function of (q,pq)
only [see (4.22) for its definition].

The first term can be computed in a straightforward way using the Lagrange
multiplier λ. A derivation similar to the one given in Sect. 4.5.3 [see (4.27)] leads to

d
dξ

(
−kBT ln

∫
e−βHξ dqdpq

)
= 〈λ〉ξ,ξ̇.

The Fixman potential is not needed here since we are sampling with Hamiltonian Hξ.
The second term is (4.31) can be expressed in terms of Zξ∫

e−βH δ(ξ − ξ(x)) dxdpx∫
e−βHξ dqdpq

=
√

π

2β

∫
Z

−1/2
ξ e−βHξ dqdpq∫
e−βHξ dqdpq

=
√

π

2β

〈
Z

−1/2
ξ

〉
ξ,ξ̇

.

If we are interested (as is almost always the case) in computing free energy differ-
ences, the factor

√
π/2β can be ignored. The factor Z

−1/2
ξ represents a contribution

to the free energy, in addition to the ‘mechanical’ forces given by λ, due to entropic
effects.

The new expression for the derivative of the free energy is

A(ξ) =
∫
〈λ〉ξ,ξ̇ dξ − kBT ln

〈
Z

−1/2
ξ

〉
ξ,ξ̇

. (4.32)

This expression involves only the computation of the gradient of ξ. A comparison
with (4.28) which requires the same constrained simulation but a different equation
for dA/dξ underscores the simplicity of this new expression. A similar expres-
sion was derived by Schlitter et al. [41–44].

Let us see how (4.32) works in the examples from Sect. 4.5.3. If we take ξ = r
(the first example) Zξ is a constant and therefore can be omitted from (4.32). We
directly get A(ξ) =

∫
〈λ〉ξ,ξ̇ dξ.

For ξ = r2 (the second example), Zξ = 4r2/m, we obtain

A(ξ) =
∫
〈λ〉ξ,ξ̇ dξ +

ln 4ξ/m

2β
.
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However, if we add a constant to A(ξ) we get

A(ξ) =
∫
〈λ〉ξ,ξ̇ dξ +

ln ξ

2β
.

This is the same result as before (Sect. 4.5.3).
The last example is ξ = cos(θ). In this case Zξ = sin2 θ/mr2 and we get

A(ξ) =
∫
〈λ〉ξ,ξ̇ dξ +

1
2β

ln(1 − ξ2) − kBT ln〈r〉ξ,ξ̇.

This equation is different from (4.29). The derivative of ln(1 − ξ2)/2β gives an
identical term −ξ/β(1−ξ2), but the weight r appears as a separate term −kBT ln〈r〉
instead of 〈rλ〉/〈r〉.

4.6 The Adaptive Biasing Force Method

We now describe a different approach which is simpler than the method of constraints
and also very efficient. It does not require running a constrained simulation and can
be performed entirely with a single molecular dynamics run.

One reason for the inefficiencies of constraint methods is that they may prevent
an efficient sampling of the set ξ(x) = ξ. This is illustrated by Fig. 4.2. It is common
that many pathways separated by high energy barriers exist to go from A to B. In
constrained simulation, the system can get trapped in one of the pathways. In the
most serious cases, this leads to quasi-nonergodic effect where only a part of the set
ξ(x) = ξ is effectively explored. In less serious cases, the convergence is quite slow.

An approach that does not suffer from such problems is the ABF method. This
method is based on computing the mean force on ξ and then removing this force in
order to improve sampling. This leads to uniform sampling along ξ. The dynamics
of ξ corresponds to a random walk with zero mean force. Only the fluctuating part of
the instantaneous force on ξ remains. This method is quite simple to implement and
leads to a very small statistical error and excellent convergence.

In contrast to umbrella sampling, ABF removes the need to guess a priori the
biasing potential or to refine it iteratively. Instead the biasing force is estimated
locally from the sampled conformations of the system and continuously updated
as the simulation progresses. This is therefore an adaptive algorithm. It uses all the
statistics obtained so far to improve the sampling of the system. This is why it is
superior to umbrella sampling, which requires global information (the probability
density function across the whole range of ξ) in order to estimate the correct biasing
potential properly. In ABF, the bias is applied as soon as enough samples have been
accumulated in a given bin to estimate the mean force.

Let us first provide an expression to compute the derivative of the free energy for
unconstrained simulations. Then, we will discuss the calculation of the biasing force
and the algorithmic implementation of the method.
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4.6.1 The Derivative of the Free Energy

Darve et al. [18, 28, 29] derived the following formula for the derivative of the free
energy

dA

dξ
= −

〈
mξ ξ̈ −

2m2
ξ

β

∑
ij

1
mimj

∂ξ

∂xi

∂ξ

∂xj

∂2ξ

∂xi∂xj

〉
,

where
mξ = Z−1

ξ .

This expression involves first- and second-order derivatives of ξ with respect to x.
While this equation has been successfully used for many computations, a more con-
venient expression can be derived which involves derivatives with respect to time,
which are easier to calculate using molecular dynamics. No second derivatives are
required, which significantly simplifies the implementation. This equation is

dA

dξ
= −

〈
d
dt

(
mξ

dξ

dt

)〉
ξ

, (4.33)

where the averages are over ξ collected during unconstrained simulations.
For a single reaction coordinate Zξ =

∑
r

1
mr

(∂ξ/∂xr)2. In the case where
ξ is actually a Cartesian coordinate, for example ξ = x1, this equation reduces to the
mean force on x1

dA

dx1
= −

〈
d
dt

(
m1

dx1

dt

)〉
x1

=
〈

∂U

∂x1

〉
x1

,

where we used Newton’s equations of motion. Equation (4.33) is an extension to a
general coordinate ξ.

This formula can be generalized to several reaction coordinates with little
difficulty. In that case, mξ is a matrix defined as the inverse of matrix Zξ

[Zξ]kl =
∑

r

1
mr

∂ξk

∂xr

∂ξl

∂xr
.

Darve and Pohorille [28], for example, derived an equation that involved the deri-
vative of mξ with respect to Cartesian coordinates. This is not required for our
present equation (4.33).

Again we consider examples from the earlier section. For ξ = r, (4.33) becomes

dA

dξ
= −

〈
d
dt

(
m

dξ

dt

)〉
ξ

.

For ξ = r2, we obtain
dA

dξ
= −

〈
d
dt

(
m

4ξ

dξ

dt

)〉
ξ

.
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Finally for ξ = cos θ, we obtain

dA

dξ
= −

〈
d
dt

(
mr2

1 − ξ2

dξ

dt

)〉
ξ

.

We now prove (4.33) and show that it is a consequence of the fundamental (4.15)
(formulation with configurational derivatives) with the choice

wi =
1

mi

∂ξ

∂xi
.

The derivative dξ/dt can be written dξ/dt = ∇ξ · ẋ. With the product rule for
derivatives, we get

d
dt

(
mξ

dξ

dt

)
=

d
dt

(mξ∇ξ) · ẋ + (mξ∇ξ) ẍ (4.34)

= (ẋ)t · ∇ (mξ∇ξ) · ẋ + (mξ∇ξ) ẍ. (4.35)

In the last line, we used again d/dt = (ẋ)t · ∇ . The average over momenta with ξ
fixed can be computed analytically. If we use miẍi = −∂U/∂xi, we obtain

−
〈

d
dt

(
mξ

dξ

dt

)〉
ξ

= −
〈
(ẋ)t · ∇ (mξ∇ξ) · ẋ + (mξ∇ξ) ẍ

〉
ξ

= −
〈

kBT Tr
[
M−1∇ (mξ∇ξ)

]
− mξ

∑
i

1
mi

∂ξ

∂xi

∂U

∂xi

〉

ξ

=

〈∑
i

[
mξ

1
mi

∂ξ

∂xi

∂U

∂xi
− kBT

∂

∂xi

(
mξ

1
mi

∂ξ

∂xi

)]〉

ξ

,

which is identical to the general (4.15) with the choice wi = 1/mi ∂ξ/∂xi.

4.6.2 Numerical Calculation of the Time Derivatives

Equation (4.33) requires the computation of time derivatives. In molecular dynamics
discretization errors due to the finite time step dt are of order O(dt2). Therefore we
would like to estimate the time derivative in (4.33) with the same accuracy.

If we calculate the time derivative at half time step t+∆t/2, we can approximate
the instantaneous force

d
dt

(
mξ

dξ

dt

)
=

(mξ ξ̇)(t + dt) − (mξ ξ̇)(t)
dt

+ O(dt2),

where mξ ξ̇ can be computed using

mξ ξ̇ = mξ∇ξ · v, where v = ẋ.

The first term mξ∇ξ is a function of x only. Let us assume that we are using the
velocity Verlet time integrator, which is the most common. In that case, x is com-
puted with local accuracy O(dt4) and global accuracy O(dt2), and the velocity v at
half-steps is computed with accuracy O(dt2) if the following approximation is used:
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v(t + dt/2) def=
x(t + dt) − x(t)

dt
+ O(dt2).

However, this approximation is not sufficient since it leads to an error of O(dt) for
d(mξ ξ̇)/dt.

Before introducing a more accurate approximation for v, we recall the basic
velocity Verlet algorithm

v(t + dt/2) def= v(t − dt/2) + dt a(t), (4.36)
x(t + dt) = x(t) + dt v(t + dt/2), (4.37)

where a(t) = d2x/dt2 = −M−1∇U .
It can be shown that the following expression provides an estimate of v(t) with

accuracy O(dt4):

v(t) =
v(t + dt/2) + v(t − dt/2)

2
− dt

12
(a(t+dt)−a(t−dt))+O(dt4), (4.38)

where a is the acceleration and the half-step velocities are given by the velocity
Verlet algorithm.

Using this approximation we can now calculate the time derivative at t+∆t/2, as

d
dt

(
mξ

dξ

dt

)
=

(mξ ξ̇)(t + dt) − (mξ ξ̇)(t)
dt

+ O(dt3) (4.39)

=
mξ(t + dt)∇ξ(t + dt) · v(t + dt) − mξ(t)∇ξ(t) · v(t)

dt
+ O(dt3)

(4.40)

=
1
2

(
p+

ξ (t + dt) − p+
ξ (t)

dt
+

p−
ξ (t + dt) − p−

ξ (t)
dt

)
, (4.41)

where

p+
ξ (t) def= mξ(t)∇ξ(t) ·

[
v(t + dt/2) − dt

6
a(t + dt)

]
, (4.42)

p−
ξ (t) def= mξ(t)∇ξ(t) ·

[
v(t − dt/2) +

dt

6
a(t − dt)

]
. (4.43)

In this expression mξ, ∇ξ and a are functions of x and can computed at t and t+∆t.
The velocity at the half-steps is directly provided by the velocity Verlet algorithm.
To summarize, to calculate d(mξ ξ̇)/dt at time t+∆t/2 we need to collect data from
time steps t−∆t, t, t + ∆t, and t + 2∆t. Recall again that these equations are used
to calculate the mean force along ξ, not to advance the system in time.

4.6.3 Adaptive Biasing Force: Implementation and Accuracy

We previously showed that the free energy can be computed using (4.33). This is
done by binning the force and computing the average force along the ξ interval.
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However, a molecular dynamics simulation without a biasing force will be very
inefficient if significant energy barriers along ξ are present in the system. There-
fore, an external biasing force needs to be added to improve the sampling efficiency.
This can be done by applying the ABF algorithm [18, 28, 29], which yields a uni-
form sampling along ξ, and by doing so leads to a significant reduction of statistical
errors due to an increased sampling of transition regions.

Assume that we bin the interval of interest for ξ and that we have collected nk(N)
samples in bin k after N steps in a molecular dynamics simulation. We use those
samples to compute a running average of the force acting along ξ:

F k
ξ (N) =

1
nk(N)

nk(N)∑
l=1

d
dt

(
mξ

dξ

dt

)
(xk

l ), (4.44)

where xk
l corresponds to sample l in bin k. We will explain in the next section how

the time derivatives can be computed. The external force applied to the system is
chosen equal to −F k

ξ .
In general, when very few samples are available the force F k

ξ (N) will not
be an accurate approximation of dA/dξ. Large variations in F k

ξ (N) may lead to
nonequilibrium effects and systematic bias of the calculation. Mathematically, this
can be expressed by introducing a perturbation ∆H (q,p, N), which is a func-
tion of the number of steps N . At N = 1 if we average over all possible initial
configurations, abbreviated by subscript 0, we obtain

〈F k
ξ (1)〉0 =

∫
d
dt

(mξ ξ̇) e−βH δ(ξ − ξ(q)) dqdp
∫

e−βH dqdp

so that we exactly have dA/dξ = −〈F k
ξ (1)〉0. Similarly, after a very long simulation

time we have (again averaging over initial configurations)

〈F k
ξ (∞)〉0 =

∫
d
dt

(mξ ξ̇) e−β(H −A(ξ))δ(ξ − ξ(q)) dqdp
∫

e−β(H −A(ξ)) dqdp
.

Again, we exactly have dA/dξ = −〈F k
ξ (∞)〉0.

For intermediate values of N , a perturbation ∆H (q,p, N) can be defined such
that the weight in the average is exp(−β(H + ∆H )). In this case a systematic
bias may be introduced and dA/dξ �= −〈F k

ξ (N)〉0. In addition incorrect estimates
of dA/dξ can lead to short-lived free energy barriers in the initial steps of the
simulation.

In order to control those initial nonequilibrium effects, a ramp function can
be added which reduces the variations from one step to the next of the external force
applied in a given bin. The external force applied to the system can be chosen equal to
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−R(nk(N))F k
ξ (N), (4.45)

R(n) =

{
n/N0 if n ≤ N0

1 if n > N0.
(4.46)

It has been found in numerical tests that N0 should be chosen relatively small,
N0 = 100 for example. In general it is important to have a good balance between
rapidly improving the sampling of the system, which requires a small N0, and avoid-
ing large nonequilibrium effects, which requires a large N0. However, the effects of
nonequilibrium perturbations occur only at the beginning of the simulation and dis-
appear rapidly as the number of sample points in the bin increases. For N samples,
this initial systematic error decays as 1/N . The statistical error, however, decays
much more slowly, as 1/

√
N . This means that initial sampling errors are negligible

compared to statistical errors and therefore will not negatively affect the accuracy of
the computation. Numerical tests have shown that choosing a small N0 is preferred
as it rapidly provides good sampling along the reaction coordinate ξ.

Other algorithms for rapid estimation of the average forces in individual bins can
be used. In particular, when no or only a few samples have been gathered in a bin
k, but good statistics in the surrounding bins are available, extrapolation schemes
can provide an estimate of the biasing force in bin k. This accelerates sampling of
conformations corresponding to transition states with large free energies.

4.6.4 The ABF Algorithm

When biasing the system, an external force λ∇ξ is applied to improve the sampling
along ξ. Since this force is added, the calculation of the derivative of −mξ ξ̇ must be
modified. Consider (4.35). The first term does not require any correction since x and
ẋ are sampled according to the correct distribution. However ẍ includes the ABF
force whose contribution needs to be removed to compute the free energy derivative.
The correction is equal to

(mξ∇ξ)M−1 (λ∇ξ) = λ.

Since we approximate −d(mξ ξ̇)/dt at t + dt/2 we need to add the following cor-
rection:

1
2
(λ(t) + λ(t + dt)).

The full ABF algorithm consists of two parts, which are summarized below (Algo-
rithms 1 and 2). Any molecular dynamics code can easily be updated to include these
modifications.

4.6.5 Additional Discussion of ABF

We now discuss a number of practical issues to illustrate the strengths and weak-
nesses of ABF.
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Algorithm 1 Velocity Verlet loop with ABF
“←” is the assignment operator.

Loop over time steps i = 1, . . . , n:
a1 ← M−1 F(r0)
/* Force computation at time t. M is a diagonal matrix with atom masses. F is the

vector of mechanical forces: F(r) = −∇U . */

a1 ← ABF(a1, r0, v)
/* Call to ABF subroutine, which computes the derivative of the free energy using

(4.33) and adds the adaptive biasing force. It takes as input the current
acceleration a1 and returns the new acceleration with ABF added. */

v ← v + dt a1
/* The velocity vector is advanced from t − dt/2 to t + dt/2 */

r0 ← r0 + dt v
/* The position vector is advanced from t to t + dt */

End of loop

Probability distribution function of forces. In each bin, ABF attempts to compute
dA/dξ by averaging −d/dt(mξ ξ̇). If we ignore the correlation between samples,
the statistical error can be approximated by σk/

√
nk(N) in bin k where σk is the

standard deviation of the force. In most cases, the force has a Gaussian distribution.
The efficiency of the calculation will depend on its standard deviation, which can be
large compared to the mean. An example is shown in Fig. 4.3 where we considered
polyalanine and define ξ as the distance between the α carbon in the first and last
residue. Figure 4.4 shows the distribution of forces around ξ = 19 Å. The probability
distribution is broad and the standard deviation (=13) is large compared to the mean
(=−1). In that case, one needs at least 14,000 samples to reduce the error, when
estimating the derivative, down to 10%. The distribution can also be seen to be nearly
Gaussian.

Complete or partial removal of the mean force. In ABF, the biasing force is used
only to improve the sampling. The biasing force can be modified without affecting
the estimation of the derivative of A(ξ). It is possible to remove free energy barriers
completely by applying the full bias, or simply scale down the barriers by applying
a fraction of the biasing force only. When using partial scaling, minima and maxima
of the free energy remain at the same location but are reduced.

Optimal sampling. As was pointed out earlier, the error in the derivative of A
is proportional to σk/

√
nk(N). The optimal sampling is therefore obtained when

σk/
√

nk(N) is constant as a function of k. In regions where σk is large, additional
sample points should be added to compensate. This is often a small effect but in
some special cases is worth considering. In order to obtain the optimal sampling, the
potential energy should be corrected as

U opt = U − 2kBT ln(σ(ξ)/σ0),
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Algorithm 2 ABF routine
In this routine, the derivative of the free energy is calculated and the biasing force is added to
the system.
“·” is the dot product.

a1 = function ABF(i,dt,a1, r0,v)

/* i: step number in the Verlet loop
dt: time step
a1: acceleration at time t
r0: position at time t
v: velocity at time t − dt/2 */

save n, F, pxi0, pxi1, a0, ZD0
/* Those variables need to be saved between function calls. */

k ← bin corresponding to ξ(r0)
/* Binning is used to calculate statistics for the average force. */

Rk ← ramp R(nk(N)) in bin k
/* Evaluates the ramp function R(nk(N)) [see (4.46)]. nk(N) is the number of sample

points in bin k after N molecular dynamics steps. */

la ← Rk F(k) / n(k)
/* Calculates the biasing force to apply. n(k) = nk(N). F(k) is the sum of all the force

samples in bin k. */

a1 ← a1 + la M−1∇ξ(r0)
/* Applies the adaptive biasing force. a1 is the new acceleration. This is an

output variable. M is a diagonal matrix with atom masses. */

pxip ← ZD0 · (v/2 − (dt/12) a1)
/* This is equal to p+

ξ (t − dt)/(2dt) [see (4.42)]. ZD0 is equal to mξ∇ξ/dt at time
t − ∆t. a1 is the acceleration at time t. */

ZD0 ← 1/dt (mξ(r0) ∇ξ(r0))
/* Computes the new value of mξ∇ξ/dt at time t. */

pxim ← ZD0 · (v/2 + (dt/12) a0)
/* Using the new ZD0, we compute p−

ξ (t)/(2dt) [see (4.43)]. a0 contains the
acceleration at the previous step (t − ∆t). */

a0 ← a1
/* Saves the acceleration a1 in preparation for the next step. */

pxi0 ← pxi0 + pxip
/* This steps completes the calculation of d(mξ ξ̇)/dt at time t − 3dt/2. */
If i ≥ 4:
/* We need i to be at least 4 before we can save the first value of F k

ξ . */
k0←bin index corresponding for ξ at step t − 3dt/2.
/* Calculates the bin index correspomding for ξ at step t − 3dt/2. */
n(k0) ← n(k0) + 1
/* Increments the counter nk0(N) by 1. */

F(k0) ← F(k0) − pxi0
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/* Adds new sample −d(mξ ξ̇)/dt to bin k0. */
Endif
pxi0 ← − pxip + pxim + pxi1 − la/2
/* pxi0 is now equal to (−p+

ξ (t − dt) + p−
ξ (t) − p−

ξ (t − dt))/(2dt)

−(λ(t − dt) + λ(t))/2. The only term missing to calculate d(mξ ξ̇)/dt at time
t − dt/2 is p+

ξ (t)/(2dt). This is done at the next time step. */

pxi1 ← − pxim − la/2
/* pxi1 is equal to −p−

ξ (t)/(2dt) − λ(t)/2. This value is used at the next step. */
End function ABF

At t = 0, the variables n, F, pxi0, pxi1, a0, ZD0 must be initialized to 0.

Fig. 4.3. Polyalanine. The order parameter is the distance between the first and last α carbon
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Fig. 4.4. Probability density function of the force. The mean is −1.1 and the standard deviation
is 13.2. A fit with a Gaussian distribution with identical mean and variance is shown
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where σ0 is a constant with the same dimension as σ(ξ). A practical approach is to
run an ABF simulation for some time, compute an estimate of σ(ξ) and then resume
the simulation with ABF and the biasing potential −2kBT ln(σ(ξ)/σ0).

Partition of forces. Going back to (4.33), we can derive a different equation

dA

dξ
= −

〈
d
dt

(
mξ

dξ

dt

)〉

=
〈
∇U · (mξM

−1∇ξ) − v · ∇(mξ∇ξ) · v
〉

(4.47)

using the product rule and the chain rule for differentiation. The first term is related
to the energy potential U and can easily be decomposed into several terms based on
a partition of U . For example, let us say we write U as

U = Uchemical bonds + Uelectrostatic + ULennard-Jones

The free energy can be decomposed into several contributions coming from each
term in U .

The last term v ·∇(mξ∇ξ) ·v corresponds to an entropic contribution. Even if U
is constant, A might be nonconstant if ξ is a nonlinear function of x. This is a purely
entropic effect.

Free energy with several order parameters. The previous formulas can be
extended to the case of multiple reaction coordinates ξ1,. . . , ξp. For example, the
derivative of the free energy becomes a gradient and

∇ξA(ξ1, . . . , ξp) = −
〈

d
dt

(
Mξ

dξ

dt

)〉
,

where ξ is a vector. The matrix Mξ is defined by its inverse

[
M−1

ξ

]
jk

=
∑ 1

mi

∂ξj

∂xi

∂ξk

∂xi
.

This generalization is therefore quite straightforward. One difficulty is that in higher
dimensions, reconstructing A(ξ) from its derivatives is not straightforward. For
example, let us choose a reference point ξ0 and decide that AABF(ξ0) = 0. Say we
define AABF(ξ) by

AABF(ξ1) =
∫

Cξ0,ξ1

DABF · dl,

where DABF is the approximation of ∇ξA produced by the ABF procedure. Cξ0,ξ1 is
a path joining ξ0 and ξ1. For an arbitrary closed loop C we always have

∫
C

∇ξA · dl = 0.

However, this is not satisfied in general by the vector field DABF, which has some
statistical error. As a consequence, the definition of AABF(ξ1) above, in fact, depends
on the path Cξ0,ξ1 , which is not desirable.
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Fig. 4.5. Free energy profile of alanine dipeptide as a function of Φ and Ψ . The ABF method
for second-order parameters was used in this calculation. The figure on the left shows the
reconstruction using four control points per data point (as shown in Fig. 4.6). The figure on
the right shows a reconstruction using only one control point per data point. This results in a
more oscillatory solution
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Fig. 4.6. Control points and Q1 nodes used to reconstruct A. The Q1 basis function is a
bilinear function equal to 1 at a Q1 node and zero at the surrounding Q1 nodes. Four control
points per cell were used. The derivatives of A were evaluated at each control point using a
linear interpolation based on the neighboring data points

To circumvent this, the function A can be approximated using spline functions

AABF(ξ) =
∑

l

αlBl(ξ).

The coefficients αl can be computed by minimizing

∑
k

∣∣∇ξA
ABF(ξk) − DABF(ξk)

∣∣2 =
∑

k

∣∣∣∣∣
(∑

l

αl∇ξBl(ξk)

)
− DABF(ξk)

∣∣∣∣∣
2

,
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where ξk are the sample points at which DABF was computed. This minimization
problem for αl has a unique solution if in addition we enforce that AABF(ξ0) = 0.

As an example, this approach was applied to the calculation of the PMF for
alanine dipeptide as a function of the two torsion angles Φ and Ψ . The resulting free
energy surface is shown in Fig. 4.5. Bilinear Q1 elements were used to approximate
the free energy. Control points were chosen such that there are four of them around
each data point. This was done in order to increase the smoothness and quality of the
reconstructed free energy. The position of the Q1 nodes and control points is shown
in Fig. 4.6.

4.7 Discussion of Other Techniques

Several other techniques are available to compute the PMF. In this section we discuss
the steered force molecular dynamics (SMD) [35–37] and the metadynamics of Laio
and Parrinello [30–34].

In SMD an external force is applied in an attempt to accelerate a chemical process
such as unfolding of a protein or dissociation of two molecules. In that respect, it is
similar to AFM or optical-tweezers experiments. The applied force is given by:

F = k(vt − x),

where x is the displacement of the pulled atom, v is a pulling velocity and k is a
stiffness constant. Variants of SMD include simulations, in which the applied force
is constants or where the rate of change of x is constant. Several proteins, such as
titin [35, 36], cadherin [37], V-CAM [37], fibronectin [37], cytochrome C6 [37],
immunoglobulin binding protein [37] and synaptotagmin I [37], have been studied
using SMD.

Metadynamics defines coarse-grained variables which are assumed to be slow
coordinates of the system. Those coordinates are similar to the order parameters
considered earlier in this chapter. The coarse variables are evolved independently
following a steepest-descent equation. In the case of a single variable, Laio and
Parrinello [34] use

ξn+1 = ξn − h∆ξ sign(dAb
n/dξ), (4.48)

where sign(x) = 1 if x ≥ 0, −1 otherwise; h is a fixed stepping parameter and
∆ξ is the estimated size of the free energy well at the current point. If Ab

n were
the free energy, this equation would simply move ξ towards the nearest free energy
minimum. In order to guarantee an efficient exploration, Ab

n is a history-dependent
potential defined by

Ab
n(ξ) = A(ξ) + W

∑
k≤n

exp
(
−|ξ − ξk|2

2(h∆ξ)2

)
.

The extra term with Gaussian functions helps push the variable ξ away from regions
which have already been visited; see Fig. 4.7. This enhances the efficiency of the
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Fig. 4.7. The metadynamics technique of Laio and Parrinello progressively fills up free energy
wells by adding Gaussian terms to the energy function. This figure shows the effective free
energy profile experienced by the coarse-grained variable as the simulation progresses. The
length of the simulation is indicated by the numbers above the curves. The free energy profile
is shown using a thick solid line

simulation and leads to a uniform sampling along the coarse-grained variable. In this
respect the method is similar to ABF.

The steepest descent (4.48) requires calculation of dA/dξ. Laio and Parrinello
chose to estimate this term by performing short constrained molecular dynam-
ics simulations and computing the potential of mean constraint force (see Carter
et al. [45]).

In the limit of a large number of sample points and for sufficiently small h

−W
∑
k≤n

exp
(
−|ξ − ξk|2

2(h∆ξ)2

)
→ A(ξ).

A variant of this method [32] was also developed which uses an extended Lagrangian
formulation of the form

L = L0 +
1
2
Mξ̇2 − 1

2
k(ξ(x) − ξ)2 − Ab

t(ξ),

where ξ is now an extra degree of freedom and Ab
t is a history-dependent poten-

tial formed by superposing Gaussian functions in a fashion similar to that described
above.

Several problems have been studied with this technique, including the disso-
ciation of NaCl [34], alanine dipeptide [34], C4H6 [32], and phase transitions in
silicon [33].

4.8 Examples of Application of ABF

4.8.1 Two Simple Systems

The first example involves calculating the potential of mean force for the rotation
of the C–C bond in 1,2-dichloroethane (DCE) dissolved in water. In the second
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example, the potential of mean force for the transfer of fluoromethane (FMet) across
a water–hexane interface is obtained. Details of the simulations can be found in
[28, 29, 46, 47].

For DCE in water, the Cl–C–C–Cl torsional angle ξ was taken as the reaction
coordinate. For the transfer of FMet across the water–hexane interface, ξ was defined
as the z component of the distance between the centers of mass of the solute and the
hexane lamella.

In Fig. 4.8 we show the free energy profile for the rotation of DCE around
the Cl–C–C–Cl torsional angle. This profile, obtained using ABF, is in excellent
agreement with the previously calculated reference curve [28]. The free energies
for the gauche and trans conformations in water are nearly the same. In contrast,
in the gas phase the trans conformation is favored by 1.1 kcal mol−1 [46, 47].
This means that, compared to the trans rotamer, the gauche conformation is stabi-
lized in the aqueous environment. This can be explained by favorable interactions
between the permanent dipole of DCE in the gauche state and the surrounding
water. These interactions are absent if DCE is in the trans conformation because, by
symmetry, this state has no dipole moment.

The free energy profile for the transfer of FMet across a water–hexane interface
obtained using ABF is shown in Fig. 4.9. The free energy exhibits a minimum at the
interface, which is approximately 2 kcal mol−1 deep (compared to the free energy in
bulk water). The existence of this minimum is due to the lower density at the interface
between weekly interacting liquids, such as water and oil, compared to the densities
in the bulk solvents. As a result, the probability of finding a cavity sufficiently large to
accommodate the solute increases and the corresponding free energy cost of inserting
a small, nonpolar or weakly polar solute decreases [48]. Similar free energy profiles
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Fig. 4.8. Free energy computation using ABF and a constrained simulation. Reprinted with
permission from Darve et al. 2001 [28]. Copyright 2001, American Institute of Physics
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Fig. 4.9. Free energy computation using ABF and a constrained simulation. Reprinted with
permission from Gomez et al. 2004 [18]. Copyright 2004, American Institute of Physics.

were found for a wide range of other solutes [49–51]. The free energy difference
between FMet in water and hexane is approximately equal to 0.5 kcal mol−1, which
corresponds well to the measured partition coefficient between these two liquids [48].

Despite its apparent simplicity, this calculation is relatively difficult to perform.
Gomez et al. [18] demonstrated that ABF performs much better than both slow-
growth and fast-growth implementations of the nonequilibrium method of Jarzynski
and Crooks (see the next chapter).

4.8.2 Deca-L-alanine

ABF was probed through the reversible unfolding of a short peptide, deca-L-alanine,
in vacuo [52] (see Fig. 4.10). The reaction coordinate, ξ, is the distance separating
the first and the last Cα carbon atom of the peptide chain. ξ was varied between 12
and 32 Å, thereby allowing the peptide to sample the full range of conformations
between the native α-helical structure and the extended structures. The force acting
along ξ was accrued in bins 0.1 Å wide.

Starting from the α-helical state of the peptide, the complete free energy pro-
file is obtained from a molecular dynamics trajectory 5 ns long, with a reasonably
uniform sampling distribution over the entire range of ξ values (see Fig. 4.11). This
profile possesses a unique minimum around 14 Å, corresponding to the native helical
segment. As the peptide chain stretches out, the intramolecular i → i + 4 hydrogen
bonds responsible for the scaffold of the α-helix are successively broken, leading to
a progressive increase of the free energy.

It is interesting to note that the free energy profiles obtained with ABF are ess-
entially identical to those derived by Park et al. [53] from a reversible, 200-ns steered
molecular dynamics simulation and from a set of 100 shorter runs, pulling very
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Fig. 4.10. Deca-L-alanine in its folded configuration
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Fig. 4.11. Free energy profile for Deca-L-alanine calculated using the ABF. The inset shows
the number of samples as a function of ξ

slowly the terminal end of deca-L-alanine and applying the Jarzynski identity to infer
equilibrium free energy differences along ξ. They were however obtained at a much
lower computational cost.

4.9 Glycophorin A

Hénin et al. [54] used ABF to model the association of Glycophorin A inside a
membrane mimetic. GpA was modeled using two trans-membrane helical segments.
The key interactions between the two segments are shown in Fig. 4.12.
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Fig. 4.12. Glycophorin A: key interactions between the two helical segments. The color scale
reflects decreasing interhelical distances. Reprinted in part with permision from Hénin et al.
2005 [54]. Copyright 2005 American Chemical Society.
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The figure on the right shows the individual contributions of helix–helix van der Waals and
electrostatic forces, and helix–solvent forces. Reprinted in part with permision from Hénin et
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An important difficulty of this simulation is the fact that, once the two helices
are close to each other, it is very difficult to slide one with respect to the other
or change their relative orientation because of steric clashes. This means that a
simulation where the helix–helix distance is constrained would not be able to sam-
ple phase space efficiently but rather would remain near the local energy minimum
where it started. In contrast, using ABF, the helices have the opportunity to move
closer and farther apart so that their relative position can vary more freely.

Figure 4.13 shows the free energy profile as a function of the helix–helix distance.
Equation (4.47) allows the computation of the contributions to the profile by the dif-
ferent intermolecular potentials. The helix–helix and helix–solvent interactions were
considered. The helix–helix van der Waals potential shows a significant minimum
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at short distances around 8 Å. The helix–helix electrostatic interactions has a strong
attractive component at short distances. The helix–solvent interaction is weaker and
attractive in the range up to 21 Å.

4.10 Alchemical Transformations

So far we have discussed various techniques for computing the PMF. The other type
of free energy calculation commonly performed is alchemical transformation where
two different systems are compared. Such calculations have many applications such
as: Lennard-Jones fluid with and without dipoles for each particles, comparison of
ethanol (CH3CH2OH) and ethane thiol (CH3CH2SH), replacing one amino acid by
another in a protein, changing the formula for a compound in drug discovery, etc.

For those applications, each system is modeled using different Hamiltonian
functions H0 and H1. The free energy difference is defined as

∆A = −kBT ln
Q1

Q0
= −kBT ln

∫
exp(−H1(x,px)/kBT ) dxdpx∫
exp(−H0(x,px)/kBT ) dxdpx

.

Several techniques exist to compute ∆A. Following our earlier discussion for the
PMF we will discuss TI. In this approach a parameterized Hamiltonian Hλ(x,px) is
defined such that when λ = 0, Hλ = H0 and when λ = 1, Hλ = H1. Hλ(x,px)
interpolates smoothly between the two Hamiltonian functions. The free energy A
becomes itself a function of λ and we have

dA

dλ
=

∫
∂Hλ(x,px)

∂λ
exp(−Hλ(x,px)/kBT ) dxdpx∫

exp(−Hλ(x,px)/kBT ) dxdpx

=
〈

∂Hλ(x,px)
∂λ

〉
λ

.

(4.49)
If Hλ is a linear interpolation between Hamiltonian H0 and H1, then this equation
reduces to

dA

dλ
= 〈H1(x,px) − H0(x,px)〉λ .

Calculations are usually performed by considering a set of quadrature points λk

between 0 and 1 and associated weights ωk, e.g., Gaussian points and weights.
At each λk, an MD simulation is performed and the average of ∂Hλ(x,px)/∂λ
is computed. Finally the free energy is computed using

∆A ∼
∑

k

ωk

〈
∂Hλ(x,px)

∂λ

〉
λk

.

Example: Ion in Water
Consider the case of an ion in water. The force field for the ion may be described
using a Lennard-Jones and electrostatic potential with charge q. Assume that we
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want to compute the free energy difference between a charged and uncharged parti-
cle. In that case we can define a charge qλ = λq. The Hamiltonian function can be
defined as

Hλ(x,px) = H0(x,px) + λqV (xion),

where V (xion) is the electrostatic potential due to water molecules at the ion location.
In this case

∂Hλ(x,px)
∂λ

= qV (xion).

The derivative of the free energy is simply computed using

dA

dλ
= 〈qV (xion)〉λ .

Note that, even though qV (xion) is not a function of λ, A(λ) is since we are com-
puting the average using the Hamiltonian Hλ(x,px). As λ changes the structure of
the water around the ion changes and, as a result, the mean value of V (xion) also
changes.

In this case, A(λ) is a concave function which can be very useful to check the
accuracy of the calculation. This is proved by computing the second derivative of
A(λ)

d2A

dλ2
= − 1

kBT

[〈
(∆U)2

〉
λ
− 〈∆U〉2λ

]
≤ 0, ∆U = U1 − U0,

where U0 and U1 are the potential energies of system 0 and 1. This property, in
general, holds for any parametrization such that Hλ is a linear function of the
parameter λ, that is: Hλ = (1 − λ)H0 + λH1.

Entropy

In the previous examples, we considered a parameterized Hamiltonian function Hλ

and derived equations to compute A(λ). Let us now consider the dependence of A
with temperature. Based on the definition of A, we have

∂A

∂T
=

1
T

(A − 〈H 〉).

If we recall the classical equation of thermodynamics relating the entropy S to the
free energy: A = 〈H 〉 − TS, we get

S = −∂A

∂T
.

Computing the absolute free energy A is in general a difficult task. For the same
reasons the absolute entropy cannot be computed except in special cases. How-
ever, entropy differences can be computed. Indeed, using finite differences, we can
approximate

∆S = −∆A(T + ∆T ) − ∆A(T − ∆T )
2∆T

.
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The free energy ∆A can be computed using TI and (4.49) for example. This is a
somewhat indirect way of calculating ∆S and practically difficult in many cases
since it requires computing ∆A with great accuracy.

Following the same procedure which was applied to the calculation of ∆A, TI
allows direct computation of the difference in entropy:

∂Sλ

∂λ
=

1
T

(
∂〈Hλ〉

∂λ
− ∂Aλ

∂λ

)

=
−β

T

(〈
Hλ

∂Hλ

∂λ

〉
− 〈Hλ〉

〈
∂Hλ

∂λ

〉)
.

After integration, the final expression for ∆S is

∆S =
−β

T

∫ 1

0

(〈
Hλ

∂Hλ

∂λ

〉
− 〈Hλ〉

〈
∂Hλ

∂λ

〉)
dλ.

Other methods for calculating entropy are discussed in Sect. 2.10.

4.10.1 Parametrization of Hλ

For simple calculations such as the one given above, a linear parametrization of the
Hamiltonian is sufficient. However in most cases, one is interested in ‘growing’ new
atoms or ‘removing’ atoms. This is the case if for example one is transforming a
glycine residue into an alanine. See Fig. 4.14.

In that case, one might run into problems when trying to calculate dA/dλ at
λ = 0. For that value, CH3 does not ‘feel’ any other atoms since the Hamiltonian
functions does not contain any terms related to CH3. However, ∂H /∂λ will be
extremely large each time a water molecule overlaps with CH3. Those very large
values are van der Waals energy terms which scale like (σ/r)12−(σ/r)6 and become
large for small values of r. Consequently, doing such a calculation might be very
challenging.

As we have discussed in Sect. 2.8.5 a convenient approach to remedy this is to
use soft-core potentials [55], in which the Lennard-Jones potential is replaced by

4(1 − λ)ε
[(σ

r

)12

−
(σ

r

)6
]

⇒ 4(1 − λ)ε
[

σ12

[αλ2σ6 + r6]2
− σ6

αλ2σ6 + r6

]
.

(4.50)

N H

COO

C

H

3H+

Glycine

N CH

COO

C

H

3 3H+

Alanine

Atom being removed Atoms being added

Alchemical
transformation

Fig. 4.14. A glycine residue is changed into an alanine. The H atom disappears while CH3

appears
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When λ = 0 one recovers the Lennard-Jones potential. When λ = 1, the atom is
annihilated smoothly and the singularity disappears progressively. The parameter α
can be chosen to increase the smoothness of the free energy. A small α results in a
near singularity around λ = 1 while a large α results in a near singularity around
λ = 0. See article by Beutler et al. [55] for an algorithm to calculate an appropriate
value of α.

4.10.2 Thermodynamic Cycle

It is often the case that alchemical transformations are used to compare the binding
affinity of two ligands L1 and L2 to a receptor molecule R. For example L1 and
L2 might be two putative inhibitors of an enzyme R. If ∆A1 (respectively, ∆A2)
is the free energy of binding L1 (respectively, L2) to R, we can define the relative
binding affinity by ∆∆A = ∆A2 − ∆A1.

The thermodynamic cycle shown in Fig. 4.15 can be used to greatly simplify this
type of calculation. For large molecules, computing the binding energy directly, by
modeling the association of say L1 and R, is a difficult task since large rearrange-
ments in R are involved. However, if one is interested in ∆∆A only, then a shortcut
can be taken by observing that ∆A1 + ∆A4 = ∆A3 + ∆A2. Therefore instead of
computing ∆A2 − ∆A1 one can compute ∆A4 − ∆A3. ∆A3 and ∆A4 correspond
to the mutation of L1 to L2 either in water (∆A3) or bound to R (∆A4). Even
though experimentally only ∆A1 and ∆A2 are accessible, numerically it is easier to
calculate ∆A3 and ∆A4. See the discussion in Sect. 2.8.3.

4.10.3 λ Dynamics

It is possible to treat the parameter λ in the alchemical transformation as a dynamic
variable using an extended ensemble [56]. For simplicity of implementation, it has
been proposed to use two variables λ0 and λ1 such that λ2

0+λ2
1 = 1. The Hamiltonian

function is then defined as [57, 58]

H e(x,p, λ0, λ1, p0, p1) = K(p)+
1

2mλ
(p2

0 + p2
1)+λ2

0U0(x)+λ2
1U1(x), (4.51)

L 1

L 2

L1 + R

L 2 + R

DA1

DA4

DA2

DA3

Fig. 4.15. Thermodynamic cycle for the binding of L1 and L2 to a receptor molecule R.
Calculating ∆A3 and ∆A4 is often easier than ∆A1 and ∆A2
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where K is the kinetic energy, U0 and U1 the potential energy for the two systems,
and p0 and p1 are momentum variables associated with λ0 and λ1. With this approach
we do not need to enforce 0 < λ < 1. However, we do need to enforce λ2

0 + λ2
1 = 1.

Bitetti-Putzer et al. [59] has argued that this approach leads to an overall improved
sampling compared to a simulation with λ fixed.

Here we propose a different parametrization which removes the need for
constraints. The following Hamiltonian H e is defined:

H e(x,p, θ, pθ) = K(p) +
p2

θ

2mθ
+ cos2(θ)U0(x) + sin2(θ)U1(x).

The equations of motion for θ are

dθ

dt
=

pθ

mθ
,

dpθ

dt
= − sin(2θ)∆U, ∆U = U1 − U0.

The sin function results from the use of cos2(θ) as the weight function. The free
energy difference can now be calculated as

∆A =
∫ π/2

0

〈
∂H e

∂θ

〉
θ

dθ =
∫ π/2

0

sin(2θ)
〈
∆U
〉
θ
dθ =

∫ 1

0

〈
∆U
〉
λ

dλ

with λ = sin2 θ.
The λ dynamic approach can be combined with other techniques used for

calculating the PMF. One of them is the non-Boltzmann TI of Ota and Brunger [60,
61]. ABF can also be used in combination with λ dynamics to accelerate the sam-
pling along λ.

It has been argued that using several λ parameters λ0, λ1, . . . , λL one can
perform several mutation studies simultaneously in so-called competitive binding
experiments [57]. This approach allows the calculation of ∆Aij for any two ligands
and rapid ranking of compounds according to their binding affinity. In this case, the
potential U is defined as

U(x, λ0, . . . , λL) =
L∑

i=1

λ2
i Ui(x),

L∑
i=1

λ2
i = 1.

Guo et al. [57] used this approach to calculate the binding affinities of different inhi-
bitors of trypsin, shown in Fig. 4.16. They proposed to improve the sampling by
adding the following biasing potential:

U(x, λ0, · · · , λL) =
L∑

i=1

λ2
i (Ui(x) − Fi),

where Fi is iteratively modified so that all molecule types are visited with equal
probability. The weighted histogram method [62] can be used to obtain the final
estimate for the free energy differences ∆Aij .
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C1

C6

C3

C4

C2

C5

C9

R

N7 N8

C5

C5C5

C5

C Cl

H N

benzamidine p-amino benzamidine

p-methyl benzamidine p-chloro benzamidine

Fig. 4.16. The λ dynamics method for alchemical transformations was developed by Guo and
Brooks [57] for rapid screening of binding affinities. In this approach the parameter λ is a
dynamic variable. Techniques like ABF or metadynamics [34] can be used to accelerate this
type of calculation. λ dynamics was used by Guo [57] to study the binding of benzamidine to
trypsin. One simulation is sufficient to gather data on several benzamidine derivatives. Substi-
tutions were made at the para position C5 (H, NH2, CH3 and Cl). The hydrogen atoms are not
shown for clarity

Again a different parametrization allows one to discard the constraint
∑L

i=1λ
2
i=1.

We define U by

U(x, θ1, . . . , θL−1) =
L−1∑
i=1

Pi cos2(θi)Ui + PLUL,

where the λ parameters are replaced by θ. The Pi are defined as Pi =
∏

j<i sin2(θj).
In order to calculate dpθi

/dt conveniently, let us further introduce

Uk+1(x, θ1, . . . , θL−1) =
L−1∑
i>k

Qk
i cos2(θi)Ui + Qk

LUL, Qk
i =

∏
k<j<i

sin2(θj).

In terms of Uk, a new expression for U can be obtained

U =
∑
i<k

Pi cos2(θi)Ui + Pk

[
cos2(θk)Uk + sin2(θk)Uk+1

]
.

In the previous equation, the dependence on a given θk has been isolated. This allows
an equation of motion for pθi

to be derived:

dpθi

dt
= − sin(2θi)Pi ∆Ui+1, ∆Ui+1 = Ui+1 − Ui.

This approach simplifies λ dynamics simulations by removing the need for a con-
straint on λi.

4.11 Conclusion

In this chapter, we have discussed various methods to calculate the PMF and
alchemical transformation.
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We described various approaches based on TI, which attempts to calculate the
derivative of A by computing a mean force acting on ξ [see (4.2)]. Historically, this
was first done by running a constrained simulation and averaging the constraint force
λ∇ξ. This is the force that needs to be applied to the system in order to keep ξ con-
stant [see (4.28)]. A more recent technique, the ABF, does not require a constraint
to be applied and yields improved sampling by removing the mean force acting on ξ
[see (4.33)]. The resulting system randomly samples conformations along ξ with uni-
form probability. This leads to very good convergence. ABF is an adaptive method,
in which the external force is constantly modified as additional samples are gathered
and more-accurate averages are obtained. In the limit of a large number of sample
points we converge to a Hamiltonian system and a uniform sampling along ξ. ABF
is a very efficient method when sampling the conformational space is rendered diffi-
cult by the presence of energy barriers. It works well with a single or many reaction
coordinates.

Many other techniques have been developed for the PMF such as SMD, which
applies an external force to drive the system along a certain path or metadynamics
which biases the system away from free energy minima in an attempt to sample more
efficiently transition states and rare events.

At the end of the chapter, techniques for alchemical transformations were
presented. We showed that, in order to avoid rapid changes in free energy and
improve the efficiency of the calculation, the parametrization of the Hamiltonian is
critical and soft-core potentials should be used [see (4.50)]. A popular approach is the
technique of λ dynamics which leads to an improved sampling. In this approach λ is
a variable in the Hamiltonian system [see (4.51)]. Umbrella sampling, metadynamics
or ABF can be used to reduce the cost of λ dynamics simulations.

Appendix

A Proof of the Constraint Force Equation

Consider the constrained Hamiltonian with the Fixman potential

H F = H +
1
2β

ln Zξ + λF(ξ − ξ(x)).

This Hamiltonian is distinct from H F
ξ since it is a function of (x,px) (set of

Cartesian coordinates) whereas H F
ξ is a function of (q,pq) (generalized coordinates).

We use the Lagrangian formulation since the constraint ξ̇ = 0 can be naturally
expressed in this setting. The Lagrangian L F is associated with H F

L F = L − 1
2β

ln Zξ(q) − λF(ξ − ξ(x)).

Lagrange’s equations are
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d
dt

(
∂L F

∂ξ̇

)
def=
(

∂L F

∂ξ

)
=

∂L

∂ξ
− 1

2β

∂

∂ξ
ln Zξ + λF.

Since ξ̇ = 0, we furthermore have

∂L

∂ξ
=

∂

∂ξ

(
1
2

(
ξ̇
q̇

)t

MG
(

ξ̇
q̇

)
− U

)

=
∂

∂ξ

(
1
2
q̇tMG

q q̇ − U

)
=

∂Lξ

∂ξ
,

where Lξ is the Lagrangian of the constrained system (q,pq) [see (4.22)]. We
therefore get the following result for λF:

λF =
d
dt

(
∂L F

∂ξ̇

)
− ∂Lξ

∂ξ
+

1
2β

∂

∂ξ
ln Zξ.

Since our expression for dA/dξ involves H F
ξ (4.26), we need to replace the

Lagrangian Lξ by H F
ξ .

For this, we show that in general for a set (q1, . . . , qN , p1, . . . , pN )

∂H

∂q1

∣∣∣∣
qi,i �=1,p

= − ∂L

∂q1

∣∣∣∣
qi,i �=1,q̇

(4.52)

To see this, we use the definition of H and L

H (q,p) =
1
2
ptZp + U,

L (q,p) =
1
2
q̇tZ−1q̇ − U

with Zp = q̇. Since
∂Z−1

∂q1
= −Z−1 ∂Z

∂q1
Z−1

we see that ∂H /∂q1 = −∂L /∂q1.
With (4.52), we have

λF =
d
dt

(
∂L F

∂ξ̇

)
+

∂Hξ

∂ξ
+

1
2β

∂

∂ξ
ln Zξ =

d
dt

(
∂L F

∂ξ̇

)
+

∂H F
ξ

∂ξ
(4.53)

using the definition (4.25) of H F
ξ .

Using (4.26) for dA/dξ, we now have an expression for the derivative which
involves the Lagrange multiplier λF and the Lagrangian L F

dA

dξ
=
〈

λF − d
dt

∂L F

∂ξ̇

〉F

ξ,ξ̇

(4.54)
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The last step consists of proving that 〈 d
dt (∂L F/∂ξ̇)〉F

ξ,ξ̇
= 0 For Hamiltonian sys-

tems, it is generally true that the phase-space average of the time derivative of
any function of q and p is equal to zero. For an arbitrary function f(q,p) and a
Hamiltonian function H :

〈
df

dt

〉
=

∫
df

dt
e−βH dqdp

∫
e−βH dqdp

=

∫ (∑
i

∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
e−βH dqdp

∫
e−βH dqdp

=

∫ (∑
i

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
e−βH dqdp

∫
e−βH dqdp

= kBT

∫ (∑
i

∂2f

∂qi∂pi
− ∂2f

∂qi∂pi

)
e−βH dqdp

∫
e−βH dqdp

= 0

using an integration by parts in the last line. Therefore, (4.53) means that, even
though ∂H F

ξ /∂ξ is different from λF pointwise, their averages are equal.
Thus, using (4.54), we have proved the following result:

dA

dξ
=
〈
λF〉F

ξ,ξ̇
. (4.55)

B Connection between the Lagrange Multiplier
and the Configurational Space Averaging

When using (4.28) with a Lagrange multiplier, the velocity appears explicitly [see
(4.20)]
〈

Z
−1/2
ξ

(
λ +

1
2βZξ

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

ξ,ξ̇

=

〈
Z

−3/2
ξ

(
∇U t · M−1 · ∇ξ − ẋt · H · ẋ +

1
2β

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

ξ,ξ̇

(4.56)

We will now show that this expression reduces to (4.15), in which the average is
computed in configurational space only (no velocity). To show that, we need to
calculate analytically the contribution of the velocity term which is

−〈Z−1
ξ ẋt · H · ẋ〉ξ,ξ̇
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Let us integrate over pq in this average. With the condition ξ̇ = 0, we get

∫
e−β/2 (pq)t(MG

q )−1pq ẋt · H · ẋ dpq

=
∫

e−β/2 q̇tMG
q q̇

((
ξ̇
q̇

)t

· J tHJ ·
(

ξ̇
q̇

))
|MG

q | dq̇

(change of variable from pq to q̇)

=
∫

e−β/2 q̇tMG
q q̇
(
q̇t · (Jq)tHJq · q̇

)
|MG

q | dq̇

where MG
q is defined by (4.23) and Jq is a N × (N − 1) matrix defined by

[Jq]ij =
∂xi

∂qj
, and in particular MG

q = J t
qMJq.

The integral can be further simplified using the following property of Gaussian
integrals for any matrix A and B:

∫
ut · B · u exp(−ut · A · u) du =

Tr(A−1B)
2

∫
exp(−ut · A · u) du.

With this result, we obtain
∫

e−β/2 q̇tMG
q q̇
(
q̇t · (Jq)tHJq · q̇

)
|MG

q | dq̇ =

= kBTTr
(
(MG

q )−1(Jq)tHJq

) ∫
e−β/2 (pq)t(MG

q )−1pq dpq

= kBTTr
(
Jq(MG

q )−1(Jq)tH
) ∫

e−β/2 (pq)t(MG
q )−1pq dpq.

(4.57)

A more explicit expression for the matrix Jq(MG
q )−1(Jq)t can be obtained

[
Jq(MG

q )−1(Jq)t
]
ij

=
δij

mi
− Z−1

ξ

(
1

mi

∂ξ

∂xi

)(
1

mj

∂ξ

∂xj

)
. (4.58)

This is proved in Appendix C. Going back to (4.57), we can compute the trace

〈
ẋt · H · ẋ

〉
pq

=

〈
kBT

⎛
⎝∑

i

1
mi

Hii − Z−1
ξ

∑
ij

(
1

mi

∂ξ

∂xi

)(
1

mj

∂ξ

∂xj

)
Hij

⎞
⎠
〉

pq
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=

〈
kBT

⎛
⎝∑

i

1
mi

∂2ξ

∂x2
i

− Z−1
ξ

∑
ij

1
mimj

∂ξ

∂xi

∂2ξ

∂xi∂xj

∂ξ

∂xj

⎞
⎠
〉

pq

=

〈
kBT

(∑
i

1
mi

∂2ξ

∂x2
i

− 1
2

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

pq

.

Using the previous equation, we now simplify (4.56)

〈
Z

−1/2
ξ

(
λ +

1
2βZξ

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

=

〈
Z

−3/2
ξ

(
∇U t · M−1 · ∇ξ − ẋt · H · ẋ +

1
2β

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

=

〈
Z

−3/2
ξ

(
∇U t · M−1 · ∇ξ −

∑
i

1
βmi

∂2ξ

∂x2
i

− 1
βmi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

=

〈
Z

−3/2
ξ ∇U t · M−1 · ∇ξ − Z

−1/2
ξ

∑
i

1
βmi

∂

∂xi

(
Z−1

ξ

∂ξ

∂xi

)〉
.

Let us introduce the vector w

wi =
1

mi

∂ξ

∂xi
.

With this notation
〈

Z
−1/2
ξ

(
λ +

1
2βZξ

∑
i

1
mi

∂ξ

∂xi

∂ ln Zξ

∂xi

)〉

=
〈

Z
−1/2
ξ

(
∇U · w

w · ∇ξ
− kBT∇ w

w · ∇ξ

)〉
.

Therefore, we have the following expression for dA/dξ:

dA

dξ
=

〈
Z

−1/2
ξ

(
∇U · w

w · ∇ξ
− kBT∇ w

w · ∇ξ

)〉
ξ,ξ̇〈

Z
−1/2
ξ

〉
ξ,ξ̇

. (4.59)

This is purely an average over configurational space. This equation is similar to
(4.15) with a special choice for w and the additional weighting factor Z

−1/2
ξ since

this is a constrained simulation.
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C Calculation of Jq(M
G
q )−1(Jq)

t

We prove that (4.58)

[
Jq(MG

q )−1(Jq)t
]
ij

=
δij

mi
− Z−1

ξ

(
1

mi

∂ξ

∂xi

)(
1

mj

∂ξ

∂xj

)
. (4.60)

In this equation, Jq are the N − 1 columns of J corresponding to the variables
q1, · · · , qN−1, of the Jacobian matrix J = ∂x/∂q

[Jq]ij =
∂xi

∂qj
.

The first column of J is ∂x/∂ξ. The matrix MG
q is equal to J t

qMJq.
To prove (4.60), first, we multiply both sides of the equation by MJq and ∇ξ and

show that both sides are equal. Second we show that the set of vectors
(

mi
∂xi

∂q1
, . . . ,mi

∂xi

∂qN−1
,

∂ξ

∂xi

)

forms a basis. This proves that the matrices on both sides of (4.60) are equal.
Left-hand side. For any 1 ≤ j ≤ N − 1

[
Jq(MG

q )−1(Jq)t
]
MJ(:, j)= Jq(MG

q )−1
[
(Jq)tMJ(:, j)

]
=J(:, j) (4.61)

∑
k

∂xk

∂qi

∂ξ

dxk
= 0 ⇒

[
Jq(MG

q )−1(Jq)t
]
∇ξ =Jq(MG

q )−1
[
(Jq)t∇ξ

]
= 0,

(4.62)

where J(:, j) is column j of matrix J .
Right-hand side. Take the vector mk ∂xk/∂qj

∑
k

[
δik

mi
− Z−1

ξ

(
1

mi

∂ξ

∂xi

)(
1

mk

∂ξ

∂xk

)](
mk

∂xk

∂qj

)
=

∂xi

∂qj
,

since
∑

k

∂xk

∂qj

∂ξ

dxk
= 0.

This result is identical to (4.61).
Take the vector ∇ξ

∑
k

[
δik

mi
− Z−1

ξ

(
1

mi

∂ξ

∂xi

)(
1

mk

∂ξ

∂xk

)]
∂ξ

∂xk

=
1

mi

∂ξ

∂xi
− Z−1

ξ

(
1

mi

∂ξ

∂xi

)
Zξ = 0 .

This is identical to (4.62).
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We now show that if Zξ �= 0 then the following set of vectors forms a basis:
(

mi
∂xi

∂q1
, · · · ,mi

∂xi

∂qN−1
,

∂ξ

∂xi

)

The matrix J is invertible, so is MJ and therefore the vectors MJq are all inde-
pendent. We need to prove that ∇ξ is not a linear combination of the columns of
MJq. Let us suppose this is the case. Then there exists a vector µ such that µ1 =
0 and

∇ξ = MJµ.

(Recall that J has been ordered such that ∂x/∂ξ is the first column.) But

µ1 = [J−1M−1∇ξ]1 = Z11 = Zξ �= 0, (since Z = J−1M−1(J−1)t) .

This is a contradiction. Therefore this set of vectors forms a basis.
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5

Nonequilibrium Methods for Equilibrium Free Energy
Calculations

Gerhard Hummer

5.1 Introduction and Background

In this chapter, we will show how nonequilibrium methods can be used to calculate
equilibrium free energies. This may appear contradictory at first glance. However,
as was shown by Jarzynski [1, 2], nonequilibrium perturbations can be used to
obtain equilibrium free energies in a formally exact way. Moreover, Jarzynski’s iden-
tity also provides the basis for a quantitative analysis of experiments involving the
mechanical manipulation of single molecules using, e.g., force microscopes or laser
tweezers [3–6].

But before proceeding to nonequilibrium averages, we briefly review two
closely related and previously introduced methods for free energy calculations,
thermodynamic integration and free energy perturbation theory (see Chaps. 2 and
4 for detailed discussions of these methods). In thermodynamic integration, a cou-
pling parameter is used to describe the transition between two states, and equilibrium
averages are used to evaluate derivatives of the free energy with respect to that order
parameter. One then integrates the free energy derivatives along a continuous path
connecting the initial and final states to obtain the free energy difference between
them. As an example, Born [7] chose the charge of the ion as a coupling parameter to
estimate the ion-solvation free energy, with the average solvent-induced electrostatic
potential at the ion site as the corresponding free energy derivative. In free energy
perturbation theory, one avoids (at least in principle) intermediate equilibrium aver-
ages and instead uses only an equilibrium ensemble of configurations in the initial
state. Each of these configurations is converted instantaneously (i.e., without relax-
ation of the atom positions, etc.) to the final state and the resulting difference in
energy is evaluated. A Boltzmann average of that energy difference then yields the
free energy difference between the initial and final states.

These two seemingly distinct approaches of thermodynamic integration and
perturbation can be seen as the limiting cases of a more general formalism in which
the transformation between the two states proceeds at a finite rate. Seen in this
light, one might also hope to obtain free energies from a transformation that con-
verts the initial to the final state neither infinitely slowly (as in thermodynamic
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integration) nor infinitely fast (as in free energy perturbation theory). Rigorous free
energy calculations using transformations at a finite rate are indeed possible through
Jarzynski’s identity [1]. As it turns out, the simulation algorithm implementing the
necessary calculations had already been used extensively before, but the simulation
data were analyzed in only an approximate manner and under the assumption of
near-equilibrium conditions [8–11].

In the following paragraph, free energy perturbation theory and thermodynamic
integration will be briefly described to introduce the necessary notation and provide
a framework for the subsequent outline of nonequilibrium free energy calculations.
We consider a system with phase-space coordinates z (i.e., positions and momenta
of all atoms) and a Hamiltonian H (z;λ) that depends parametrically on a coupling
parameter λ. When charging a Born ion [7], for instance, λ would be proportional to
the charge of the ion, q = λe. The Helmholtz free energy A is then a function of λ.
In the canonical ensemble, it is given by

A(λ) = −β−1 ln
∫

exp[−βH (z;λ)]dz. (5.1)

In the canonical partition function of (5.1), we have for simplicity ignored combina-
torial prefactors. Free energy perturbation theory [12] relies on evaluating effectively
the ratio of the partition functions to obtain the free energy difference between the
initial and final states corresponding to coupling parameters λ = 1 and 0 (see also
Chap. 2),

exp{−β[A(1) − A(0)]} =

∫
exp[−βH (z; 1)]dz

∫
exp[−βH (z; 0)]dz

= 〈exp{−β[H (z; 1) − H (z; 0)]}〉0
= 〈exp{+β[H (z; 1) − H (z; 0)]}〉1

−1
, (5.2)

where the forward and backward averages 〈· · · 〉0 and 〈· · · 〉1 are evaluated in the
reference states λ = 0 and 1, respectively. As discussed in Chap. 4, free energy
differences can also be obtained from thermodynamic integration by calculating
derivatives of the free energy with respect to the coupling parameter. The derivative
can be expressed as an ensemble average

∂A(λ)
∂λ

=

∫
∂H

∂λ
exp[−βH (z;λ)]dz

∫
exp[−βH (z;λ)]dz

=
〈

∂H

∂λ

〉
λ

, (5.3)

where the average 〈· · · 〉λ is in state λ. To obtain the difference in free energy between
states defined by coupling parameter values of 0 and 1, one can then integrate (5.3)
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A(1) − A(0) ≡ ∆A =
∫ 1

0

〈
∂H

∂λ

〉
λ

dλ . (5.4)

Without explicit analytical expressions for the free energy derivative (as could be
obtained for the case of a Born ion in a dielectric medium), the integral has to be
evaluated numerically by simulation.

As an alternative approach to thermodynamic integration, we now consider cre-
ating an equilibrium configuration in the state λ = 0 and then slowly changing λ
from 0 to 1 [8, 9]. As the coupling parameter is advanced, the system continues to
sample phase space (e.g., by molecular dynamics or Monte Carlo simulations), but
under an explicitly time-dependent Hamiltonian (because of the evolving coupling
parameter). In the limit of a very slow transformation, with some caveats for Hamil-
tonian dynamics [13], the system will remain close to equilibrium. The integral in
(5.4) can then be evaluated by changing λ continuously

∆A = lim
τ→∞

∫ τ

0

∂H

∂λ

∣∣∣∣
λ=λ(t)

λ̇(t)dt , (5.5)

where the time derivative of the coupling parameter λ is denoted by a dot. The cou-
pling parameter λ moves along a continuous prescribed path λ = λ(t) connecting the
initial [λ(0) = 0] to the final state [λ(τ) = 1]. The time interval of the transforma-
tion measures the actual time (in molecular dynamics) or the number of steps (e.g.,
in Monte Carlo simulations). In (5.5), the limit of τ → ∞ ensures that the trans-
formation is performed infinitely slowly, and thus reversibly. The right-hand side of
(5.4) correspondingly defines the ‘reversible work’ done on the system during the
transformation.

If the system is instead transformed between the initial and final states over a
finite time interval τ , the free energy obtained from (5.5) without the τ → ∞ limit
will only be approximate. In the corresponding slow-growth method of free energy
calculations [8, 9], the system will not be able to sample the phase space exhaustively
at each value of λ, rendering the transformation irreversible. As the transformation
proceeds, the system will be gradually driven out of equilibrium, causing hysteresis
effects. From the second law of thermodynamics, we expect that the work W (τ)
performed during the nonequilibrium transformation is on average larger than or
equal to the free energy difference between the two states

〈W (τ)〉 ≥ ∆A, (5.6)

with the difference between the work and free energy accounting for heat-dissipation
effects. The work W (τ) performed on the system is the accumulated energetic cost
(or gain) required to change the system

W (τ) =
∫ τ

0

∂H [z(t);λ]
∂λ

∣∣∣∣
λ=λ(t)

λ̇(t)dt . (5.7)

The average 〈· · · 〉 in (5.6) is over many repetitions of the transformation initiated
from an equilibrium ensemble of configurations at λ = 0, with the same prescribed
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time evolution of the coupling parameter λ(t). The equality in (5.6) will normally
be achieved only if the transformation is infinitely slow, τ → ∞. Otherwise, the
work performed during the transformation will, on average, exceed the free energy
difference between the two states. For paths of finite length, the amount of dissipated
work, 〈W (τ)〉 − ∆A ≥ 0, will depend on the chosen transformation path λ(t).

In the following, we first derive Jarzynski’s identity by exploiting its close
relation to the Feynman–Kac identity for path integrals (Sects. 5.2 and 5.3). In
addition, we present explicit derivations for Hamiltonian dynamics, and illustrate
the theory for the analytically solvable case of a moving harmonic oscillator. We then
introduce and derive the Crooks identity (Sects. 5.4 and 5.5) in which the perturbation
is performed in both forward and backward directions. Section 5.6 covers the imple-
mentation of nonequilibrium free energy estimates in computer simulations, includ-
ing time integration, choice of order parameters, creation of initial conditions, and
allocation of computer time. The analysis of the simulation results and the choice
of free energy estimators are discussed in Sect. 5.7. A simple nonequilibrium pertur-
bation is used for illustration (Sect. 5.8). Section 5.9 describes how nonequilibrium
methods such as steered molecular dynamics simulations can be used to determine
potentials of mean force. The chapter concludes with a discussion of selected appli-
cations and a summary.

5.2 Jarzynski’s Identity

Jarzynski has shown that, even for nonequilibrium paths, the inequality (5.6) can be
turned into an equality [1]. Jarzynski’s identity states that

〈exp[−βW (τ)]〉 = exp(−β∆A) (5.8)

where a prescribed path λ(t) connects the initial and final states, with λ(0) = 0
and λ(τ) = 1, and ∆A = A(1) − A(0) the free energy difference between the
two states. The average 〈· · · 〉 in (5.8) requires some explanation. It is a combi-
nation of an ensemble average over initial conditions, and a path average over
trajectory realizations. Initial conditions are chosen according to the equilibrium
Boltzmann probability in the λ(0) state. The path average samples all realiza-
tions of dynamic paths, weighted by their respective path action, under the time
evolution of the system with an explicitly time-varying Hamiltonian. For deter-
ministic dynamics, only a single trajectory exists for any given initial condition,
making the path average unnecessary. For stochastic dynamics, the path average is
over realizations of noise. If the stochastic trajectories are generated using standard
integrators, then the trajectory average is over different sequences of uncorrelated
random numbers.

Jarzynski’s identity, (5.8), immediately leads to the second law in the form of
(5.6) because of Jensen’s inequality, 〈e−x〉 ≥ e−〈x〉. Moreover, in the limit of an
infinitely fast transformation, τ → 0, we recover free energy perturbation theory. In
that limit, the configurations will not relax during the transformation. The average in
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(5.8) is then only over the initial conditions, and the work is simply the change in the
Hamiltonian when going from the initial to the final state,

lim
τ→0

W (τ) = H (z(0);λ = 1) − H (z(0);λ = 0) , (5.9)

making (5.2) a limiting case of (5.8). In the opposite limit of τ → ∞, i.e., an
infinitely slow transformation, the system is changed reversibly, and we recover
thermodynamic integration in the form of (5.5). In the following, a brief ‘derivation’
of Jarzynski’s identity will be given.

5.3 Derivation of Jarzynski’s Identity

As shown in the following, Jarzynski’s identity follows almost immediately [3] from
the Feynman–Kac theorem for path integrals [14]. A brief and more ‘pedagogical’
discussion of the Feynman–Kac identity in the context of nonequilibrium free energy
calculations as well as chemical kinetics, line-shape theory, and quantum mechanics
can be found in [15]. The derivation of [3] also leads to an extension of Jarzynski’s
identity, which will allow us to calculate potentials of mean force for fluctuating ob-
servables, in addition to free energy differences between states described by control
parameters, i.e., coupling parameters under external control. A free energy relation
for fluctuating variables (i.e., variables that are not under external control, such as
the instantaneous distance between two particles) proved central for the analysis of
certain nonequilibrium experiments and computer simulations. Following [3], we
assume that the phase-space density ρ(z, t) of the system evolves according to a
Liouville-type equation:

∂ρ(z, t)
∂t

= Ltρ(z, t), (5.10)

where Lt is an explicitly time-dependent evolution operator. The time evolution gov-
erned by the Liouville operator Lt is consistent with the Hamiltonian H (z, t). As
an example, Lt for classical dynamics will be given below explicitly in terms of
the Hamiltonian H (5.20), H depends parametrically on time, thus in effect ab-
sorbing the parametric dependences of H on λ, and of λ on t. As an example, for
Smoluchowski diffusion (i.e., Brownian dynamics) on a time-dependent potential en-
ergy surface V (z, t), the Liouville operator would be Lt = D∇e−βV (z,t)∇eβV (z,t),
where D is the diffusion coefficient and ∇ = ∂/∂z.

We assume further that the Boltzmann distribution is stationary, Lte−βH (z,t)

= 0. This requirement is satisfied, for instance, by systems that undergo Newtonian,
Langevin, or Metropolis Monte Carlo dynamics. For diffusion, H (z, t) would just
be the potential energy surface V (z, t), and the corresponding Boltzmann distrib-
ution is indeed stationary under the Lt given in the preceding paragraph. To avoid
confusion, note that the stationarity of the Boltzmann distribution under the Liouville
operator, Lte−βH (z,t′) = 0, is in general only valid at equal times t = t′, i.e.,
Lte−βH (z,t′) �= 0 for t �= t′ in most cases. In particular, if one starts at time t = 0
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from a Boltzmann distribution corresponding to H (z, 0) and evolves that distribu-
tion under Lt, then at some time t > 0 that distribution will no longer be stationary,
Lte−βH (z,0) �= 0, and the system will be driven out of equilibrium.

Now consider the un-normalized Boltzmann distribution at time t

ρ(z, t) =
e−βH (z,t)∫

e−βH (z′,0)dz′
. (5.11)

Since this distribution is stationary with respect to Lt [i.e., Ltρ(z, t) = 0], and since
∂ρ/∂t = −β(∂H /∂t)ρ, it follows that the above ρ(z, t) is a solution of the sink (or
birth–death) equation

∂ρ

∂t
= Ltρ − β

∂H

∂t
ρ , (5.12)

as can be verified by direct substitution. If ∂H /∂t ≡ 0, (5.12) is the Liouville
equation. Otherwise, the ‘sink’ term locally adds phase-space density where
∂H (z, t)/∂t is negative, and removes density where it is positive. Qualitatively,
one may think of the addition and subtraction of phase-space density as compen-
sating for the fact that trajectories evolving under the time-dependent Liouville
operator (Hamiltonian) equilibrate too slowly to maintain the time-dependent
Boltzmann distribution (5.11).

The solution of the sink equation (5.12), starting from an equilibrium distribution
at time t = 0, can also be expressed as a path integral by using the Feynman–Kac
theorem,

ρ(z, t) =
〈

δ(z − z(t))e−β
∫ t

0
∂H
∂t′ (z(t′),t′)dt′

〉
, (5.13)

where δ(x) is Dirac’s delta distribution. A motivation of the Feynman–Kac theo-
rem [14] can be found in [15]. In essence, the Feynman–Kac theorem provides
a way to reweight trajectories generated without consideration of the sink term in
(5.12) to take the sink term into account. In the path average of (5.13), trajectories
are generated according to the Liouville operator Lt, without consideration of
the sink (or birth–death) term −β(∂H /∂t)ρ, starting from an initial distribution
ρ(z, 0). The sink term is taken into account by weighting trajectory end points
z(t). Consider S(t), the relative weight of a trajectory end point at time t. Along
a given trajectory, that weight will change during the time interval (t, t + dt) by
dS = −β(∂H /∂t)S(t)dt according to the sink term in (5.13). With S(0) = 1, the
aggregate weight accumulated along the trajectory is then S(t) = exp[−β

∫ t

0
(∂H /

∂t′)dt′], the weight factor in (5.13) .
Equating the two different solutions of (5.12), (5.11), and (5.13) immediately

gives

e−βH (z,t)∫
e−βH (z′,0)dz′

=
〈

δ(z − z(t))e−β
∫ t

0
∂H
∂t′ (z(t′),t′)dt′

〉
(5.14)



5 Nonequilibrium Methods for Equilibrium Free Energy Calculations 177

This identity [3, 15] between a weighted average of nonequilibrium trajectories
(r.h.s.) and the equilibrium Boltzmann distribution (l.h.s.) is implicit in the work
of Jarzynski [2], and is given explicitly by Crooks [16]. The average 〈. . .〉 is over
an ensemble of trajectories starting from the equilibrium distribution at t = 0 and
evolving according to (5.10). Each trajectory is weighted with the Boltzmann factor
of the external work W (t) done on the system,

W (t) =
∫ t

0

∂H (z(t′), t′)
∂t′

dt′ . (5.15)

By integrating both sides of (5.14) with respect to z, we obtain Jarzynski’s identity
[1, 2]

e−β∆A(t) ≡

∫
e−βH (z,t)dz

∫
e−βH (z,0)dz

=
〈
e−βW (t)

〉
, (5.16)

between the Boltzmann-averaged work W (t) and the equilibrium free energy differ-
ence ∆A(t) between times t and 0.

The above derivation shows that Jarzynski’s identity is an immediate consequence
of the Feynman–Kac theorem. This connection has not only theoretical value, but is
also useful in practice. First, it forms the basis for an equilibrium thermodynamic
analysis of nonequilibrium pulling experiments [3, 15]. Second, it helps in deriving
a Jarzynski identity for dynamics using thermostats. Moreover, this derivation clari-
fies an important aspect: trajectories can be thought of as mapping initial conditions
(t = 0) to trajectory endpoints, and the Boltzmann factor of the accumulated work
reweights that map to give the desired Boltzmann distribution. Finally, it can be eas-
ily extended to transformations between steady states [17] in which non-Boltzmann
distributions are stationary.

5.3.1 Hamiltonian Dynamics

In the following, we will show explicitly that the identity (5.8) holds for deterministic
Newtonian dynamics. This derivation builds on the arguments given by Jarzynski in
his original paper [1]. The essence of the derivation is: (1) integration of a trajectory
for a fixed time t uniquely maps an initial phase point z(0) to a final phase point
z(t); (2) an initial phase-space density remains unchanged along trajectories because
of Liouville’s theorem: ρ(z(t), t) = ρ(z(0), 0); (3) the work along the trajectory
is exactly the change in energy, W (t) = H (z(t), t) − H (z(0), 0); such that (4)
weighting the trajectory end-points by exp(−βW (t)) transforms an initial phase-
space distribution ρ(z(0), 0) ∝ exp(−βH (z(0), 0)) to a distribution proportional
to exp(−βH (z(t), t)), i.e., a Boltzmann distribution for the final Hamiltonian.

Let us consider a system described by an explicitly time-dependent Hamiltonian
H (p,q, t) where (p,q) = z is a point in phase space. Hamilton’s equation of
motion are

ṗ = −∂H

∂q
; q̇ =

∂H

∂p
;

dH

dt
=

∂H

∂t
(5.17)
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The probability density ρ(p,q, t) in phase space satisfies the continuity equation

∂ρ

∂t
+

∂

∂p
(ρṗ) +

∂

∂q
(ρq̇) = 0. (5.18)

From Hamilton’s equations, we find that ∂ṗ/∂p = −∂q̇/∂q, such that

∂ρ

∂t
+ ṗ

∂ρ

∂p
+ q̇

∂ρ

∂q
= 0 . (5.19)

This is Liouville’s equation, with the Liouville operator

Lt = ṗ(∂/∂p) + q̇(∂/∂q) = (∂H /∂p)(∂/∂q) − (∂H /∂q)(∂/∂p). (5.20)

Equation (5.19) states that the flow in phase space is incompressible. In particular,
following along a trajectory starting in (p(0),q(0)), we find that

dρ(p(t),q(t), t)
dt

=
∂ρ

∂t
+ ṗ

∂ρ

∂p
+ q̇

∂ρ

∂q
= 0 , (5.21)

where we have used the chain rule with respect to p and q, and (5.19). This means
that the phase-space density along a trajectory remains unchanged

ρ(p(t),q(t), t) = ρ(p(0),q(0), 0) . (5.22)

From the definition of the work, (5.15), and Hamilton’s equations, (5.17), it follows
that the work performed along the trajectory is

W (t) =
∫ t

0

∂H (p(t′),q(t′), t′)
∂t′

dt′

= H (p(t),q(t), t) − H (p(0),q(0), 0) . (5.23)

If we choose our initial density according to a Boltzmann distribution, ρ(p(0),
q(0), 0) = exp(−βH (p(0),q(0), 0))/

∫
dpdq exp(−βH (p,q, 0)), the density

at the trajectory end point at time t is identical to that at the initial point, ρ(p(t),
q(t), t) = exp(−βH (p(0),q(0), 0))/

∫
dpdq exp(−βH (p,q, 0)). If we weight

each trajectory end point by the Boltzmann factor of the accumulated work,
exp(−βW (t)), and use (5.23) for W (t), we obtain a ‘Jarzynski-modified’ density
ρJ given by

ρJ(p(t),q(t), t) = ρ(p(t),q(t), t) exp[−βW (t)]

=
exp[−βH (p(t),q(t), t)]∫
dpdq exp[−βH (p,q, 0)]

. (5.24)

That is, we have recovered a Boltzmann distribution according to the Hamiltonian
at time t, equivalent to (5.14). Jarzynski’s identity (5.8) then follows simply by
integration over phase space (p,q).

This derivation addresses a potentially confusing point, namely that the final state
at time t is not at equilibrium and may not have a well-defined temperature. As is
clear from the derivation, temperature here is only a parameter that is once used to
specify the initial condition, and then again in the Boltzmann weight of the integrated
work. From this viewpoint, the reweighting is a convenient mathematical ‘trick.’
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5.3.2 Moving Harmonic Oscillator

To further illustrate the theory, we apply Jarzynski’s identity to the analytically solv-
able example of a 1D moving harmonic oscillator with Hamiltonian

H (p, q, t) =
p2

2m
+

k

2
(q − vt)2, (5.25)

where m is the mass, k is the spring constant, and v is the pulling velocity. Because
the time dependence of the Hamiltonian simply induces a translational shift, the free
energy remains unchanged

A(t) = −β−1

∫
dp

∫
dq e−βH (p,q,t) ≡ A(0). (5.26)

In the following, we will show explicitly that the correct result is obtained if
Jarzynski’s identity is used to evaluate the free energy difference, A(t) − A(0) =
〈exp(−βW )〉 = 0.

For given initial conditions, trajectories in phase space satisfying Hamilton’s
equation of motion, (5.17), are given by(

p(t)
q(t)

)
=
(

cos (αt) −(km)1/2 sin (αt)
(km)−1/2 sin (αt) cos (αt)

)
.

(
p(0)
q(0)

)

+

⎛
⎜⎜⎝

2mv sin2

(
αt

2

)

vt − vm1/2

k1/2
sin (αt)

⎞
⎟⎟⎠ , (5.27)

where α = (k/m)1/2. As required by the Liouville theorem (5.22), the map of initial
conditions (p(0), q(0)) to phase points (p(t), q(t)) at time t has a Jacobian equal to
one, |∂(p(t), q(t))/∂(p(0), q(0))| = 1. According to (5.15) and (5.23), the integrated
work along a trajectory is given by

W (t) =
∫ t

0

∂H

∂t′
dt′ = v [mv − p(0)]

[
1 − cos

(
k1/2t

m1/2

)]

−v(km)1/2q(0) sin
(

k1/2

m1/2
t

)
, (5.28)

which is a linear function with respect to the initial phase-space coordinates (p(0),
q(0)). Note that so far, temperature has not appeared.

Now we specify an initial phase-space distribution as the Boltzmann distribution
for the Hamiltonian at time t = 0

ρ(q = q(0), p = p(0), t = 0) = β

exp
(
−βp2

2m
− βkq2

2

)

2π(m/k)1/2
. (5.29)

With this distribution being Gaussian in both p(0) and q(0), and the work being linear
in p(0) and q(0), the distribution of the work obtained for Boltzmann-weighted initial
conditions is Gaussian as well, with a mean and variance of
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〈W 〉 = 2mv2 sin2

(
k1/2t

2m1/2

)
, (5.30)

σ2(W ) = 2β−1 〈W 〉 . (5.31)

For a Gaussian distribution of the work, second-order perturbation theory is ex-
act, and 〈exp(−βW )〉 = exp[−β〈W 〉 + β2 σ2(W )/2]. We thus find that the free
energy difference for the moving oscillator according to (5.8) is A(t) − A(0) =
〈W 〉 − β σ2(W )/2 ≡ 0, which is indeed the desired result (expected from transla-
tion invariance).

We note that for the harmonic Hamiltonian in (5.25) the variance of the work
approaches zero in the limit of an infinitely slow transformation, v → 0, τ → ∞,
vτ = const. However, as shown by Oberhofer et al. [13], this is not the case in
general. As a consequence of adiabatic invariants of Hamiltonian dynamics, even in-
finitely slow transformations can result in a non-delta-like distribution of the work.
Analytically solvable examples for that unexpected behavior are, for instance, har-
monic Hamiltonians with time-dependent spring constants k = k(t).

5.4 Forward and Backward Averages: Crooks Relation

So far, we have only considered perturbations in the forward direction. As in con-
ventional free energy calculations, powerful relations can be derived if forward and
backward perturbations are combined. With the free energy being a state function,
we can reverse the path direction. This leads to several useful relations derived orig-
inally by Crooks [16, 18, 19]. In particular, we obtain immediately

〈exp[−βW (τ)]〉 = exp{−β[A(0) − A(1)]} ≡ exp(β∆A), (5.32)

where W (τ) is the work accumulated on the reversed path, λ(t) = λ(τ − t)

W (τ) =
∫ τ

0

∂H [z(t);λ]
∂λ

∣∣∣∣
λ=λ(t)

λ̇(t)dt. (5.33)

In combination with (5.6), this leads to an upper and lower bound for the free energy
difference

−〈W (τ)〉 ≤ ∆A ≤ 〈W (τ)〉 . (5.34)

These bounds are the nonequilibrium equivalents of the Gibbs–Bogoliubov bounds
discussed in Chap. 2. Having the free energy now bounded from above and below
already demonstrates the power of using both forward and backward transformations.
Moreover, as was shown by Crooks [18, 19], the distribution of work values from
forward and backward paths satisfies a relation that is central to histogram methods
in free energy calculations

pf [w = W (τ)]
pb[w = −W (τ)]

= exp[β(w − ∆A)] (5.35)
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where pf [w = W (τ)] and pb[w = −W (τ)] are the probability densities of the work
values for forward and reversed transformation paths (with a sign change in the
work of the reverse path). Both are normalized, i.e.,

∫
pf(w)dw =

∫
pb(w)dw = 1.

For computer simulations, (5.35) leads to accurate estimates of free energies.
It is also the basis for higher-order cumulant expansions [20] and applications of
Bennett’s optimal estimator [21–23]. We note that Jarzynski’s identity (5.8) fol-
lows from (5.35) simply by integration over w because the probability densities are
normalized to 1: ∫

pf (W )e−βW dW =
∫

e−β∆Apb(W )dW. (5.36)

Because of the normalization condition, the right-hand side is equal to exp(−β∆A),
and Jarzynski’s identity follows.

5.5 Derivation of the Crooks Relation (and Jarzynski’s Identity)

The Crooks relation follows from an elegant derivation of Jarzynski’s identity using
path-sampling ideas [18]. For instructive purposes, that derivation is briefly summa-
rized here. Consider generating a discrete trajectory z0

H1
→ z1

H2
→ . . .

HN
→ zN , where

each step zi−1

Hi
→ zi proceeds according to Hamiltonian Hi, for instance by using

Metropolis Monte Carlo, Newtonian, or Langevin dynamics ‘integrators.’ After each
‘time’ step, the Hamiltonian is changed in a prescribed way. If each of the steps is
Markovian in the full phase space (i.e., it does not depend explicitly on the preceding
path), then the probability Pf of generating a particular trajectory can be factorized

Pf

(
z0

H1
→ z1

H2
→ . . .

HN

→ zN

)
= p0(z0)

N∏
i=1

pi(zi|zi−1), (5.37)

where p0(z0) = exp[−β(H0(z0) − A0] is the normalized equilibrium Boltzmann
probability density at the initial state [with A0 = A(0) its free energy], and
pi(zi|zi−1) is the transition probability from zi−1 to zi under the influence of
Hamiltonian Hi. Now if these transition probabilities satisfy detailed balance (as
they do under Newtonian, Langevin, or Metropolis Monte Carlo dynamics)

pi(zi|zi−1)
pi(zi+1|zi)

= e−β[Hi(zi)−Hi(zi−1)] (5.38)

then the probability Pb of picking the time-reversed path under the influence of the
corresponding time-dependent Hamiltonian can be related to the probability Pf of
the forward path:

Pf

Pb
=

P
(
z0

H1
→ z1

H2
→ . . .

HN
→ zN

)

P
(
zN

HN
→ zN−1

HN−1
→ . . .

H1
→ z0

) =

p0(z0)
N∏

i=1

pi(zi|zi−1)

pN (zN )
N∏

i=1

pi(zi−1|zi)

. (5.39)
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If we now use (5.38) and substitute the equilibrium Boltzmann distributions for
p0(z0) and pN (zN ), we obtain

Pf

Pb
= exp

[
β

N−1∑
i=0

[Hi+1(zi) − Hi(zi)] − β(AN − A0)

]
= eβ(W−∆A), (5.40)

where we have used that the work W is the accumulated change in the energy

W =
N−1∑
i=0

[Hi+1(zi) − Hi(zi)] . (5.41)

AN and A0 are the free energies corresponding to Hamiltonians HN and H0, with
∆A = AN − A0. Equation (5.40) generalizes detailed balance to nonequilibrium
trajectories. For every forward path, there is an equivalent backward path whose
path probability differs exactly by a factor exp[β(W − ∆A)]. By construction, the
work accumulated on that backward path is W = −W . The distribution of the work
is obtained by sampling all paths with their appropriate weights. In particular, by
virtue of (5.40), we can obtain the distribution of work on forward paths also by
sampling reweighted backward paths. Because the reweighting factor depends only
on the work (and on ∆A), we can apply it to the work distribution directly to obtain
the Crooks relation, (5.35). We note that for ‘reversible’ paths, the work distributions
will be delta functions, pf (W ) = pb(W ) = δ(W − ∆A), and the forward and
backward paths have the same path probability.

5.6 Implementation

5.6.1 Dynamics

Implementing Jarzynski’s identity in a free energy calculation is relatively straight-
forward. Many simulation packages already contain code to perform slow-growth
thermodynamic integration. Two considerations are important. First, one is now
integrating Newton’s equations of motion for a time-dependent Hamiltonian, such
that the errors in the trajectories z(t) can be larger. Integration errors are particularly
relevant for fast transformations. Second, one needs to evaluate the work along a
trajectory. This will normally require an approximation to the time integral, (5.15),
such as a trapezoidal rule

W (τ) ≈
N−1∑
i=0

ti+1 − ti
2

(
∂H

∂t

∣∣∣∣
t=ti

+
∂H

∂t

∣∣∣∣
t=ti+1

)

with t0 = 0 and tN = τ .
In tests using the moving 1D Hamiltonian harmonic oscillator, (5.25), a

velocity Verlet integrator [24] combined with trapezoidal integration of W (t) per-
formed well when compared to the analytic solution. An interesting analysis of how
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long time steps can be used to accelerate the calculation without sacrificing accuracy
can be found in [25].

Alternatively, one can break up the trajectory dynamics and the change in the
coupling parameter into two substeps. In the first half-step, the phase point is
advanced by using the short-time expansions of the propagators of the corresponding
Liouville or Fokker–Planck equation [24]. In the second half step, the coupling para-
meter is changed at a fixed configuration, and the corresponding work accumulated,

W (t + ∆t) = W (t) + H [z(t), λ(t + ∆t)] − H [z(t), λ(t)]. (5.42)

This procedure follows, in effect, the derivation of Jarzynski’s identity in discrete
time [2, 18], as outlined in Sect. 5.5. Finally, for Hamiltonian dynamics, one can use
(5.23) and calculate the work directly from the difference in total energy between
trajectory start and end points.

5.6.2 Choice of Coupling Parameter

A critical element for the success of the calculations is the choice of a suitable cou-
pling parameter λ and a path λ(t) that connects the initial and final states. If the path
is poorly chosen, the system will be driven out of equilibrium quickly and the amount
of dissipated work, 〈W (τ)〉−∆A ≥ 0, will be large. As a result, the free energy esti-
mate will likely be inaccurate. Finding good transformation paths may require some
intuition about how one can connect states smoothly, i.e., without encountering high
energy barriers on typical paths. The same general rules apply as in other free energy
calculations. Specifically in the context of nonequilibrium free energy calculations,
Reinhardt and coworkers [26, 27] have used variational optimization to minimize the
amount of dissipated work. A seemingly different approach would be to determine a
good (kinetically relevant) ‘reaction coordinate’ [28], and use that to define λ(t).

5.6.3 Creation of Initial Conditions

Before trajectories can be started, an ensemble of initial conditions has to be created.
Having a good representation of relevant conformations in the initial state will be
particularly important if the transformation is performed relatively fast. In contrast,
if the transformation is performed slowly, the system will sample relevant phase
space regions for λ ≈ 0 as it slowly moves away from the initial state. Ensembles of
equilibrium initial conditions can be taken from a sufficiently long equilibrium simu-
lation, possibly with accelerated sampling using methods discussed in other chapters.
An important consideration is that the initial configurations are sufficiently uncorre-
lated. Otherwise, one may expect correlations among the resulting work values that
interfere with applications of ‘optimal’ free energy estimators [21, 22]. A similar
issue of creating representative initial conformations arises, for instance, in the calcu-
lation of rate coefficients where equilibrium configurations along the transition state
surface have to be generated [29, 30]. One simple way of extending an ensemble of
configurations is by resampling velocities from a Maxwell–Boltzmann distribution.
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5.6.4 Allocation of Computer Time

The allocation of computer time requires some care. In particular, one must de-
cide whether to use many short simulation runs (‘fast growth’) or few long runs
(‘slow growth’). In general, one expects the latter to give more-accurate results for
a given amount of computer time [20]. As a rule of thumb, the runs should be slow
enough that the standard deviation in the resulting work values is about kBT . If the
standard deviation is smaller, the statistical error in the free energy estimate is only
insignificantly smaller than that from a single long run, but from multiple runs one
also obtains an estimate of that error. If the standard deviation of the work is much
larger, in either the forward or backward direction [31], sampling errors will arise
because the estimate of 〈exp(−βW )〉 will be dominated by only one or a few trajec-
tories with low W values, as discussed in the following. Of relevance in this context
is a recent result by Jarzynski [31] who showed that, among forward and backward
transformations, the process with the wider work distribution provides a better esti-
mate of the free energy (just as test particle insertion usually gives better estimates
than particle removal in calculations of chemical potentials [32]).

5.7 Analysis of Nonequilibrium Free Energy Calculations

5.7.1 Exponential Estimator – Issues with Sampling Error and Bias

One of the challenges in using Jarzynski’s identity for free energy calculations is
the exponential weight exp(−βW (t)) given to trajectories. If the work has a broad
distribution with respect to kBT , only a few trajectories at the lower tail of the work
distribution will contribute significantly to the weighted average, with all others hav-
ing ‘exponentially’ small relative weights. In more physical terms, when the transfor-
mation is conducted rapidly, most trajectories do not sample relevant regions of phase
space. Rapid crossing of barriers under tension, and crossing over atypically high
barriers result in hysteresis effects, and a broadened work distribution that reflects an
increasing relevance of dissipation,

〈W (τ)〉 − ∆A ≈ βσ2(W )/2 . (5.43)

This relation for the dissipated work is exact for a Gaussian work distribution of
variance σ2(W ).

Broad work distributions have two important consequences: first, the statistics
will be poor; and, second, a bias in the estimator of the free energy change, A(t) −
A(0) = −β−1 ln〈exp(−βW (t))〉, will result in free energy estimates that deviate
systematically from the correct free energy difference [10]. This will be discussed in
depth in Chap. 6. Specifically, if the free energy is estimated from N work values Wi

drawn at random from the work distribution pf (W ),

∆Aest = −β−1 ln

(
N−1

N∑
i=1

e−βWi

)
(5.44)
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then the average ∆Aest over repeated sampling of work values does not converge to
the correct free energy: |∆Aest − ∆A| > 0. In essence, broad work distributions
result in large statistical and systematic errors. Various estimates of these errors
have been discussed [33–35]. As a rough correction, the bias can be estimated by
repeatedly drawing the same number N of work values from a Gaussian (or another
appropriate distribution) of the same width as the simulation work distribution, and
subtracting the numerical estimate of the free energy obtained from (5.44) from the
analytical value. That estimated bias can then be added to the estimator (5.44) for
the simulation data [15]. Alternatively, the statistics with which rare, low W values
appear can be used to obtain improved estimators [36, 37].

To reduce the width of the work distributions, the transformation can be staged by
breaking it up into segments, as is commonly done in regular free energy perturbation
theory (see Chap. 2). Such an approach has been used, for instance, to calculate the
potential of mean force between two solutes in water [20] and similarly in [38]. How-
ever, dividing up the transformation into multiple segments requires re-equilibration
at intermediate values of the coupling parameter.

5.7.2 Cumulant Estimators

Instead of estimating −β−1 ln〈exp(−βW (t))〉 directly using (5.44), one can use
cumulant expansion approaches, as in regular free energy perturbation theory (see
e.g., [20, 39] for combining cumulant expansions about the initial and final states).
Unbiased estimators for cumulants can be used. Probably the most useful relations
involve averages and variances of the work:

∆A ≈ 〈W 〉 − β σ2(W )/2 (5.45)

≈ −〈W 〉 + β σ2(W )/2. (5.46)

Results from forward and backward averages can also be combined [20] into sym-
metric perturbation formulas:

∆A ≈ (〈W 〉 − 〈W 〉)/2 (5.47)

≈ (〈W 〉 − 〈W 〉)/2 − β

12
(
σ2(W ) − σ2(W )

)
. (5.48)

Note that in this ‘optimal’ estimator, the variances are not just averaged, but their
difference is divided by 12 [20, 39]. In general, these formulas will be useful
if the work distributions are nearly Gaussian and, correspondingly, the variances
of forward and backward work are nearly identical, σ2(W ) ≈ σ2(W ). As with
other perturbation expressions, the lower-order formula using only the two average
work values will be more robust, but may result in comparatively larger systematic
errors; higher-order formulas, in contrast, yield larger statistical errors. Nevertheless,
higher cumulants have been used successfully in some free energy calculations (see,
e.g., [39]).
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5.7.3 Histogram Analysis

Potentially more-accurate free energies can be obtained by using histogram
techniques. In particular, the Crooks relation, (5.35), allows us to use Bennett’s
method of overlapping histograms [21]. If the work distributions from forward
and backward paths overlap, or can be extrapolated into the overlap region, we
can use (5.35) to extract free energies. A detailed description of the analogous
formalism for equilibrium perturbations can be found in Chap. 2. In brief, one
collects two histograms pf (w = W ) and pb(w = −W ) of the work values,
one each for forward and backward perturbations, with identical bin locations
Wi and widths ∆W . The histograms should be properly normalized such that∑

i pf (Wi)∆W =
∑

i pb(Wi)∆W = 1. The logarithm of the ratio of the histogram
values, ln[pf(w)/pb(w)] = β(w −∆A) plotted against the work w should then give
a straight line of slope β that intercepts the w = 0 line at a value of −β∆A. This re-
sult also provides us with an important test: if the slope deviates significantly from β,
the ensembles of forward and backward paths are not mutually consistent, pointing
either to sampling issues or other problems.

5.7.4 Bennett’s Optimal ‘Acceptance-Ratio’ Estimator

Beyond histogram analysis, one can also use integrated forms of the Crooks relation,
(5.35), to estimate free energies. Formally, we can rewrite (5.35) as an average∫

f(W ;∆A)e−βW pf (W )dW =
∫

f(W ;∆A)e−β∆Apb(W )dW (5.49)

by multiplying both sides of (5.35) by an arbitrary function f(W ;∆A), bring-
ing the denominator of the left-hand side to the right, and integrating over W .
Equation (5.49) is an implicit equation for ∆A, and Bennett [21] determined the
function f = [e−β(W−∆A)/Nf + 1/Nb]−1 that minimized the average squared
error of the estimated free energy (with Nf and Nb the number of trajectories for-
ward and backward, respectively). An identical result was recently obtained by us-
ing a maximum-likelihood approach [22]. The free energy then satisfies the implicit
relation

Nf∑
i=1

1

1 +
Nf

Nb
eβ(Wi−∆A)

=
Nb∑
i=1

1

1 +
Nb

Nf
eβ(W

i
+∆A)

(5.50)

Note that on the right-hand side, the work W is that of the reversed path [i.e., has
the opposite sign; see (5.33)]. Equation (5.50) has to be solved numerically (e.g., by
using a Newton–Raphson solver) for the free-energy difference ∆A.

A word of caution should be made here: the assumption in both Bennett’s orig-
inal calculation [21] and in the maximum-likelihood formalism [22] is that all work
values are statistically independent. This may not be the case, for instance, if consec-
utive initial configurations are close in time along an equilibrium trajectory. If results
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from either the forward or reverse path are more strongly correlated than those from
the opposite path direction, distortions of the free energy estimate seem likely. A typ-
ical case where this problem arises is particle insertion versus particle removal [32].
It is generally easier to obtain good statistics for particle insertion than for removal,
because large numbers of particles can be inserted into existing configurations but
only a given, finite number of particles can be removed. Therefore, the insertion
results tend to be strongly correlated, but their large number could overwhelm the
removal data. In such cases, care is necessary, and (5.50) may not be applicable.

5.7.5 Protocol for Free Energy Estimates from Nonequilibrium Work Averages

Following is a schematic protocol summarizing the main steps in estimating free
energies from nonequilibrium work averages.

1. Create an equilibrium ensemble of starting configurations. To create N ini-
tial conformations representative of the equilibrium ensemble for Hamil-
tonian H (z, λ = 0), one can, for instance, save conformations at regular
intervals during a long equilibrium simulation. In some cases, accelerated
sampling procedures may be necessary.

2. Perform nonequilibrium simulations. During the N simulations of duration
τ , one for each of the N initial conformations, the Hamiltonian is changed
from H (z, λ(0) = 0) to H (z, λ(τ) = 1).

3. Determine the work distribution. After every time (or Monte Carlo) step
during the simulations, change the Hamiltonian according to the prescribed
path λ(t) and accumulate the work performed as part of that change. Collect
the work values from the N runs for analysis.

4. Perform backward perturbation to improve accuracy. If possible, repeat the
procedure starting from H (z, λ = 1).

5. Analyze the work distributions. Use the histogram analysis, optimal and
cumulant estimators of Sect. 5.7 to determine the free energy difference.

6. Check. Use the Crooks relation (5.35) to check whether the forward and
backward work distributions are consistent. Check for consistency of free
energies obtained from different estimators. If the amount of dissipated
work is large, caution may be necessary. If cumulant expressions are used,
the work distributions should be nearly Gaussian, and the variances of the
forward and backward perturbations should be of comparable size [as
required by (5.35) for Gaussian work distributions]. Systematic errors from
biased estimators should be taken into consideration. Statistical errors can
be estimated, for instance, by performing a block analysis.

5.8 Illustrating Example

In the following, we will briefly illustrate the application of nonequilibrium free
energy calculations for a simple 1D model system. Shown in Fig. 5.1 are the potential
energy surfaces
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Fig. 5.1. Potential energy surface for λ = 0 (initial state; solid line) and λ = 1 (final state;
dashed line)

βV (x, λ) = 5(x2 − 1)2 + 6(λ − 1/2)x (5.51)

for λ = 0 and 1. The free energy is defined as βA(λ) = − ln
∫

exp[−βV (x, λ)]dx.
Because of the symmetry with respect to λ [i.e., V (x, λ) = V (−x, 1 − λ)], the
free-energy difference between the two states λ = 0 and λ = 1 vanishes, ∆A =
A(1) − A(0) = 0.

We have performed Brownian dynamics simulations (i.e., overdamped Langevin
dynamics) on the potential surface V (x, λ) with a time-dependent λ. In the simula-
tions, the position x was updated as

x(t + ∆t) = x(t) − Dβ
∂V (x, t)

∂x

∣∣∣∣
x=x(t)

∆t + (2D∆t)1/2gt, (5.52)

where gt are uncorrelated Gaussian random numbers of zero mean and unit variance.
The work was accumulated as

W (t + ∆t) = W (t) + V [x(t), t + ∆t] − V [x(t), t] (5.53)

with W (0) = 0. The diffusion coefficient was chosen as D = 1, with a time step of
∆t = 0.001.

The simulations were started from an equilibrium Boltzmann distribution on
the free energy surface for λ = 0. During a time t = 1, λ was changed linearly
in time from 0 to 1. We also performed simulations in the backward direction.
However, because of the symmetry of V with respect to λ, backward transforma-
tions are equivalent to forward transformations. Along the resulting trajectories,
the work βW was accumulated. Figure 5.2 shows the probability distributions of
the work on the forward direction, and on the backward direction multiplied by
exp(−βW ). As expected from (5.35) for ∆A = 0, the two distributions agree
nicely.

The work distribution is bimodal, with a dominant (>99%) peak at high work
values of βW ≈ 6, and a small second peak at low work values of βW ≈ −6. The
high-work peak is mainly due to trajectories that start in the low-energy well near
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Fig. 5.2. Distribution of the work accumulated when transforming the potential surface from
λ = 0 to 1 during a time t = 1. The solid and dashed lines show the distribution of the work
along the forward and backward paths, respectively. The work distribution for backward paths
was multiplied by exp(−βW ). The distributions are plotted on a semi-logarithmic scale

x = 1 (Fig. 5.1). The low-work peak is due to trajectories that start already in the
high-energy well at x ≈ −1.

We used the simulation results to test various estimators for the free energy differ-
ence, as shown in Fig. 5.3. Sample sizes N ranged from 100 to 10,000. At least 1,000
independent samples of that size were used to determine the distribution of estimated
free energies ∆Aest. The resulting histograms of ∆Aest are plotted in Fig. 5.3 for
different sample sizes and different estimators. Ideally, the histograms should all be
delta functions centered at ∆Aest = 0. However, for N = 100 we find, for instance,
a bimodal distribution of free energies estimated by applying the straightforward
exponential average (5.44) and averaging results from forward and backward per-
turbations (Fig. 5.3a). The asymmetry of the distribution of estimated free energies
reflects the strong bias of the exponential estimator, and its width reflects the large
statistical error because few events can dominate the estimate. Only for sample sizes
of 1,000 to 10,000 does the distribution of ∆Aest become centered around zero.

We also used the cumulant estimators of reference [20] in which the means (5.47)
and variances (5.48) of forward and backward paths are symmetrically combined. As
shown in Figs. 5.3b and c, the resulting distributions of estimated free energy differ-
ences are sharply centered around ∆Aest = 0, thus giving excellent free energy esti-
mates. However, this good agreement is somewhat surprising because the underlying
work distributions are highly non-Gaussian, as shown in Fig. 5.2. Indeed, the good
performance is due to cancellation of errors because of the symmetry of the problem
(such that on average all cumulants exactly cancel each other); for ‘asymmetric’ per-
turbations from λ = 0 to 2, the cumulant estimators produce substantial systematic
errors (Fig. 5.4).

Shown in Fig. 5.3d are free energies estimated from the same forward and back-
ward simulation runs using Bennett’s optimal estimator, obtained by solving (5.50)
using a Newton–Raphson method. Unlike the direct exponential estimator (which



190 G. Hummer

-2 -1  0  1  2  3  4  5  6

B
en

ne
tt

βDAest

p(
βD

A
es

t)

av
e+

va
r

av
e

ex
p

N =100
N =1000

N =10000

Fig. 5.3. Comparison of different free energy estimators. Plotted are distributions of estimated
free energies using sample sizes (i.e., number of independent simulation runs) of N = 100
simulations (solid lines), as well as N = 1, 000 (long dashed) and N = 10,000 simulations
(short dashed lines). (a) Exponential estimator, (5.44). (b) Cumulant estimator using averages
from forward and backward paths, (5.47). (c) Cumulant estimator using averages and variances
from forward and backward paths, (5.48). (d) Bennett’s optimal estimator, (5.50)

is strongly biased, as discussed in Chap. 6), we find the optimal estimator to be
centered around ∆Aest = 0. However, the distribution of the estimated free en-
ergies is considerably wider than that of the cumulant estimators, with symmetric
wings at the smallest sample size of N = 100 (i.e., 50 forward and backward paths
each).

In summary, using work collected from forward and backward paths greatly
improves the accuracy of the estimates, and for the symmetric system studied here
eliminates the bias. In our particular example, the cumulant estimators using forward
and backward work data produce the most precise free energy estimates, followed
by Bennett’s optimal estimator. However, this somewhat poorer performance of the
‘optimal’ estimator is caused in part by the high degree of symmetry of the system
studied.
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Fig. 5.4. Comparison of different free energy estimators for ‘asymmetric’ perturbation from
λ = 0 to 2 within t = 1. Shown are distributions of free energies estimated using the direct
exponential average, (5.44), averaged over forward and backward perturbations (solid line);
averages (5.47) from forward and backward paths (long dashed line); averages and variances
(5.48) from forward and backward paths (short dashed line); and Bennett’s optimal estimator,
(5.50), (dotted line). In all cases, free energies were estimated from N = 1, 000 simulations.
The vertical arrow indicates the actual free energy difference of β∆A ≈ −6.6

5.9 Calculating Potentials of Mean Force

One of the objectives in free energy calculations is to obtain potentials of mean force
G(r) along a chosen coordinate r = r(z) defined as

e−βG(r)+C =
∫

dz e−βH0(z)δ(r − r(z)), (5.54)

where C is an arbitrary constant. Usually, r is a dynamic, fluctuating variable that de-
pends on the coordinates of the particles in the system. In computer simulations, we
can normally use Jarzynski’s identity directly by making r a non-fluctuating, exter-
nally controlled coupling parameter, i.e., λ ≡ r. However, in single-molecule pulling
experiments and in their simulation equivalent, steered molecular dynamics [40–43],
we may not be able to (or want to) control r directly. In those experiments (or sim-
ulations), the system is usually coupled to a moving harmonic spring that drives the
coordinate r. An example would be the end-to-end extension of a molecule which is
attached to a pulling spring (atomic force microscope, laser optical tweezer, etc.).

When calculating the potential of mean force along a fluctuating coordinate r, we
can at best observe r (e.g., the instantaneous molecular extension), but we do not set
it explicitly. Therefore, r is no longer an externally controlled coupling parameter,
and Jarzynski’s identity does not immediately apply. However, as was shown in [3],
an extension produces the desired result.

For simplicity, let us consider a molecular system with a Hamiltonian H0(z)
that is coupled to a harmonic spring with spring constant k and a time-dependent
minimum r(t). The explicitly time-dependent Hamiltonian of the complete system
is then
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H (z, t) = H0(z) +
k

2
(r(z) − r(t))2 , (5.55)

where r(z) is the molecular extension and V (r, t) = k(r(z) − r(t))2/2 is the
potential energy of the spring.

We can now use the Feynman–Kac relation to obtain the potential of mean force.
By multiplying both sides of (5.14) by exp[βk(r(z) − r(t))2/2]δ(r − r(z)) and
integrating over z, we obtain an expression for the potential of mean force

e−βG(r) =
〈

δ [r − r (z(t))] e−β
(∫ t

0

∂V {r[z(τ)],τ}
∂τ dτ−V {r[z(t)],t}

)〉

(5.56)

Formally, by weighting the trajectory end points r(z(t)) with the Boltzmann factor
of the accumulated work (minus the energy stored in the pulling spring), we can
produce an unbiased histogram of r proportional to exp(−βG(r)). Practically, r
values will cluster near r(t) because of the coupling to the spring, and the histogram
will have good statistics only there. However, histograms obtained at different times
t can be combined to obtain results over a broad range of r. This approach can be
thought of as ‘dynamic umbrella sampling.’ By adapting the histogram-reweighting
procedure of Ferrenberg and Swendsen [44] (see Chap. 3) for the nonequilibrium
averages [3, 15], we obtain the following expression:

e−βG(r) =

∑
t

〈δ[r − r(t)] exp(−βW (t))〉
〈exp(−βW (t))〉

∑
t

exp[−βV (r, t)]
〈exp(−βW (t))〉

. (5.57)

Here, the sums are over different time slices t at which coordinates r and correspond-
ing work values have been saved.

5.9.1 Approximate Relations for Potentials of Mean Force

In some cases, one may not be able to collect enough trajectories for a histogram
analysis. Instead, one can use moments [15]. In particular, the derivative of the free
energy is approximately given by the average force (weighted by the Boltzmann
factor of the accumulated work)

G′
0(r(t)) ≈ −

〈
∂V (r, t)

∂r

〉
r = r(t)

. (5.58)

The average coordinate r is defined as:

r(t) =

〈
r(t)e−βW (t)

〉
〈
e−βW (t)

〉 . (5.59)

This approximation is valid if r(t) is approximately Gaussian distributed.
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Above, we obtained the potential of mean force by collecting work and r values.
Formally, we can also use the free energy ∆A(t) measured at all times t to extract
the underlying potential of mean force. If we multiply (5.56) by exp[−βk(r(z) −
r(t))2/2] and integrate over r, we obtain

e−β∆A(t) =
∫ ∞

−∞
dre−βG(r)e−βk(r−r(t))2/2. (5.60)

Effectively, this constitutes a Fredholm integral equation of the first kind
for exp[−βG(r)] where we ‘know’ the left-hand side, exp(−β∆A(t)) =
〈exp(−βW (t))〉, from (5.8) and the kernel is given by the Boltzmann factor of the
pulling potential. In principle, we could solve the integral equation, for instance, by
projection onto orthogonal functions to turn it into a linear equation. However, such
approaches are notoriously unstable, and thus not too promising in practice.

For very stiff pulling springs (where r is almost a coupling parameter under
external control), we can instead pursue the so-called ‘stiff-spring approximation’
of Park et al. [45]. A Fourier representation of the spring Boltzmann factor on the
right-hand side of (5.60) results in

e−β∆A(t) =
∫

ds

∫
dr

e−βG(r)−s2/(2βk)−is(r−r(t))

(2πβk)1/2
. (5.61)

To lowest order in 1/k (with k → ∞), we ignore the s2 in the exponent and the
free-energy offset from the k-dependent numerator, and obtain simply

∆A(t) ≈ G(r = r(t)) . (5.62)

This is the result expected if r is effectively a control parameter. Taylor expansion
with respect to 1/k introduces the correction terms as derivatives. To first order in
1/k, we obtain

∆A(t) ≈ G(r = r(t)) +
1
2k

(
G′′(r)

β
− G′(r)2

)
r = r(t)

. (5.63)

To order 1/k, this relation can be inverted, giving the ‘stiff-spring approximation’
derived originally in [45]

∆G(r = r(t)) ≈ A(t) − 1
2kv2

(
Ä(t)
β

− Ȧ(t)2
)

, (5.64)

where we assumed for simplicity that r(t) = vt with v a constant pulling velocity.
(Otherwise, there will be correction terms including z̈(t).)

One of the major advances in the application of Jarzynski’s identity to the cal-
culation of free energies came from coupling it to path sampling [46, 47]. In a
typical application with fast switching, the system is rapidly driven out of equilib-
rium as the coupling parameter is changed, and nearly all trajectories are essentially
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irrelevant for the free energy estimate (i.e., the Boltzmann factor of the trajectory
endpoint is small compared to typical values in an equilibrium ensemble). Effec-
tively, those trajectories are wasted. In the biased path sampling of Sun [46], new tra-
jectories are created using a Monte Carlo sampling approach by ‘perturbing’ existing
trajectories. To bias the sampling toward important but poorly sampled small work
values, an appropriate bias is added to the acceptance criterion. However, despite
this appealing feature, a recent efficiency analysis suggests that this biased search in
the optimal case is less efficient than an optimally biased Zwanzig-type free energy
perturbation [13]. A thorough discussion of path sampling can be found in Chap. 7.

5.10 Applications

After some initial studies for model systems [20, 38, 48–51], nonequilibrium work
averages have so far been applied most extensively in the context of steered molecular
dynamics simulations. In steered molecular dynamics [40–43], the molecular sys-
tem is coupled to a moving harmonic spring, usually through a group of atoms.
This approach is inspired by single-molecule pulling experiments using atomic
force microscopes or laser optical tweezers. As the spring is moved, tension builds
up in the molecular system, eventually forcing a molecular transition. Examples
include the unfolding of proteins [42, 52], dissociation of ligands [40, 41], or drag-
ging molecules through a channel [53, 54]. Usually, one is interested in the potential
of mean force along the pulling direction, which can be obtained using the dynamic
umbrella sampling approach of Sect. 5.9 and [3] or approximations to it.

5.11 Summary

Jarzynski’s identity [1] provides a new and potentially powerful tool for the
determination of free energy differences in computer simulations. As an immedi-
ate application, it puts slow-growth free energy calculations [8, 9] on a fully quan-
titative footing. More importantly, with the help of (5.8), free energy differences
can be calculated at arbitrary rates of transformation. Probably the most important
applications to date are in the analysis of single-molecule pulling (and related) exper-
iments where nonequilibrium conditions cannot be easily avoided [3–6]. Extensions
of Jarzynski-type relations between work distributions and free energy difference to
quantum dynamics have been derived [55–57].

Computational efficiency remains a central question. For a given amount of
computer time, how ‘good’ are nonequilibrium estimates of free energy differences
compared to estimates from equilibrium methods? Overall, evidence is mounting that
nonequilibrium methods are less efficient than equilibrium methods [13, 20, 38].
However, new approaches have been suggested that use long time steps [25]. For
relatively slow transformations, it has been shown [20] that for a given amount of
computer simulation time, one obtains more-accurate results for few slow transfor-
mations than for many fast transformations. At the other extreme, i.e., in the limit of
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near-optimally work-biased fast transformations [13], instantaneous (Zwanzig-type
[12]) perturbations appear to be optimal. However, repeated calculations appear
to offer some advantages. For instance, if multiple distinct pathways over differ-
ent ‘saddles’ connect the two states, and equilibration between those paths is slow,
then one could imagine that an umbrella sampling approach might get stuck in one
‘transition path’ valley (in particular, if runs in a new umbrella window are initi-
ated from a configuration of the preceding window). By using multiple independent
runs, nonequilibrium methods seem more likely to explore all possible pathways,
and that could well lead to more accurate free energies when compared to naive ap-
plications of standard approaches. However, such vague arguments deserve a more
quantitative analysis. Moreover, nonequilibrium methods based on Jarzynski’s iden-
tity are still a very recent addition to the arsenal for free energy calculations, and
one may expect considerable improvements in their implementation as well as new
developments [23, 25, 58–65].

The identities of Jarzynski and Crooks, and related expressions, allow us to
determine free energy differences rigorously from nonequilibrium simulations. In
those simulations, the Hamiltonian is changed continuously (or step wise) from
the initial (λ = 0) to the final energy surface (λ = 1). Free energies are obtained
from the distribution of work accumulated during repeated transformations. The
resulting formalism connects free energy perturbation theory with thermodynamic
integration (as infinitely fast and slow perturbations, respectively). Moreover, it puts
slow-growth methods on a sound theoretical basis. In practical applications, choos-
ing reliable estimators and sampling procedures are critical for success. The Crooks
identity, (5.35), provides a powerful test of sampling and implementation by probing
the consistency of work distributions obtained on forward (0 → 1) and backward
(1 → 0) perturbations. The usefulness of nonequilibrium work methods is most evi-
dent in cases where nonequilibrium cannot be avoided easily, for instance in pulling
experiments or in simulations where the transformation has to be completed within a
given amount of time. In other cases, there is evidence that near-equilibrium methods
produce more-accurate results for a given amount of computer time. However, non-
equilibrium methods are an area of much ongoing investigation, and we can expect
a steady stream of new insights relevant both fundamentally and practically.
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Understanding and Improving Free Energy
Calculations in Molecular Simulations: Error Analysis
and Reduction Methods

Nandou Lu and Thomas B. Woolf

6.1 Introduction

Free energy simulations have been widely applied to the computation of physical,
chemical, and biological systems. Yet the reliability and efficiency of the approach
has not been considered in depth. This is despite the many free energy calculation
methods that have been developed over the decades. Thus, many fundamental ques-
tions remain unanswered, e.g., what method is best for evaluating the free energy?
Is the free energy estimate reliable and what is the error in it? How can one assess
the quality of the free energy result when the true answer is unknown? What is the
minimal computational effort needed to get a decent result? How can one improve
the efficiency and reliability of free energy calculations?

There are many practical issues related to obtaining converged free energy results
without numerical errors. Since the calculation is computationally intensive and the
goal is a useful result in a reasonable time, it remains a significant challenge for mole-
cular simulations of large and complex systems [1]. This is because, despite the wide
application of free energy simulations, the fundamental sampling and convergence
behavior of free energy methods is less well understood. Fundamental understand-
ing of a free energy method’s behavior, such as its limitations and its advantages, its
calculation efficiency and its reliability, is important not only for simulation practice
but also for the development of novel methodologies. The key towards increasing
understanding is to characterize the free energy error of a method.

In this chapter, we will examine in depth the characteristic errors of two free
energy techniques and present improved methods based on a better understand-
ing of their behavior. The two techniques examined are free energy perturbation
(FEP) [2] and nonequilibrium work (NEW) based on Jarzynski’s equality [3–6].
These techniques are discussed in Chaps. 2 and 5. The FEP method is one of the
most popular approaches for computing free energy differences in molecular simu-
lation; see, e.g., [1, 7–10]. The recently developed NEW method, which is closely
related to FEP, is gaining popularity in both simulation [11–18] and experimental
applications [19–21].
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6.1.1 Sources of Free Energy Error

The error in a free energy calculation is due to the many numerical approximations
in a computer simulation. These approximations can be understood as arising from
two major sources [22–24]: the representation of the system and finite sampling.
Examples of errors that may arise from the system representation include the choice
of the empirical force field, the choice of interaction cutoff distances, the treatment
of electrostatic effects are treated, the choice of system size, and the choice of model
representation (for example coarse graining or the use of an implicit solvent repre-
sentation). These system choices can lead to a systematic error, creating a computer
model with an unrealistic representation of the system of interest that will not con-
verge to the correct free energy. This type of systematic error will not be reduced by
adopting improved free energy calculation algorithms or by increasing the simulation
time.

Imperfect sampling contributes the other major source of error found in free
energy calculations. Although statistical mechanics provides a formally exact equa-
tion for computing free energy – with knowledge of the entire phase space of a sys-
tem – in practice, a computer simulation is finite in time, and thus free energy has to
be computed using a finite set of configurations. Therefore, finite sampling errors are
an intrinsic part of free energy simulation and can be an even more critical part of the
analysis due to rough energy landscapes for many biophysically interesting systems.
But, unlike the systematic error that may occur due to the choice of representation,
finite sampling error generally decreases as more sampling is conducted and better
free energy and/or sampling algorithms are used.

In a free energy simulation the measured quantity is the relative free energy
between two systems. As has already been discussed in Chaps. 2 and 5, both FEP
and NEW start from an equilibrated reference system, and perturb to a target system.
The difference between the potential energy changes, ∆U , for FEP or work values,
W , for NEW of these two systems are measured and collected on the computer to
estimate the free energy difference. Finite sampling errors of two types are involved
in the calculation: (1) sampling within the phase space of the reference system, and
(2) sampling the phase space along the transitions from the reference system towards
the target system. The second type of error can be described in terms of the sam-
pling of perturbations (potential energy change ∆U or NEW W ) during the simu-
lation [14, 17, 24–28]. These two types of sampling error are generally considered
separately. Even when the conformations of the reference system are perfectly sam-
pled (zero sampling error of the first type), free energy calculations may still have
statistical error due to incomplete sampling of ∆U or W . Unfortunately, for finite-
length FEP and NEW calculations, the important parts of {∆U} and {W} are rarely
sampled, and simulation error due to poor sampling can be significant – see later in
this chapter for more details. Note that this type of error can be reduced by increasing
the sample size, or (often more effectively) by adopting better free energy methods.
Understanding and characterizing the finite sampling error between the two end-
points of the free energy change are the focus of this chapter. That is, we do not
consider systematic errors due to a possibly inappropriate model of a system, and
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we further assume that incomplete sampling of the reference system is not a major
source of error in the calculation.

6.1.2 Accuracy and Precision: Bias and Variance Decomposition

How should we best describe the error of a measurement result (an estimate of the
true value)?

Suppose N independently repeated samples {x̂1, x̂2, . . . , x̂N} are obtained to
measure the value of a quantity X , where x̂ represents an estimate of its true value
x. Usually the best estimate of x is provided by the mean or average of {x̂}, ˆ̄x(N).
The reliability of the estimator ˆ̄x can be characterized by the mean square error,
(e.g., [29, 30])

m2(N) =
1
N

N∑
i=1

(x̂i − x)2. (6.1)

Following a straightforward derivation, we have (assuming the absence of sampling
noise)

m2(N) = σ2(N) + δ2(N), (6.2)

where the mean square error is decomposed into two terms: the sample variance, σ2,
and the square of the finite sampling bias, δ2. The variance represents the statistical
part of the mean square error and is defined solely by the sampled values

σ2(N) =
1
N

N∑
i=1

(
x̂i − ˆ̄x(N)

)2
. (6.3)

Note that the variance does not depend on the true value x, and the mean estimator ˆ̄x
has the least variance. The finite sampling bias is the difference between the estimate
ˆ̄x and the true value x, and represents the finite sampling systematic part of the
generalized error

δ(N) = ˆ̄x(N) − x. (6.4)

In this chapter we use the terms precision and accuracy in relation to the finite sam-
pling variance and bias, respectively. Also, we describe the overall quality of an esti-
mator – the mean square error – by the term reliability. Note the difference between
our terminology and that in some statistics literature where accuracy is used to de-
scribe the overall quality (i.e., the reliability in this chapter). The decomposition of
the error into the variance and bias allows us to use different approaches for studying
the behavior of each term.

6.1.3 Dominant Errors

In the equations above, the mean square error, the sample variance, and the
finite sampling bias are all explicitly written as functions of the sample size N . Both
the variance and bias diminish as N → ∞ (infinite sampling). However, the variance
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and bias generally have different dependencies on the sample size N , and the domi-
nant part of the mean square error may change as N changes. This is especially true
for free energy calculations [17, 24, 25, 31, 32]. By definition, the variance decays as
N−1/2. For both FEP and NEW calculations, the decay of the bias is proportional to
N−γ with γ ranging from 0 (small-N limit) to 1 (large-N limit) [14, 25]. As will be
discussed in more detail later in this chapter, the samples (of ∆U or W ) important
to the accuracy of the FEP or NEW calculation correspond to the rare events in a
computer simulation. Missing such important samples will cause significant bias in
the free energy estimate obtained in practical simulations, in which the sample size
has to be finite. In fact, the FEP and NEW calculation formulae are biased in any
finite-length simulations [3, 11, 12, 17, 25, 27, 32]. In short, in the finite-N region,
the bias caused by the missing of important but rare samples is usually more signif-
icant than the variance and thus is the dominant error in the free energy estimate. As
the sample size N approaches infinity (N → ∞), the sample variance may surpass
the finite sampling bias and become the dominant source of error [17, 25].

The sample size in a real simulation is always finite, and usually relatively small.
Thus, understanding the error behavior in the finite-size sampling region is critical
for free energy calculations based on molecular simulation. Despite the importance
of finite sampling bias, it has received little attention from the community of mole-
cular simulators. Consequently, we would like to emphasize the importance of finite
sampling bias (accuracy) in this chapter.

The usual nature of statistics is to consider only the mean and first moments of
the distributions. This cannot fully capture the complexity of error analysis in free
energy calculations, where poor sampling of important but rare events is the major
source of error. We further note that in the finite sampling region (and/or the region
where the nonequilibrium paths are far from reversibility), techniques such as series
expansion [12–15, 33, 34] and bootstrap analysis may become less effective for the
analysis of free energy errors. This is because of the nature of the finite-sampled
region – too much data may be missing to enable a resampling (bootstrap) or an
expansion in powers to fill in the missing information [35]. At the same time, for
situations with sufficient data, bootstrap or other extrapolation methods can help to
gain insight into the errors. In this chapter, different approaches will be presented for
examining the systematic (bias) and statistical (variance) errors for both the small-
and large-N regions. In addition, principles and novel methods for improving free
energy calculations are presented.

6.1.4 Outline

This chapter is organized as follows: a brief overview of FEP and NEW methods,
together with important concepts used in later analysis, is presented in Sect. 6.2. In
Sect. 6.3 we discuss how the considerations of important phase space and probability
distribution functions can be used to understand and model free energy error. In
Sect. 6.4 we proceed with the analysis of both types of sampling error. The principles
of optimal multistage FEP (MFEP) calculations are laid out in Sect. 6.5. Methods for
better free energy calculation, such as overlap sampling (OS) and extrapolation are
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given in Sects. 6.6 and 6.7, followed by concluding remarks and perspectives for
future development in Sect. 6.8.

6.2 Overview of the FEP and NEW Methods

6.2.1 Free Energy Perturbation

FEP is one of the most popular methods for calculating free energy differences in
molecular simulation and is discussed in detail in Chap. 2. Using the FEP formula,
the free energy difference between two systems 0 and 1 is computed according to

exp(−β∆A) = 〈exp(−β∆H )〉0 , (6.5)

where ∆A = A1 − A0 is the Helmholtz free energy difference, ∆H = H1 −
H0 is the Hamiltonian difference (the perturbation); the angle brackets represent a
canonical ensemble average performed on an equilibrated system designated by the
subscript. Usually the kinetic component of the Hamiltonian is not included in the
free energy calculation, and ∆H01 can be replaced by the potential energy difference
∆U = U1 − U0.

Forward and Reverse FEP

In an FEP calculation, one of the two systems, e.g., the 0 system (6.5), governs
the simulation (usually Monte Carlo or molecular dynamics); this system is called
the reference while the other (system 1) is the target. At different configurations
of the equilibrated reference system, repeated perturbation trials are performed by
switching the Hamiltonian of the system to that of the target from the reference, and
perturbations {∆U} are collected to compute the ensemble average. Either system 0
or 1 can be chosen as the reference, thus for any given system pair, the FEP can be
conducted in two opposite perturbation directions (from reference to target): 0→1
or 1→0 [26, 32, 36, 37]. These two directions are usually (arbitrarily) referred to
as the forward and reverse (or backward) directions, respectively. They have the
same working formula (6.5), except for the exchange of the subscripts “0” and “1.”
However, in this chapter, we always define the difference of a quantity between the
two systems as ∆X = X1−X0, regardless of which system is taken as the reference;
for example, the free energy and potential energy changes are defined as ∆A =
A1−A0 and ∆U = U1−U0, respectively. With this definition, the working equations
of the forward and reverse FEP calculations can be written as

exp(−β∆A) = 〈exp(−β∆U)〉0 , (6.6)

exp(+β∆A) = 〈exp(+β∆U)〉1 , (6.7)

respectively. Note that with these definitions the “+” sign in (6.7) is necessary due to
the definition of ‘difference.’ This use allows us to consider ∆U and W throughout
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without changing sign, at the expense of having formulae that differ in sign dep-
ending on the direction of the work events or perturbations.

In principle, the forward and reverse calculations should produce identical free
energy estimates. However in real simulations these estimates usually differ. Further-
more, as we explore finite sampling errors, we will see that the reliability (the error
in each direction) of these estimates also differs [24, 26, 38].

As the difference between the 0 and 1 systems becomes larger, the free energies
obtained from (6.6) or (6.7) show slower convergence and poorer reliability. To han-
dle large perturbations (as is the case for many real problems), stratified (multistage)
FEP approaches [22, 31, 39–42] are usually adopted instead of methods directly
based on (6.6) or (6.7), which are, correspondingly, referred to as single-stage FEP
methods.

Multistage FEP Calculations

An MFEP calculation, sometimes also referred to as a multi-window calculation,
has already been introduced in Chap. 2. The idea behind this method is to split a
large perturbation into a series of smaller ones which are suitable for handling by the
single-stage FEP calculations of (6.6) or (6.7). This is reasonable, since free energy
is a state variable, and the overall ∆A is given by the sum of the changes for each
substage. To split the perturbation, one or more intermediates (designated by M ) are
constructed besides the initial and final systems 0 and 1. The introduction of inter-
mediates provides additional degrees of freedom for conducting FEP calculations,
such as the definition of the intermediates, the number of intermediates (stages),
the simulation lengths for each stage. Also, for each successive state pair, the FEP
can be conducted in two directions. As a result, an MFEP calculation can usually be
conducted in many different ways [24, 26, 31, 32]. Even for the simple case of a two-
stage FEP calculation, there are four possible different implementations, as listed in
Table 6.1.

Fine-tuning the degrees of freedom in an MFEP calculation can improve the
efficiency and reliability of the free energy calculation. However, the optimization of
an MFEP calculation is usually not a straightforward task [41]. Because single-stage
FEP calculations are the basic components of a multistage calculation, the principles
of optimal multistaging design can be obtained by studying single-stage FEP be-
havior. Thus, first understanding the optimal manner of performing a single-stage

Table 6.1. Example of four staging strategies (perturbation directions) for a two-stage FEP
calculation involving the systems 0 and 1, and the intermediate M

Calculation strategy Free energy formula

0 → M → 1 ∆A = ∆A0M + ∆AM1

0 ← M ← 1 ∆A = −∆AM0 − ∆A1M

0 → M ← 1 ∆A = ∆A0M − ∆A1M

0 ← M → 1 ∆A = −∆AM0 + ∆AM1

The best choice of strategy depends on the problem under study
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calculation and using it to provide insight into multistage calculation is a reasonable
route to follow.

The intermediates of an MFEP calculation are usually defined using Hamiltonians
related to those of system 0 (H0) and 1 (H1). This is generally achieved with a
parameter-scaling approach (see Sect. 2.6). Linear scaling is the simplest form

H (λ) = (1 − λ)H0 + λH1, (6.8)

where λ has a value between 0 and 1. For λ = 0 and 1, we recover H0 and H1,
respectively, and other values of λ define intermediate states. Although, as discussed
in Chap. 2, linear scaling may not be optimal, it is often favored for its simplicity. In
an MFEP calculation, the perturbation between two successive states defined by λi

and λi+1 can be computed as

∆ = U(λi+1) − U(λi) = −∆λiU0 + ∆λiU1, (6.9)

where ∆λi = λi+1 − λi. In many applications, the increment ∆λ is chosen to be
equal for all i, which is a convenient but not necessarily an optimal choice.

6.2.2 Nonequilibrium Work Free Energy Methods

An important recent advance in free energy calculations comes from nonequilibrium
statistical mechanics. The free energy difference between two states 0 and 1 of a
classical system in contact with a heat reservoir can be estimated by perturbing the
system so that NEW is performed during the transition between these two states. It is
well known that, for repeated trials of such transitions, the average work done for the
transitions satisfies 〈W 〉 ≥ ∆A, where equality is achieved only when the transition
is infinitely slow (i.e., following a reversible path). As discussed in detail in Chap. 5,
Jarzynski [3, 4] proved an equality between the free energy difference and the work
done along the transition trajectories

exp(−β∆A) = 〈exp(−βW )〉0 . (6.10)

This equality holds even if the transitions from one state to the other (also referred
to as switching) take a finite time. The NEW method for calculating the free energy
using Jarzynski’s equality (6.10) has rapidly gained popularity; it can be applied to
a broad range of processes, including both computer simulations and experimental
studies.

6.3 Understanding Free Energy Calculations

Two concepts are helpful in understanding and characterizing relative free energy
computational errors: phase space relationships and probability distribution func-
tions of perturbations.
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6.3.1 Important Phase Space

The classical phase space Γ of an N -body system consists of a 3N -dimensional
configuration phase and a 3N -dimensional momentum phase. Generally, the kinetic
component of free energy is not considered in simulations. In common practice the
two terms phase space and configuration space are used equivalently, as we do here.
One goal for molecular simulation is to explore all representative phase space regions
of a system. Remember that not all the configurations contribute to the partition func-
tion to the same extent. The contribution of a phase space point Γi to the partition
function is described by its Boltzmann factor exp[−βU(Γi)], where U(Γi) is the po-
tential energy at configuration Γi. Significant contributions come from those phase
space points with low (negative) U , or, rarely, the set of phase space points with
relatively high energies but having extremely high probability to be visited by the
system. Here we will call those configurations Γi making significant contributions
to the partition function the important phase space points or the important config-
urations of a system, and the regions containing these points are denoted Γ ∗. We
can define Γi ∈ Γ ∗ if U(Γi) is less than a characteristic energy, e.g., the most-
likely energy or the average energy of the system. Note that this definition may not
apply to all distributions, e.g., certain very narrow or very broad distributions may
not easily be described by this type of division. Still, for many cases of biophysi-
cal interest, regions of phase space that contribute most strongly can be identified
either by their energies and Boltzmann factors or by cluster analysis and inspection.
Thus, in general, Γ ∗ is the set of representative configurations and needs to be sam-
pled well in a simulation to measure correctly the ensemble-averaged properties of
the system [24, 26, 31, 32, 43, 44]. Note that with this definition the set of points
may be very large or small, depending on the relative roughness of the potential
energy surface. Regardless of the total size of this important phase space region,
it is critical that it be well sampled for the relative free energies to be computed
accurately.

Usually the 0 and 1 systems in a free energy calculation share the same phase
space, but their important phase space regions (Γ ∗

0 and Γ ∗
1 , respectively) differ. In

an FEP calculation, it is not sufficient to obtain a good free energy estimate by sam-
pling from only the important configurations of the reference (e.g., Γ ∗

0 ). Instead,
both of the important regions for the reference and the target (through trial pertur-
bations) should be well sampled because the ensemble average of the exponential
in the perturbation ∆U is taken to compute ∆A. Suppose that a configuration Γi

is sampled in system 0 (thus Γi ∈ Γ ∗
0 assuming sampling in Γ ∗

0 is accessible)
but Γi /∈ Γ ∗

1 . Such a perturbation results in a large positive ∆U , and thus has a
near-zero contribution to ∆A. If the Γ ∗

1 region is not sampled in the simulation, the
free energy estimate will be inaccurate. In short, in terms of phase space, finite sam-
pling error comes from missing regions of the configuration space that are important
for both the reference and the target systems. A good FEP simulation strategy will
require that there is no restriction to visiting important phase space regions of the
target system by sampling the phase space using the Hamiltonian of the reference
system.
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So how is it possible to ensure this? Examining the phase space overlap relation-
ship of the reference and the target systems will give insight towards answering this
question.

Phase Space Relationship and Sampling Barriers

A two-dimensional cartoon is helpful in understanding overlap relationships between
the important phase spaces Γ ∗

0 and Γ ∗
1 . As illustrated in Fig. 6.1, there are four pos-

sible ways that Γ ∗
0 and Γ ∗

1 can be related: (a) Γ ∗
1 can form a subset of Γ ∗

0 ; (b) Γ ∗
0 and

Γ ∗
1 may almost coincide, i.e., have complete overlap; (c) Γ ∗

0 and Γ ∗
1 may have partial

overlap; and (d) Γ ∗
0 and Γ ∗

1 may have no overlap. For simplicity, in Fig. 6.1 we have
only considered the case in which Γ ∗ is continuous in space; but the same princi-
ple applies to more-complicated situations, in which regions of Γ ∗ are separated in
space.

Consider a single-stage FEP calculation with system 0 as the reference. For the
situation illustrated in Fig. 6.1a, where Γ ∗

1 lies inside the Γ ∗
0 , configurations in Γ ∗

1 are

1
1

1
1

G G

G G

0

0

0 0

(a) (b)

(d)(c)

M

M

M

Fig. 6.1. A cartoon depiction of the phase space Γ and important phase space regions and their
relationship. The important phase space regions of systems 0 (Γ ∗

0 ) and 1 (Γ ∗
1 ) are abstractly

represented by shaded and open oval shapes, respectively. These regions can be related in four
ways: (a) subset, (b) coincidence, (c) partial overlap, and (d) no overlap. Also sketched is the
important phase space region of the intermediate M in a two-stage calculation (see section on
“Multiple-Stage Design”). The appropriate staging strategy differs according to the different
overlap relationships between Γ ∗

0 and Γ ∗
1
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sampled when a Monte Carlo or molecular dynamics simulation explores the phase
space of Γ ∗

0 . The probability that Γ ∗
1 is encountered is proportional to the relative

size (the number of configurations) of Γ ∗
1 and Γ ∗

0 – one may say that the sampling
barrier in this case is entropic. If the simulation is long enough, both phase spaces Γ ∗

1

and Γ ∗
0 can be well sampled, and an accurate free energy estimate can be obtained.

Clearly, in a finite-length simulation, the error in the calculated free energy difference
and its convergence rate will depend on the relative sizes of Γ ∗

1 and Γ ∗
0 . This, in

turn, depends on the perturbation magnitude (entropy difference [24, 26, 32]). There
are two possible extreme cases: (1) Γ ∗

1 is tiny so that it is a pinhole in Γ ∗
0 , and

(2) Γ ∗
1 and Γ ∗

0 are almost identical. This latter situation is the case (b) of Fig. 6.1
where the finite sampling error of the FEP is usually not a concern. In this case, a
single-stage forward FEP calculation usually yields an accurate free energy estimate,
given sufficient computational effort. In general, for effective calculation of ∆A one
wants to ensure that Γ ∗

1 and Γ ∗
0 do not differ too much, which implies that an MFEP

calculation may be required.
An example of how important the degree of phase space overlap is for the calcu-

lation can be illustrated by further consideration of Figs. 6.1a and 6.2. In particular,
if system 1 instead of system 0 is chosen as the reference, as in Fig. 6.1a. Now, most
of the time is spent sampling configurations inside the Γ ∗

1 region. To visit the re-
gion belonging to Γ ∗

0 but outside of Γ ∗
1 – which is important for an accurate free

energy estimate – a region of low probability has to be sampled, this is proportional
to exp(−βU ) where U is once again the potential energy. Thus for the reverse FEP

(a) (b)

GG

0 

1 1 

0 

Fig. 6.2. Schematic illustration of the phase space sampling for the case presented in Fig. 6.1a,
i.e., the important phase space regions of system 1 (Γ ∗

1 ) is a subset of that of system 0 (Γ ∗
0 ).

The sampling behavior depends on which system is chosen as the reference in the simulation.
The sampling process is shown schematically as the curve with an arrow. (a) System 0 is the
reference. During the simulation, the phase space region important to both systems 0 and 1 is
encountered by chance, which is proportionally to the relative size of Γ ∗

1 and Γ ∗
0 . The sam-

pling barrier to Γ ∗
0 is entropic. (b) System 1 is the reference. The sampling of the Γ ∗

0 region
outside Γ ∗

1 is limited by the high energy relative to the Γ ∗
1 region, thus many configurations

important to the free energy calculation cannot be sampled due to the high energy restriction
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calculation the sampling is limited by the most-likely regions of phase space and thus
energetics, in contrast to the entropic restriction to good sampling in the forward FEP
calculation. Missing these important configurations with the reference point in Γ ∗

1 is
almost certain in a finite-length reverse FEP calculation, and thus will produce an
unreliable result. This also illustrates the importance of examining both the variance
and bias of a free energy calculation: the free energy result can be very precise, as
independent simulations will produce consistent answers (related to their own aver-
age); however, the bias may be large because of the inability to sample important
regions of phase space.

Applying the same analysis one can see that for the case described by Fig. 6.1c,
neither the forward nor the reverse FEP calculation is reliable; and for the case
in Fig. 6.1d, their results will be completely wrong. Thus, a single-stage FEP cal-
culation can produce accurate free energy estimates only for the cases in Fig. 6.1a
(in the 0 → 1 direction) and Fig. 6.1b. In conclusion, ‘to guarantee a reliable free
energy estimate the important phase space of the target state should be a subset of
that of the reference state.’ One way to achieve this is to choose the higher-entropy
system as the reference (in Fig. 6.2a rather than Fig. 6.2b [24–27, 32], see Sect. 6.4
for more details).

Multiple-Stage Design

An MFEP calculation may be helpful in improving the efficiency and accuracy of
free energy estimates for the situations illustrated in Fig. 6.1. However, for the cases
of Fig. 6.1c, d, it is required in order to produce a reliable free energy result. The
subset phase space relationship provides a framework for multiple-stage design [24,
26, 43]. The concept of placing intermediates in different situations is laid out in
the following and details for constructing the intermediates will be discussed later in
this chapter. For simplicity, a two-stage FEP calculation is illustrated as an example.
Thus we have initial and final states 0 and 1, and one intermediate M .

For the case in Fig. 6.1a, the important configurations of an appropriately con-
structed intermediate, Γ ∗

M , should be a subset of Γ ∗
0 and at the same time a superset

of Γ ∗
1 , i.e., Γ ∗

0 ∈ Γ ∗
M ∈ Γ ∗

1 . Thus, two separate FEP calculations should be per-
formed for the transformations 0 → M and M → 1, yielding an overall free energy
difference of ∆A ≡ ∆A0→1 = ∆A0→M + ∆AM→1.

For the case Fig. 6.1c, in which Γ ∗
0 and Γ ∗

1 partially overlap, a good strategy
is to construct M that Γ ∗

M is located in the overlap region of Γ ∗
0 and Γ ∗

1 , i.e.,
(Γ ∗

M ∈ Γ ∗
0 ) ∩ (Γ ∗

M ∈ Γ ∗
1 ). Two separate FEP calculations are required for the

transformations 0 → M and 1 → M , and the corresponding free energy difference
is ∆A = ∆A0→M − ∆A1→M . This procedure is referred to as overlap sampling.

Finally, for the case Fig. 6.1d, in which Γ ∗
0 and Γ ∗

1 have no overlap, one may
construct an intermediate whose important phase space regions contain both Γ ∗

0

and Γ ∗
1 , i.e., (Γ ∗

0 ∈ Γ ∗
M ) ∩ (Γ ∗

1 ∈ Γ ∗
M ), and conduct two FEP simulations for

M → 0 and M → 1. Correspondingly, the overall free energy difference is given



210 N. Lu and T.B. Woolf

by ∆A = ∆AM→1 − ∆AM→0. This approach is equivalent to the popular umbrella
sampling (US) technique [45, 46], described in Chap. 3.

Note that for the cases Fig. 6.1c, d, depending on the difference between the 0 and
1 systems, it may be better to go with higher-order stage calculations. For example,
for case (d) one can construct an intermediate MB bridging Γ ∗

0 and Γ ∗
1 , so that the

relationship of Γ ∗
MB

∼ Γ ∗
0 and Γ ∗

MB
∼ Γ ∗

1 are both described by case (c), and then
perform overlap sampling calculations between 0 and MB as well as 1 and MB.

NEW Calculation: Down the Funnel

An argument analogous to that presented above for FEP can be made in connection
with the NEW calculation, because one finite-time switching step in NEW is the
equivalent to a perturbation trial in FEP. The difference is that in practice a NEW
calculation involves multiple switching steps along the transition path from 0 to 1.
At switching step i the important phase space region is Γ ∗

i . As the transition moves
one step forward, the system evolves to a state with important phase space Γ ∗

i+1. The
work increment for this switching step is calculated as wi = Ui+1(Γi) − Ui(Γi).
Certainly small wi makes a strong contribution to the total W along the entire path
if Γi belongs to both Γ ∗

i and Γ ∗
i+1. If the system evolves along a path well connected

in all Γ ∗
i , we obtain a work value W that provides an important contribution to

∆A [cf. (6.10)]. This is clearly the goal of the calculation. However, if during the
transition, the path encounters a configuration that belongs to Γ ∗

i but not Γ ∗
i+1, a

large (positive) wi for that step will result, which leads to a large W . Therefore the
particular trajectory with its entire switching path will make a near-zero contribution
to ∆A.

To ensure the accuracy of the free energy estimate by sampling the most impor-
tant set of trajectories, we choose the sequence of systems so that each successive
state obeys a phase space subset relationship with the one that preceded it. This
situation is illustrated schematically in Fig. 6.3. We say that a path following such a
trajectory moves down the funnel [43].

As the initial and final states are set by the problem under study, their important
phase space relationship could be any one of the cases illustrated in Fig. 6.1. For
cases Fig. 6.1c, d, it is impossible to construct a funnel path from 0 to 1 directly. To
satisfy the funnel requirement, similar to the MFEP calculation, a staged NEW cal-
culation can be performed. For example, in the case Fig. 6.1c, one can first construct
an intermediate in the common region of Γ ∗

0 and Γ ∗
1 , then perform two separate

NEW calculations following the paths 0 → M and 1 → M , respectively. This
NEW-overlap sampling (NEW-OS) technique will be discussed in detail in Sect. 6.6.

Note that the funnel requirement is attenuated to the degree that the path ap-
proaches reversibility. Actually for a reversible path, the phase spaces of successive
states along the path will be almost identical (cf. Fig. 6.1b).

Entropy

Entropy can be thought of as describing the fraction of configuration space access-
ible to a particular energy. Thus, the entropy difference ∆S between two phase
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0 

1

G

M 

Fig. 6.3. To ensure the accuracy of a nonequilibrium work free energy calculation, the switch-
ing paths should go down the funnel. The important phase space regions for the intermediate
states along the ideal funnel paths are illustrated in this plot, for the case where Γ ∗

0 and Γ ∗
1

are partially overlapped. Two funnel paths need to be constructed to transfer the systems from
both 0 and 1 to a common intermediate M where Γ ∗

M is inside the Γ ∗
0 and Γ ∗

1 overlap region.
The construction of such paths is discussed in Sect. 6.6

space regions is an appropriate quantity to characterize differences in size between
the important phase space regions of systems 0 and 1 [24, 26, 27, 32]. As dis-
cussed above, to ensure that free energy calculations are accurate by avoiding en-
ergetic sampling restrictions a subset relationship for Γ ∗

0 and Γ ∗
1 is required. To do

so one should start the perturbation from the system having the larger important
phase space region. This means that the reference system should be that with the
higher entropy, and the transformation should proceed in the direction in which the
entropy change ∆S is negative. In fact, as will be shown later in this chapter, entropy
plays a key role in determining both the statistical and the systematic errors of a free
energy calculation. Again, the requirement is attenuated as a NEW path approaches
reversibility.

Summary

The concept of important phase space regions provides a way to understand the
nature of FEP and NEW calculations. Studying the phase space overlap relation-
ship for the reference and target systems helps to establish the principles for reliable
free energy calculations. In order to guarantee a reliable FEP free energy estimate,
the important phase space of the target state should be a subset of that of the refer-
ence state. Phrased in another way, for a single-stage calculation, both the starting
and ending points need to be well sampled as well as the regions where the two op-
timally overlap. When this principle is not satisfied automatically by the problem at
hand, appropriate stratification (multistage) design can ensure that this condition is
fulfilled for the FEP calculation at each substage. Similarly, for NEW calculations, a
finite-time switching path can be constructed to follow a funnel trajectory to ensure
a correct free energy result.

Currently, our understanding and the guidelines extracted from phase space con-
siderations are largely limited to a qualitative level. Further development is needed to
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quantify these phase space overlap relationships between two systems. However even
with solely the concept itself, these considerations of phase space are important and
are helpful tools for understanding and studying free energy calculations.

6.3.2 Probability Distribution Functions of Perturbations

The perturbation process can be quantified using distribution functions of the poten-
tial energy change ∆U (for FEP) or work W (for NEW). The procedure is the same
for both the FEP and NEW calculations, thus we use the term perturbation and the
notation x to unify both.

As discussed in Chap. 2, the ensemble averages in (6.6) and (6.10) can be
rewritten in terms of a one-dimensional integral weighted by the probability of
encountering a specific x in a simulation. The probability of encountering a pertur-
bation with value x during sampling for an FEP or NEW calculation is given by

f(x) = 〈δ [x(Γ ) − x]〉0 , g(x) = 〈δ [x(Γ ) − x]〉1 , (6.11)

for forward and reverse calculations, respectively, where δ is the Dirac delta function
applied to the perturbation x. Integrating over these distribution functions, we have

exp(−β∆A) =
∫ ∞

−∞
exp(−βx)f(x)dx (6.12)

for the forward calculation, and

exp(+β∆A) =
∫ ∞

−∞
exp(+βx)g(x)dx (6.13)

for the reverse calculation. Note that in (6.12) and (6.13), both f(x) and g(x) are
normalized, and, as before, the “+” signs in (6.13) is due to our definition of the
difference.

An important feature for these distribution functions is that, instead of being
independent of each other, they are coupled for a given pair of systems 0 and 1. For
example, in an FEP calculation, we have [36, 37]

g(∆U) = 〈δ [∆U(Γ ) − δU ]〉1

=
1

Q1

∫
dΓδ [∆U(Γ ) − ∆U ] exp {−β [U0(Γ ) + ∆U ]}

=
Q0

Q1

exp(−β∆U)
Q0

∫
dΓδ [∆U(Γ ) − ∆U ] exp [−β(U0(Γ ))]

= exp(+β∆F ) exp(−β∆U)f(∆U).

(6.14)

In the right-hand side of the second equality, we have replaced U1(Γ ) with U0(Γ ) +
∆U . It can be shown that for a NEW calculation, f(W ) and g(W ) obey the same
relationship [7, 43]. Thus, in unified notation, we have
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f(x) exp(β∆A) = g(x) exp(βx). (6.15)

This equation relates the free energy difference between two systems to the individ-
ual perturbations x and the f and g distribution functions. The relationship (6.15) is
important in both the characterization of free energy error and the development of
improved free energy methods.

An example plot of f and g distributions is shown in Fig. 6.4. Note that in general,
the f and g distribution functions are not identical [cf. (6.15); one exception is the
case of a NEW calculation with a reversible transition path, see Sect. 6.4.2]. They
have different peak positions and widths (σ2

f and σ2
g) characterizing the distributions.

Important Perturbation Tails

The perturbation distribution is a powerful tool for studying free energy errors [24,
26, 27, 38]. As one can see in (6.12) and (6.13), the contribution of an individual
x to ∆A is weighted by the Boltzmann factor; thus it is strongly nonlinear. For a
forward calculation, the significant contributions, weighted by exp(−βx), to the free
energy come from those x located in the low-x (negative) tail of the distribution
f(x); similarly, for a reverse calculation, the important contributions, weighted by
exp(+βx), come from the high-x (positive) tail of g(x). To emphasize this concept,
f and g and the corresponding Boltzmann weighting factors are shown in Fig. 6.4
together with the distributions.

Thus, the cause of the finite sampling error in free energy estimates from FEP or
NEW simulations is the poor sampling of the important low-x tail of the f distribu-
tion and the high-x tail of the g distribution, for a forward and a reverse calculation,
respectively. Sampling of these important tails corresponds to the sampling of the
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Fig. 6.4. A plot of typical f and g probability distributions as functions of the perturbation x.
Both distributions are normalized. The associated Boltzmann factor integrands for the f and
g distributions are also shown schematically in the plot, as the dashed curves
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important phase space regions Γ ∗
0 and Γ ∗

1 . Due to the strong weights given to the
important but rare perturbations, the FEP and NEW calculations can only provide a
biased free energy estimate in practice, and some systematic error is an intrinsic fea-
ture of these calculations. However, using the distribution functions it is possible to
conduct a quantitative error analysis, which will be given in the following sections.

Traditional Ways to Overcome Errors

Here we discuss a set of traditional methods for combining both the forward and
reverse perturbation samples to enhance free energy calculations.

It has been observed that the errors in the forward and reverse calculations have
different signs, i.e., one of the calculations usually overestimates the free energy
difference, while the other underestimates [39, 42, 47–50]. Such observations have
led to a common practice (in the context of FEP) for trying to overcome free en-
ergy errors: taking the average of the forward and reverse results as an estimate of
∆A. This approach is referred to as the direct averaging method. The double wide
sampling method [39], introduced in Chap. 2, can be considered as a time-saving im-
plementation of direct averaging in an MFEP calculation. However, recent advances,
discussed later in this chapter, have led to the conclusion that the magnitude of er-
ror in the forward and reverse calculations is not, in general, the same and thus the
statistical and systematic errors do not cancel out by taking an average from these cal-
culations [23, 24, 26]. The direct averaging method can thus be seen as not reliable,
and in some cases it is actually better to use the free energy result from a calculation
in a single direction, rather than the average, since the error in one direction can be
significantly worse than in the other.

Another old, but unfortunately less popular, technique – often referred to as the
overlap distribution or overlap histogram method – deals with the error of FEP
calculation in a more reliable way than the direct averaging counterpart. It uti-
lizes the f and g distributions (in histogram form) and their relationship, given in
(6.15) [31, 51–53]. It follows from (6.15) that when f(x) = g(x), x = ∆A, i.e., at
the crossing point of f(x) and g(x), the value of x itself gives the free energy differ-
ence. In practice, such an estimate is not very reliable because of the large uncertainty
that may be involved in identifying this crossover point. Instead, one takes the aver-
age of ∆Ai computed over the region in which the f and g histograms overlap, as
the free energy estimate

∆A =
1
K

K∑
i=1

[
β−1 ln

g(xi)
f(xi)

+ xi

]
, (6.16)

where K is the number of bins in the overlapping region of the f and g histograms.
The quality of the free energy estimate can be further improved by using different
weights for each i [31, 43, 52]. Graphical analysis is usually adopted to identify the
f and g overlapping regions [7, 37].

The overlap distribution method is more reliable than the direct averaging or
single-direction FEP/NEW calculation. For example, it is capable of producing a
good estimate of the chemical potential of dense fluids where the latter methods fail
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[32]. However, it does have some disadvantages. The f and g histograms obtained
from a finite-length simulation contain errors themselves. The histogramming and
graphical analysis require additional steps in the calculation, and can introduce new
sources of errors [54]. Better alternatives, such as Bennett’s method and the overlap
sampling method, will be discussed further in this chapter.

For an FEP or NEW calculation, it is also helpful to plot the f and g distributions
collected from simulation data. An insufficient overlap between f and g is usually a
warning sign: it suggests that the perturbation is too large and additional stratification
is needed. If f and g are not smooth in the overlapping region it usually means that
the sample size is too small and longer simulations are required.

Summary

The perturbation distribution functions, f and g for forward and reverse FEP or
NEW calculations, respectively, are very useful for characterizing free energy errors.
In terms of perturbation distribution functions, the major finite sampling errors in
an FEP or NEW calculation come from poor sampling of the important distri-
bution tails – the low-perturbation tail of f and high-perturbation regions of g. The
straight FEP and NEW free energies are biased, but modified methods based on the
relationships of the f and g distributions can be used to reduce the finite sampling
error.

6.4 Modeling Free Energy Errors

Perhaps the most challenging part of analyzing free energy errors in FEP or NEW
calculations is the characterization of finite sampling systematic error (bias). The
perturbation distributions f and g enable us to carry out the analysis of both the
finite sampling systematic error (bias) and the statistical error (variance).

6.4.1 Accuracy of Free Energy: A Model

As discussed in Sect. 6.1, the bias due to finite sampling is usually the dominant
error in free energy calculations using FEP or NEW. In extreme cases, the simulation
result can be precise (small variance) but inaccurate (large bias) [24, 32]. In contrast
to precision, assessing the systematic part (accuracy) of finite sampling error in FEP
or NEW calculations is less straightforward, since these errors may be due to choices
of boundary conditions or potential functions that limit the results systematically.

We again use a unified notation x to represent the potential energy change ∆u
for an FEP calculation and for NEW values W for a NEW calculation. In terms of
perturbation distribution functions, the accuracy of free energy estimates depends
on how well the f(x) or g(x) distributions are sampled. In a long but finite-length
simulation, the region near the peak of a distribution may be well sampled, whereas
the sampling of both the high-x and low-x tails may be poor, and may never happen.
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Consider the forward calculation as an example. Earlier in this chapter, we concluded
that the most important contribution to a forward free energy calculation comes from
the low-x tail of f(x), and its poor sampling results in the major systematic error
of the calculation. To simplify further the analysis we assume that there is a limit-
perturbation xf such that x > xf is well sampled and x < xf is never sampled. This
is illustrated in Fig. 6.5.

In this model, the finite sampling systematic error is due to the missed sampling
of the important region x < xf . The free energy estimate given by the model is

exp(−β∆Âfwd) =

∫ ∞

xf

f(x) exp(−βx) dx

∫ ∞

xf

f(x) dx

. (6.17)

The denominator on the right-hand side is the renormalization factor, which is usu-
ally close to unity for large sample sizes and thus can be safely ignored (otherwise,
the analysis presented below requires minor modification). Then we have

exp(−β∆Âfwd) =
∫ ∞

xf

f(x) exp(−βx)dx. (6.18)

Meanwhile, the exact free energy difference ∆A is given by

exp(−β∆A) =
∫ xf

−∞
f(x) exp(−βx)dx +

∫ ∞

xf

f(x) exp(−βx)dx. (6.19)
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Fig. 6.5. Graphical illustration of the inaccuracy model and the relative free energy error in for-
ward and reverse free energy calculations. A limit-perturbation xf is adopted to (effectively)
describe the sampling of the distribution: the regions above xf are assumed to be perfectly
sampled while regions below it (shaded area) are never sampled. We may also put a similar
upper limit x′

f for the high-x tail, where there is no sampling for regions above it. However,
this region (in a forward calculation) makes almost zero contribution to the free energy cal-
culation and its error. Thus for simplicity we do not apply such an upper limit here
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By subtracting (6.18) from (6.19), we obtain the finite sampling systematic error in
exp(−β∆Âfwd)

δEfwd ≡ exp(−β∆Âfwd) − exp(−β∆A)

= −
∫ xf

−∞
f(x) exp(−βx)dx.

(6.20)

Similarly, for the reverse direction we can adopt a (highest) limit-perturbation xg on
the high-x tail which separates the regions of perfect sampling (x ≤ xg) and zero
sampling (x > xg). The same analysis leads to

δErvs ≡ exp(+β∆Ârvs) − exp(+β∆A)

= −
∫ ∞

xg

g(x) exp(+βx)dx.
(6.21)

Let us further look at the relative systematic errors (δe). For a forward calculation

δefwd = δEfwd
exp(−β∆A)

= −
∫ xf

−∞
f(x) exp(−βx) exp(+β∆A)dx

= −
∫ xf

−∞
g(x)dx.

(6.22)

In the last equality of (6.22), the relationship (6.15) is used. Similarly, for a reverse
calculation, we have:

δervs =
δErvs

exp(+β∆A)
= −

∫ ∞

xg

f(x)dx. (6.23)

The errors in (6.20)–(6.23) are given for the exponential form of the free energy dif-
ference, and the inaccuracy in ∆Âfwd and ∆Ârvs can be obtained from them easily.
Note that when δe is small, (6.22) and (6.23) give the absolute systematic error in
β∆Â itself (through the Taylor expansion of δe to the second order).

Note that the effective limit-perturbations xf and xg are functions of the sample
size. More sampling will ‘push’ xf and xg further toward the low-x and high-x tails,
respectively, thereby reducing the error. We can think of these limits as reflecting
the major bias restrictions to convergence in the calculation. For an xf or xg that
represents the average of the limit-perturbations observed in independently repeated
simulations (with the same sample size), this inaccuracy model gives an estimate of
the average bias defined in (6.4). However, we prefer to use the most-likely behavior
to describe the free energy error, and the most-likely bias is estimated by using the
most-likely xf and xg in (6.22) and (6.23), respectively.
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Equations (6.22) and (6.23) show that the relative systematic error in free en-
ergy due to finite sampling is simply given by the area under the tail region (marked
by the effective limit-perturbation xf or xg) of the complementary distribution –
see Fig. 6.6. Note that δe is always negative in both (6.22) and (6.23), which in-
dicates that ∆Âfwd ≥ ∆A (the exact value) and ∆Ârvs ≤ ∆A, i.e., the free
energy difference is overestimated in a forward calculation, and underestimated
in a reverse calculation. This conclusion agrees with the common observation re-
garding errors in the forward and reverse FEP calculations. With the equations
presented above, it is possible to estimate inaccuracy in an FEP or NEW cal-
culation from the estimated f(x) and g(x) obtained from simulation data and
from the knowledge of the limit-perturbations xf and xg . We stress that, in gen-
eral, the magnitudes of the forward and reverse FEP or NEW errors are different.

Most-Likely Inaccuracy

What level of inaccuracy can be expected for a simulation with a certain sample
size N? This question can be transformed to another one: what is the effective limit-
perturbation xf or xg in the inaccuracy model [(6.22) or (6.23)]? To assess the error
in a free energy calculation using the model, one may histogram f and g using the
perturbations collected in the simulations, and plot x in the tail of the distribution.
However, if xf is taken too small the accuracy is overestimated, and the assessed
reliability of the free energy is therefore not ideal. In the following, we discuss the
most-likely analysis, which provides a more systematic way to estimate the accuracy
of free energy calculations.

The goal is to find the most-likely limit-perturbations x∗
f and x∗

g . We use a prob-
ability density function P (x) to describe the spread of effective limit-perturbations
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Fig. 6.6. The relative inaccuracy in exp(−β∆A) of the forward (f) calculation is given by
the (shaded) area with x less than the limit-perturbation xf under the g distribution, while the
relative inaccuracy of the reverse (g) calculation is given by the area with x larger than xg

under the f distribution
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{xf} or {xg} in independently repeated simulations with the same sample size N .
The peak (mode) of P (x) corresponds to the most-likely limit-perturbation x∗. As
mentioned above, the inaccuracy model with x∗ gives an estimate of the most-likely
systematic error observed in any simulation with sample size N .

Consider a forward calculation. The probability that a particular xf is the
effective lowest perturbation encountered in a simulation with N independent pertur-
bation trials is given by [25]

P (xf ) = f(xf )

[∫ ∞

xf

f(x)dx

]N−1

. (6.24)

The peak of P (xf ) is located by maximizing P (xf ) as a function of xf . Following
a straightforward series of steps, we have (for large but finite N )

∂ ln f(x)
∂x

∣∣∣∣
x=x∗

f

= Nf(x∗
f ). (6.25)

Similarly, the most-likely limit-perturbation x∗
g for a reverse calculation with sample

size N is given by
∂ ln g(x)

∂x

∣∣∣∣
x=x∗

g

= −Ng(x∗
g). (6.26)

The minus sign on the right-hand side of (6.26) corresponds to the negative slope on
the high-x tail of g(x).

Note the relationship between x∗ and N . A larger sample size N pushes the
limit-perturbation further down the tail (smaller x∗

f and larger x∗
g), thus reducing the

free energy error. With (6.25) and (6.26), the most-likely values of x∗
f and x∗

g can be
estimated using the f and g histograms obtained from simulations. This gives us a
means to assess the finite sampling systematic error in free energy without knowing
the true ∆A.

Free Energy Bounds From Inaccuracy

From the discussion above, we know that the free energy estimates ∆Â in a finite-
length forward and reverse calculations form bounds for the true free energy differ-
ence, ∆A, i.e., [27]

∆Ârvs ≤ ∆A ≤ ∆Âfwd. (6.27)

These bounds originate from the systematic errors (biases) due to the finite sampling
in free energy simulations and they differ from other inequalities such as those based
on mathematical statements or the second law of thermodynamics. The bounds be-
come tighter with more sampling. It can be shown that, statistically, in a forward
calculation ∆A(M) ≤ ∆A(N) for sample sizes M and N and M > N . In a re-
verse calculation, ∆A(M) ≥ ∆A(N). In addition, one can show that the inequality
(6.27) presents a tighter bound than that of the second law of thermodynamics
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(∆A ≤ 〈W 〉) for a NEW calculation as well as the Gibbs–Bogoliubov inequal-
ity for an FEP calculation, discussed in [27] and Chap. 2. However, in contrast to
Gibbs–Bogoliubov bounds, the inequality (6.27) is only a statement of the likely
outcome of a simulation and, therefore, it may be violated in individual cases.
The violation becomes increasingly probable as the free energy estimate approaches
the correct value, i.e., as the equality limit is reached and the noise (imprecision) in
the calculation becomes comparable to the free energy difference itself. In this case,
precision becomes of more concern than accuracy.

Entropy and its Contribution to Free Energy Inaccuracy

In practice it is helpful to know the order of magnitude of the sample size N needed
to reach a reasonably accurate free energy. The inaccuracy model described above
presents an effective way to relate the sample size N and the finite sampling error
through perturbation distribution functions. Alternatively, one can develop a heuris-
tic that does not involve distribution functions and is determined by exploring the
common behavior of free energy calculations for different systems [25]. Although
only FEP calculations are considered in this section, the analysis extends to NEW
calculations.

Common sense suggests that the magnitude of the perturbation between two sys-
tems of interest is a key factor in determining the free energy error. As discussed
above, this can also be characterized in terms of entropy differences. As before, we
assume that the forward direction corresponds to the negative entropy difference
∆S = S1 − S0. Consider the value of N that yields a relative error of 50% in the
free energy calculation. According to this accuracy model, a 50% fractional error
in the forward FEP calculation occurs when the most-likely limit energy, u∗

f , lies at
the median of g(∆U). This is a reasonable choice, since it reflects sampling in per-
turbation energy space up to a certain level on the distribution. The analysis could
be made more exact to any level by assuming general shapes for the distributions
and different samples along those distributions. To simplify the analysis we assume
g(∆U) is a symmetric distribution; this is appropriate for many FEP cases [note this
is usually not a good assumption for f(∆U)]. Thus, the median is identical to the
peak value. Applying the f and g relationship, (6.25) becomes

∂ ln g(∆U)
∂∆U

∣∣∣∣
∆U=u∗

f

+ β = Ng(u∗
f ) exp

[
−β
(
∆A − u∗

f

)]
. (6.28)

Note that β∆A = β∆U01 −∆S/kB, where ∆U01 is the potential energy difference
between systems 0 and 1, i.e., ∆U = 〈U1〉1 − 〈U0〉0. Since a 50% fractional error,
u∗

f lies at the peak of g(∆U) and (6.28) becomes

β∆A = N1/2 exp(∆S/kB)g(u∗
f ) exp

[
+β(u∗

f − ∆U01)
]
, (6.29)

where the subscript ‘1/2’ indicates 50% accuracy. The height of the peak of g(∆U),
i.e., g(u∗

f ), is proportional to σ−1
g where σg is the standard deviation of g (e.g., for
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a Gaussian distribution, g(u∗
f ) =

(√
2πσg

)−1
). If ∆U01 is approximated by u∗

f (the
mean ∆U of g(∆U)), we have:

N1/2 ∼ exp(−∆S/kB)βσg. (6.30)

Note that more sampling is needed as the magnitude of the entropy difference (∆S <
0) increases, and, much less so, as the g distribution widens.

The primary observation from this analysis is the importance of the quantity
N exp(∆S/kB) in characterizing the expected systematic error in FEP calcula-
tions. The expression N exp(∆S/kB)/(βσg) provides a better gauge of inaccu-
racy, but we take N exp(∆S/kB) to emphasize the key factors. This is consistent
with the common understanding that the accuracy of an FEP calculation is in-
fluenced by both the sampling size and the magnitude of the perturbation. Now
we know that the latter is in the form exp(∆S/kB). Actually the relationship be-
tween N exp(∆S/kB) and the relative free energy error δe is found to be common
and consistent in a number of different simulations for different types of systems
(see Figs. 6.7 and 6.8). Further, δe ∼ [N exp(∆S/kB)]−γ , where γ is not a con-
stant, but instead takes a value between 0 and 1 and increases with N exp(∆S/kB).
This indicates that inaccuracy decays relatively rapidly for sufficiently large N .
The decay rate should be compared with and exceed N−1/2, which is the decay
rate for imprecision. This leads to the conclusion that, for sufficiently large N , in-
accuracy eventually overcomes imprecision and thus the statistical error becomes
dominant.

Simulation tests for different systems indicate that, for an FEP calculation to
approach the accuracy level δe < 5%, N exp(∆S/kB) should be between 100 and
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Fig. 6.7. The relative error versus the number of samples in several model systems. Plotting
the error versus sample size directly creates a distribution of convergence rates. See [25] for
more details on the systems
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Fig. 6.8. The relative error versus the number of samples in several model systems. Plotting
the error versus sample size directly creates a distribution of convergence rates. When the
same data is plotted versus N exp(∆S/kB) the curves superimpose. See [25] for more details
on the systems

1,000 [25]. This means that the necessary sample size will be very large if the sys-
tems 0 and 1 differ too much. For example, for ∆S/kB = −15, N > 3 × 108 is
needed to reach a 95% accuracy level. In this case, it is better to introduce interme-
diates and perform multistage calculations instead.

6.4.2 Variance in Free Energy Difference

The variance characterizes the spread of ∆A if an infinite number of independent
simulations are carried out, each with a finite sample of size N . In practice, usually
only one estimate (or a small number of repeats) of free energy differences are taken,
and the variance in free energy must be estimated. One way to compute the variance
is to use the error propagation formula (for a forward calculation)

σ2
∆A =

exp(+2β∆A)
β2

σ2
exp(−βx)

N
. (6.31)

For simplicity, we have used ∆A in the subscript instead of ∆Â. For correlated
samples {x}, the block averaging technique [37] can be used to improve the accuracy
of the variance estimate. In this technique, the sequence of {x} is broken up into
blocks, each containing a certain number of samples, and the averages from each
block are used to compute the variance. Unlike finite sampling bias, estimating the
variance is not difficult in practice, although the accuracy of the estimated variance
may be a concern. Nevertheless, modeling the variance is helpful for understanding
free energy calculations.
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The scaled variance of β∆A, defined as Nσ2
β∆A, can be related to the prob-

ability distribution function of the perturbation x [26]:

Nσ2
β∆A = e+2β∆Aσ2

exp(−βx)

= e+2β∆A

{∫
f(x) exp(−2βx)dx −

[∫
f(x) exp(−βx)dx

]2}
(6.32)

= e+2β∆A

∫
f(x) exp(−βx)dx − 1.

Applying the relationship between f and g, we have

Nσ2
β∆A = exp(+β∆A)

∫
g(x) exp(−βx)dx − 1. (6.33)

Similarly, for a reverse calculation:

Nσ2
β∆A = exp(−β∆A)

∫
f(x) exp(+βx)dx − 1. (6.34)

Then we can rewrite (6.33) as

Nσ2
β∆A = exp [+β(∆A − x̄g)]

∫
g(x) exp [−β (x − x̄g)]dx − 1, (6.35)

where x̄gis the average of the perturbations x according to the complementary distri-
bution g(x). Applying the Taylor series expansion to exp [−β(x − x̄g)] near x̄g, we
have

Nσ2
β∆A = exp [+β (∆A − x̄g)]

[
1 +

1
2

∫
g(x)β2 (x − x̄g)

2 dx + · · ·
]
− 1

≈ exp [+β (∆A − x̄g)]
(

1 +
β2

2
σ2

x,g

)
− 1,

(6.36)
where σ2

x,g is the variance of the perturbation distribution g(x). The expansion in
(6.36) can be truncated at the second order.

NEW Calculations Near the Equilibrium Region

The approximation in (6.36) becomes exact in a NEW calculation near the equi-
librium region, i.e., when the switch is sufficiently slow that the path is close to
reversible. In the near-equilibrium region, according to the central limit theorem,
the work distribution f(W ) is a Gaussian [5]. Consequently, the distribution g(W )
is also a Gaussian and the higher-order (>2) terms in the expansion of (6.36) are
zero. In fact, if one of the work distributions is Gaussian, the other should also be
Gaussian, and they have the same variance

σ2
W,f = σ2

W,g ≡ σ2
W . (6.37)
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This can be concluded from the Jarzynski equality (in the distribution function form)
and the relationship between the f and g distributions. To repeat

exp(−β∆A) =
∫

f(W ) exp(−βW )dW,

exp(+β∆A) =
∫

g(W ) exp(+βW )dW,
(6.38)

and
f(W ) exp(β∆A) = g(W ) exp(βW ). (6.39)

One can further conclude that that these two Gaussian distributions are symmetri-
cally located on the upper and lower sides of ∆A, and the free energy difference
∆A, the mean work W̄ (W0→1 for the forward and −W1→0 for the reverse trans-
formation) and the variance of work σ2

W obey the following relationships:

∆A = W0→1 −
1
2
βσ2

W (6.40)

and
∆A = −W1→0 +

1
2
βσ2

W . (6.41)

Note that βσ2
W /2 is the average dissipated work for the nonequilibrium process.

As discussed in Chap. 5, (6.40) and (6.41) can also be obtained using the cumulant
expansion of exp(−β∆A) [12–14, 17]. The expansion technique applies to non-
Gaussian cases too, and equations such as (6.40) and (6.41) may be used to estimate
∆A from the mean and variance of the work distributions instead of Jarzynski’s
equality directly. These methods, however, work well only when the system is near
equilibrium during switching, because higher terms in the expansion are negligible.
For most applications, the inaccuracy model described in the last section provides a
better description of the systematic errors. More-reliable methods (overlap sampling)
will be discussed in Sect. 6.6.

With (6.37) and (6.40) or (6.41), (6.36) becomes (for the Gaussian distributions)

Nσ2
β∆A = exp

(
−1

2
β2σ2

W

)(
1 +

1
2
β2σ2

W

)
− 1. (6.42)

Now the variance in free energy difference is described in terms of the variance of
work. The analysis above also indicates that the Gaussian distributions f(W ) and
g(W ) are related

f(W + βσ2
W ) = g(W ). (6.43)

Combining (6.35), (6.41), and (6.43), we have:

Nσ2
β∆A = exp(β2σ2

W ) − 1, (6.44)

which is equivalent to (6.42) in this particular case.
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An example of a Gaussian distribution pair is shown in Fig. 6.9. As the switching
path approaches reversibility, f(W ) and g(W ) becomes closer to each other and
their variance decreases. Both the bias and variance of the free energy estimate also
decrease. Finally, at reversibility, the two distributions coincide at x = W = ∆A,
and converge at a single point (x = ∆A, f(x) = g(x) = 1), as predicted from the
second law of thermodynamics.

The Role of Entropy

Generally, a NEW calculation has finite sampling and is usually far from the ‘near-
equilibrium’ region. Thus, the perturbation distributions are not Gaussian, and the
conclusion of (6.42) or (6.44) is no longer valid. However, (6.36) is still useful.

Note that ∆A − x̄g ≥ 0 in (6.36) is the average dissipated work of the NEW
calculation in the complementary (g) direction. Equation (6.36) shows that, given
the same number of switching paths (N), a simulation with a slower switch leads to
a smaller variance in the free energy, since the value of ∆A − x̄g becomes smaller.
Also note that ∆A − x̄g has its maximum value in the FEP case (instantaneous
switch), and is zero when the switching path is reversible.

The behavior of the variance can be further understood by separating the entropy
and energy components of the free energy [26]. Equation (6.36) becomes

Nσ2
β∆A = exp(−∆S/kB) exp(βz)

(
1 +

1
2
β2σ2

x,g

)
− 1, (6.45)

where z = ∆U − x̄g, which decreases as the switch approaches equilibrium. Also,
switching determines the variance of the perturbation σ2

x,g. To ensure the appropriate

f(W)g(W)

DF DF + bsW
2/2DF - bsW

2/2

Fig. 6.9. When one of the probability distribution functions f(W ) and g(W ) is a Gaussian,
the other must also is a Gaussian with the same variance (σ2

W ). These two density functions
peak at ∆A + βσ2

W and ∆A − βσ2
W , respectively. Their crossing point gives the free energy

difference ∆A



226 N. Lu and T.B. Woolf

sampling in the forward direction, we again choose it as the direction in which
entropy decreases, i.e., ∆S < 0.

Equation (6.45) reveals that there are three factors working together to determine
the variance of the free energy estimate. One is the magnitude of the perturbation
between the states 0 and 1 as described by exp(−∆S/kB). A smaller perturbation
(smaller |∆S/kB|) is preferable for reducing the variance, as one can predict from
common sense. Thus, for systems with large perturbations, stratification is helpful in
reducing the variance. In fact, the term exp(−∆S/kB) describes the precision with
which the entropy difference itself is measured. The second factor is the finite-time
switching process, as described by exp(βz)

(
1 + 1

2β2σ2
x,g

)
. A slower switch leads

to smaller values of z and σ2
x,g, thus yielding a more precise free energy estimate.

Note that the switching process affects the variance through z (exponential form)
more than σ2

x,g , thus exp(βz) is the key factor. The third factor is the sample size N
as described by 1/N . Compared to the entropy difference and z (both in exponential
form), increasing the sample size is a less effective way to improve the precision.

In practice, the computation time is another factor affecting the level of pre-
cision a simulation can reach. More computational effort is required to perform
a NEW calculation with more stages, slower switching paths, and/or longer sam-
pling. An optimal calculation requires a balance among all these factors, as well as
a balance between the precision and accuracy of the result. With a slower switch-
ing process, exp(βz) increasingly cancels out the effect of exp(−β∆S/kB). Thus a
near-equilibrium NEW calculation works regardless of the perturbation magnitude
between the reference and the target state and their phase space relationship (also
see discussion in Sect. 6.3.1). However, such a calculation may not be possible in
practice.

6.5 Optimal Staging Design

With the analysis above, we can answer some important practical questions related
to MFEP calculations. Should an MFEP calculation be used at all? How many stages
are needed? How should the intermediates be formulated? What is the necessary
sample size for each stage?

Through the phase space analysis we have arrived at the principle for choosing
perturbation directions in a multistage calculation: the reference and target systems
in each stage of calculation should form a subset relation in their important phase
space regions, and the perturbation should be carried out from the system with the
superset important phase space to the one with the subset. In terms of entropy, along
the appropriate FEP calculation direction, ∆S should be negative (from the larger
entropy system to the smaller one).

Thus, we consider a multistage calculation consisting of a total of n intermediates

(0) → (m1) → (m2) → · · · → (mn) → (1).

The overall free energy difference is given by
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∆A =
n∑

i=0

∆Ai. (6.46)

The overall bias of the calculation is the sum of those for each stage (absolute value)
and the overall variance is given as

(
σ2
)
tot

=
n∑

i=0

(
σ2

i

)
. (6.47)

Now consider the optimal placement of intermediates leading to the least overall
variance. The criterion of minimal variance is obtained by inserting (6.45) into the
right-hand side of (6.47) for each stage, and minimizing the overall error subject to

∆Stot =
n∑

i=0

∆Si, (6.48)

where ∆Si = S(mi+1) − S(mi) is the entropy difference for stage i. We have

∆(∆S/kB)ij ≡ ∆Sj/k − ∆Si/k = ln (ζj/ζi) , (i = 0 . . . n − 1, j = i + 1),
(6.49)

where ζi = exp(βzi)
(
1 + 1

2β2σ2
x,g

)
. If we apply the same finite-time switching

schedules for all the stages, we would expect that ζj/ζi is close to 1 and thus

∆(∆S)ij ≈ 0. (6.50)

This means that, to obtain the least variance in a multistage calculation, the inter-
mediates should be constructed to have equal entropy difference for all stages. This
criterion differs from the often used but unjustified rule of thumb that free energy dif-
ferences should be equal in all stages [22, 42]. Simulation tests show that the entropy
criterion leads to a great improvement in calculation precision compared to its free
energy counterpart [26]. The same optimization criterion holds for calculation of
entropy and enthalpy differences [44].

Now consider the finite sampling systematic error. As discussed in Sect. 6.4.1,
the fractional bias error in free energy is related to both the sample size and en-
tropy difference: δe ∼ N exp(−∆S/kB). With intermediates defined so that the
entropy difference for each substage is the same (i.e., ∆S/n), the sampling length
Ni required to reach a prescribed level of accuracy is the same for all stages, and
satisfies

Ni exp(∆S/nk) = c, (6.51)

where c is a constant. The total number of FEP samples N is (not considering the
pre-equilibrium simulations for each reference system)

N = Nin = nc exp(−∆S/nk). (6.52)

Minimizing N with respect to n, we have:
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−∆Si/k =
−∆S/kB

nopt
= 1. (6.53)

That is, the optimal number of stages corresponds to unit entropy difference per
stage.

The same analysis can be repeated for precision. From the analysis in Sect. 6.4.2,
we have (for a single-stage calculation)

σ2
∆A ∼ N−1 exp(−∆S/kB). (6.54)

The overall variance of an n-stage calculation is

σ2
∆A ∼ n

(
N

n

)−1

exp(−∆S/nk) =
n2

N
exp(−∆S/nk). (6.55)

Minimizing the variance with respect to n yields

−∆Si/k =
−∆S/kB

nopt
= 2. (6.56)

The same criterion for the optimal number of stages is obtained if instead we
approach the problem by minimizing the overall sample size N for fixed precision
and accuracy. The criteria for optimizing precision and accuracy differ slightly. In
practice, the simulation should be long enough that the inaccuracy is not a ma-
jor source of error. This means that we take (6.56) for designing optimal stages.
Regarding the minimum requirement for the sample size at each stage of calculation,
the heuristic presented in Sect. 6.4.1 yields Ni > 100 exp(∆Si/k) = 100 exp (6.2)
≈ 1, 000 independent samples.

6.6 Overlap Sampling Techniques

It would be valuable if one could proceed with a reliable free energy calculation
without having to be too concerned about the important phase space and entropy of
the systems of interest, and to analyze the perturbation distribution functions. The
OS technique [35, 43, 44, 54] has been developed for this purpose. Since this is
developed from Bennett’s acceptance ratio method, this will also be reviewed in this
section. That is, we focus on the situation in which the two systems of interest (or
intermediates in between) have partial overlap in their important phase space regions.
The partial overlap relationship should represent the situation found in a wide range
of real problems.

6.6.1 Overlap Sampling in FEP

As concluded in Sect. 6.3.1, when the important phase spaces Γ ∗
0 and Γ ∗

1 have partial
overlap, the appropriate staging strategy is to construct an intermediate M whose
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important phase space is inside the overlapping region, which means that Γ ∗
M is a

subset of both Γ ∗
0 and Γ ∗

1 . Then, two separate FEP calculations for 0 → M and
1 → M are performed, yielding the free energy difference ∆A = ∆A0M −∆A1M .

A reasonable starting point for the potential energy of an OS intermediate M is

UM = −β−1 ln w(∆u) + (U0 + U1)/2, (6.57)

where w is a weighting function that allows for fine-tuning of M . The free energy
difference between systems 0 and 1 is given by

exp(−β∆A) =
Q1

Q0
=

QM

Q0

/
QM

Q1

=
〈w(∆u) exp(−β∆u/2)〉0
〈w(∆u) exp(+β∆u/2)〉1

,
(6.58)

where Q is the partition function of a canonical ensemble. Equation (6.58) is the
general form of an overlap sampling working formula.

No sampling on the intermediate M in (6.58) is required. This feature offers
the flexibility of optimization, as w(∆u) can be adjusted freely without imposing
any changes or a redesign of the simulation processes. In practice, the sampling
requirement for the OS is the same as performing two separate FEP simulations: one
in the forward direction (0 → 1) and the other in the reverse direction (1 → 0); and
the same sets of forward and reverse perturbation data {∆u} are used.

The accuracy of the OS calculation can be characterized using the f and g
distributions, in a similar manner to that described in Sect. 6.4.1 for modeling the
systematic error in the free energy. Assume that sampling of the f distribution is
perfect for regions with ∆U greater than ∆uf , and no sampling below ∆uf is avail-
able. Similarly, assume that the sampling g is perfect up to ∆ug , but no sampling
is available beyond. Then the relative systematic error of exp(−β∆A) due to finite
sampling is

δe =

∫ ∆uf

−∞
w(∆U) [f(∆U)g(∆U)]1/2 d∆U −

∫ ∞

∆ug

w(∆U) [f(∆U)g(∆U)]1/2 d∆U

∫ ∞

−∞
w(∆U) [f(∆U)g(∆U)]1/2 d∆U

.

(6.59)
Interestingly, unlike the error in a single-direction calculation [cf. (6.22) and (6.23)],
the systematic error in the OS calculation depends on the product of the f and g
distributions. Thus the systematic error is related to the degree of overlap between f
and g. The integral over the product f(∆u)g(∆u) will be smaller than the integral
over the distributions themselves, which suggests that the error in the OS method
is naturally smaller. In addition, it follows from (6.59) that errors from inadequate
sampling in the forward and reverse directions will tend to cancel each other. As one
can see in (6.59), the size of the perturbation and the sampling size play important
roles in determining the error in ∆A. Smaller perturbations yield better overlap
between f and g. Longer sampling pushes the limit energies ∆uf and ∆ug further
down the tails.
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The weighting function w(∆U) provides the most flexible way for reducing the
finite sampling error. We have two apparent choices for w(∆U). The first one is to
use a truncated w(∆U) function: w(∆U) = 0 for ∆U < ∆uf and ∆U > ∆ug . In
this case, (6.59) gives a zero error. The functional form of w(∆U) for ∆U ranges be-
tween ∆uf and ∆ug will affect the precision of the calculation, but not its accuracy.
The disadvantage of doing so is that we need to identify ∆uf and ∆ug by studying
the f and g distributions (see Sect. 6.4 for the method to obtain these quantities).

The second choice does not require such additional analysis. In addition, it is
helpful for considering the precision and the accuracy of free energy differences
simultaneously. The idea is that one can reduce the systematic error by balancing∫∆uf

−∞ w(∆U) [f(∆U)g(∆U)]1/2
d∆U and

∫∞
∆ug

w(∆U) [f(∆U)g(∆U)]1/2
d∆U ,

to make both of them as small as possible, and then increase weight on the regions,
in which f(∆U) and g(∆U) overlap well.

The minimization of the statistical error can be done by examining the variance
of exp(−β∆A) directly. Bennett [55] has studied this problem by combining the
forward and reverse FEP simulations, and the same analysis can be followed for
the OS case. In Bennett’s analysis, the weighting function w is placed to balance
the forward and reverse FEP contributions [7, 55]

β∆A = ln 〈w exp(−βU0)〉1 − ln 〈w exp(−βU1)〉0 . (6.60)

The variance of the free energy calculation is (with error propagation)

σ2
β∆A =

〈
[w exp(−βU1)]

2
〉

0
− 〈w exp(−βU1)〉20

n0 〈w exp(−βU1)〉20

+

〈
[w exp(−βU0)]

2
〉

1
− 〈w exp(−βU0)〉21

n1 〈w exp(−βU0)〉21
,

(6.61)

where n0 and n1 are the sample sizes for the forward and reverse FEP calculations.
The variance can be minimized with respect to w using Lagrange multipliers, from
which we have

w = K

[
Q0

n0
exp(−βU1) +

Q1

n1
exp(−βU0)

]−1

, (6.62)

where K is an arbitrary constant and Q is the partition function. Substituting (6.62)
into (6.60), we obtain

exp(−β∆A) =

〈
{1 + exp[β(∆u − C)]}−1

〉
0

〈{1 + exp[−β(∆u − C)]−1〉1
exp(−βC), (6.63)

where exp(−βC) ≡ (Q1n0)/(Q0n1). Note that (6.63) is valid for any choice of C,
however, this particular choice of C is optimal.

For the OS calculation, (6.58), the same optimal solution is reached by choosing
a Gaussian-like hyperbolic secant function for w(∆u):
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w(∆u) = 1/ cosh[β(∆u − C)/2]. (6.64)

Equation (6.58) becomes identical to that of the Bennett method (also referred to as
the acceptance ratio method), i.e.

exp(−β∆A) =

〈
{1 + exp[β(∆u − C)]}−1

〉
0

〈{1 + exp[−β(∆u − C)]−1〉1
exp(−βC). (6.65)

Clearly, the value of C is related to the free energy difference ∆A:

β∆A = βC − ln
n1

n0
. (6.66)

When the same sampling size is taken for both forward and reverse calculations, it
becomes

C = ∆A. (6.67)
Since we do not know the value of C in advance, the optimal C and thus the free
energy difference ∆A can be solved in practice by iterating self-consistently (6.65)
and (6.66) or (6.67). A convenient way to do so is to record all the perturbation data
during the simulation, then compute C and ∆A in a postsimulation analysis. This
method is also referred to as Bennett’s method or the acceptance ratio method.

However, this analysis has been performed from a purely statistical perspective,
leading to the minimal statistical error for the calculation. The phase space relation-
ship, the staging scheme (conceptual intermediate M ), and thus the accuracy of the
calculation are not included in Bennett’s picture. However, it turns out that the cal-
culation is also optimal from the accuracy point of view. With this optimal choice
of C = ∆A, the weight function w(∆u) given by (6.64) has its peak exactly at the
crossover between f and g, where ∆U = ∆A [cf. (6.15)]. In contrast, the weights
for the low-∆u tail of f and high-∆U tail of g are diminished, thus resulting in small
systematic error.

Simple Overlap Sampling

Arbitrary weighting functions can be used for the OS method. The simplest choice
is w(∆U) = 1 for all ∆U , thus the OS formula reduces to:

exp(−β∆A) =
〈exp(−β∆U/2)〉0
〈exp(+β∆U/2)〉1

. (6.68)

We refer to (6.68) as the simple overlap sampling (SOS) method. The optimization
feature is lost in the SOS method, but it usually produces a very good estimate of ∆A
and can be used as a simple alternative to Bennett’s form for those who do not like
the small additional work of solving for C. However, we note that the application of
the OS method with C = 0 in (6.64) is not recommended because its performance is
uneven [35].
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The calculation effort involved in the SOS is identical to the direct averaging
method [∆A = (∆Afwd + ∆Arvs)/2]. However, the reliability of the correspond-
ing free energy estimates can differ significantly [35, 44, 54]. For comparison, the
working equation for a direct average method is

exp(−β∆A) =
〈exp(−β∆U)〉1/2

0

〈exp(+β∆U)〉1/2
1

. (6.69)

Overlap sampling, especially its optimized form with Bennett’s weighting function,
can greatly improve the reliability (both precision and accuracy) of the free energy
estimate over conventional FEP techniques. By solving for the optimal C (and thus
∆A) OS with Bennett’s weighting function actually locates the crosspoint of f and
g distributions automatically. The SOS provides a simple but reliable alternative to
the direct averaging method. With the capability of optimization and automation
and without the need for histogram analysis, OS is a better method than the overlap
histogram approach discussed in Sect. 6.3.2 [54].

A certain degree of overlap between f and g is required for a reliable OS cal-
culation [a lack of overlap leads to a small denominator on the right-hand side of
(6.59), producing a large error]. Bennett’s form of OS method will fail to locate the
crossover point if it does not exist at all. But the requirement for overlap, which
can be measured by

∫
[f(u)g(u)]1/2

du, is usually small [35]. In fact, the overlap
sampling technique can handle much larger perturbations than single-direction FEP
counterparts, which benefits efficiency. For very different systems, a multistage OS
calculation can be applied, in which a single-stage OS formula is applied to obtain
the free energy difference between two successive (intermediate) systems. It is help-
ful to employ time-saving tricks, such as perturbing both forward and backwards
from each intermediate state.

Performance comparisons between overlap sampling (including Bennett’s method
and SOS) and conventional FEP methods are shown in Fig. 6.10. As one can see,
overlap sampling methods converge to the correct free energy much faster than di-
rect FEP methods, and have smaller statistical errors. The performance of Bennett’s
method is amazing. Also, since more than one form of w(∆U) can be chosen for
a given set of forward and reverse perturbation data, multiple free energy estimates
can be made from the same set of simulations. The consistency of these free energy
results can provide an additional assurance for the quality of the estimate, since there
should be only one correct free energy difference. In short, without the requirement
of modifying the FEP simulation, the overlap sampling technique improves both the
efficiency and reliability of free energy calculations.

6.6.2 Overlap and Funnel Sampling in NEW Calculations

Down the Funnel: Phase Space Consideration

To repeat briefly, the NEW method is related to free energy differences between
systems 0 and 1 through Jarzynski’s identity
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Fig. 6.10. Comparison of overlap sampling and FEP calculation results for the free energy
change along the mutation of an adenosine in aqueous solution (between λ = 0.05 and 0.45) in
a molecular dynamics simulation. The results represent the average behavior of 14 indepen-
dent runs. (MD time step.) The sampling interval is 0.75 ṗs. The upper half of the plot presents
the standard deviation of the mean (with gives statistical error) for ∆A as a function of sample
size N ; the lower half of the plot gives the estimate of ∆A – for comparison of the accuracy,
the correct value of ∆A is indicated by the bold horizontal line
Key: dashed curve – forward FEP, dash-dotted curve – reverse FEP, solid curve – direct FEP
averaging, solid curve with crosses – simple overlap sampling, solid curve with open circles –
overlap sampling with the optimal Bennett’s weights. Data have units of kcal mol−1

exp(−β∆A) = 〈exp(−βW0→1)〉0 , (6.70)

where W0→1 is the nonequilibrium (finite-time) work for switching system from 0 to
1 along a path at a finite rate, and the ensemble average is taken over the equilibrium
system 0. The NEW calculation can be conducted in the reverse direction with a path
from 1 to 0. Note that, according to the definition of the work, W0→1 = −W1→0. The
finite sampling error of a NEW calculation is due to missed sampling of important but
rare W . As concluded in Sect. 6.3.1, to ensure appropriate sampling, the finite-time
switching path should go down the funnel, i.e., the sequence of systems traversed
in a NEW calculation must proceed such that each successive system obeys a phase
space subset relation with the ones that precedes it.
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The linear parameter scaling approach of (6.9) is usually used to evolve the sys-
tem from one state to the other. One disadvantage of such a scaling approach is that
it offers no control of the phase space a path traverses. Instead, a similar parameter
γ (γ ∈ [0, 1], γ = 0 and 1 for the ‘0’ and ‘1’ systems, respectively) can be used to
describe progress along the path, e.g., γ = 0 → γ1 → · · · → γi → γi+1 → · · · →
γn = 1 where n is the total number of ‘steps’ of the switch. The set of important
configurations for the (intermediate) system defined by γi is denoted Γ ∗

γ
i
.

Depending on the relationship between the important phase space regions Γ ∗
0

and Γ ∗
1 , different strategies can be used to construct funnel paths. It may be better to

set up the free energy calculation in stages, and construct funnel paths for each stage
of the NEW calculation. In the following we consider the case in which the 0 and 1
systems have a partial overlap in their important phase space regions. As discussed
before, for this situation overlap sampling is the technique of choice for free energy
calculations.

Overlap Sampling with Funnel Paths

One key element of overlap sampling is an intermediate M such that Γ ∗
M is inside

the overlapping region of Γ ∗
0 and Γ ∗

1 . Then, the overall free energy calculation is
separated into two calculations, corresponding to free energy changes for 0 → M
and 1 → M (cf. Fig. 6.3). In this case, we perform two separate NEW calculations,
and the overall free energy difference is

exp(−β∆A) =
〈exp(−βW0→M )〉0
〈exp(−βW1→M )〉1

. (6.71)

Now we proceed with the construction of the intermediate M and the switching paths
0 → M and 1 → M . The key considerations are: (1) both paths should follow the
funnel sampling path to eliminate the systematic error due to the inaccessibility of
important phase space, and (2) M is the optimal choice for minimizing the variance
of the calculation. The optimal intermediate (for minimal variance) can be defined
as follows [43]:

exp(−βUM ) = {exp (−βU0) + exp [−β(U1 − ∆A)]}−1
. (6.72)

We can define the potential energy of a state along the path as follows:

exp(−βUγ) = [(1 − γ) exp(+βU0) + γ exp(+βU1)]
−1

. (6.73)

Then, systems 0 and 1 are recovered at γ = 0 and 1, respectively.
Now let us examine the phase space of an intermediate γ defined by (6.73). Con-

sider a phase space point Γi. If Γi is outside of Γ ∗
0 but inside Γ ∗

1 (i.e., exp[−βU0(Γi)]
is large but exp[−βU1(Γi)] is small), we can expect that the value of U0 will be small
(negative) or moderate and that of U1 will be very large (positive). Consequently, the
right-hand side of (6.73) will be small, which indicates that Uγ is a large positive
number. Therefore, this specific Γi is unlikely to be part of Γ ∗

γ , the important phase
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space of γ system. The same conclusion can be reached if Γi is part of Γ ∗
1 , but

not of Γ ∗
0 . However, if Γi is a subset to both Γ ∗

0 and Γ ∗
1 (both exp[−βU0(Γi)] and

exp[−βU1(Γi)] are small), we can expect that Uγ(Γi) makes an important contribu-
tion to its partition and thus Γi is part of Γ ∗

γ . Therefore, at intermediate γ, config-
urations important to both 0 and 1 systems are increasingly important. Thus for an
intermediate M defined by an appropriate γ, we should expect that the path taken
from 0 and 1 to M will proceed down a funnel.

In addition, by comparing (6.72) and (6.73) we obtain γ∗, which defines the
optimal common destination M :

γ∗

1 − γ∗ = exp(−β∆A). (6.74)

Equations (6.71), (6.73), and (6.74) complete the NEW-OS method. To summarize,
in the method, an intermediate M is introduced and the free energy difference is
computed as ∆A = ∆A0→M + ∆A1→M (6.71). In this approach the free energy
components are computed using two NEW calculations taking paths 0 → M and
1 → M . The funnel sampling paths and the optimal intermediate M [(6.73) and
(6.74)] are used to ensure appropriate sampling and to minimize both statistical and
systematic error.

The optimal parameter γ∗ and thus the free energy difference ∆A can be obtained
by solving (6.71), (6.73), and (6.74) self-consistently. With a predefined set of {γi},
which is usually nonuniformly spaced and fixed during the simulations, the NEW-
OS calculation proceeds as follows. Starting from the equilibrated system 0, perform
the NEW calculation from 0 to 1 (with the predefined set {γi}) that follows the path
defined by (6.73). Separately perform the same NEW calculation for 1 → 0 using
the same set of γi, but in the reversed order, starting from the equilibrated system 1.
During the NEW calculations, for each switch step along the path, record the partial
work values at each point of γi (e.g., the work W0i involved in switching the system
from 0 to γi). Thus after the simulations we obtain not only the ensemble of the
total work W01 and W10, but also ensembles of partial work W0i and Wi0 for all i.
Ensemble averages are then computed for all γi using (6.71), and optimal γ (and,
therefore, ∆A) is selected to satisfy (6.74).

Softening Funnel Paths

One practical problem for the funnel path (6.73) is related to the exponential opera-
tions for both U0 and U1. For two states 0 and 1 that differ significantly, it is likely
that the work collected from many switching paths will make near-zero contribution
to the free energy calculated from (6.71), except for those paths that happen to start
in the Γ ∗

M region. That is, the transition from 0 and 1 to M may follow pinhole funnel
paths. Also, the optimal γ∗ would be very close to 0 or 1, making it difficult to locate,
and therefore to optimize the calculation. The problem may be relieved by two ap-
proaches: (1) bias the sampling of the paths toward those making large contributions
to the free energy while satisfying the down the funnel principle, and (2) modify the
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‘shape’ of the funnel to ensure smoother and broader 0 → M and 1 → M paths.
In the following we briefly discuss the second approach by introducing additional
parameters.

The finite-time switching path of (6.73) can be modified with two constants α
and D

exp(−βUγ) = exp(−βU0) [(1 − γ) + γ exp [+α(U1 − U0) − D]]−β/α
. (6.75)

The new parameter α affects the softness of the transition from 0 and 1 to M : by
choosing an appropriate value for α, paths starting from many configurations in Γ0

and Γ1 can make important contribution to the free energy calculation. A good choice
for α is α = (U1 − U0)−1 for typical values of U0 and U1. Indeed, an appropriate
choice of α makes Uγ a more linear function of γ. Note that α is a fixed parame-
ter and does not change during the simulation. One disadvantage is that once α is
introduced, the path will no longer lead to the rigorously optimized intermediate as
defined by (6.74). Then, a modified version of (6.74) is used as the criterion for
selecting γ∗

γ∗

1 − γ∗ = exp [−β(∆A − D)] . (6.76)

The parameter D is employed simply to make the identification of γ∗ more conve-
nient in practice. As one can see, with the ‘ideal’ choice of D = β∆A, the value of
γ∗ in (6.76) is simply 0.5.

Generalized Acceptance Ratio Method

Following Bennett, Crooks proposed the generalized acceptance ratio (GAR) method
to combine the forward and reverse NEW calculations to minimize the statistical er-
ror of the relative free energy [56]

exp(−β∆A) =

〈
{1 + exp[β(W0→1 − C)]}−1

〉
0

〈{1 + exp[β(W1→0 + C)]−1〉1
exp(−βC), (6.77)

where C is a constant and the statistical error in ∆A is minimized when C = ∆A.
Equation (6.77) involves only work values for the forward (W0→1) and reverse

(W1→0) NEW calculations but no details regarding the path that the finite-time
switches traverse. Note that for the FEP case, the optimal OS calculation [cf. (6.59)]
becomes identical to the acceptance ratio method. This is because the switch between
0 and 1 in the FEP calculation is instantaneous and the intermediate states along the
path are ‘eliminated.’ However this is no longer true for a general NEW calculation,
and the acceptance ratio method is not equivalent to overlap sampling. The GAR
method provides no control of the systematic error due to finite sampling, since it
lacks considerations of the phase space relations between the states along the path
(down the funnel). However, the GAR method does offer an improvement over the
conventional NEW methods (forward or reverse NEW or their direct average), when
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the important values of W have been sampled. To analyze existing simulation data,
we suggest that it is better to apply the GAR method if the only available work sam-
ples are W0→1 and W1→0, and therefore optimal OS calculations cannot be carried
out. In this case, one should use at least the direct extension of the SOS. The appro-
priate SOS formula is obtained by replacing the potential energy change with work
in (6.68)

exp(−β∆A) =
〈exp(−W0→1/2)〉0
〈exp(−W1→0/2)〉1

. (6.78)

An example of a NEW-OS calculation is shown in Fig. 6.11.

6.6.3 Umbrella Sampling and Weighted Histogram Analysis

Umbrella Sampling (US)

The US technique [45, 46] is often used to compute the potential of mean force
(PMF), which is the free energy change along a chosen order parameter. US has been
already discussed in Chap. 3, so here we remind the reader only of the main idea.

Umbrella sampling is aimed at overcoming the sampling problem by modifying
the potential function so that different favorable states separated by energetic barriers
are sufficiently sampled. An artificial umbrella potential is introduced:

U ′(x) = U(x) + UB(x), (6.79)
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Fig. 6.11. The error in the free energy measured by several NEW implementations. Results
are from Monte Carlo simulations of ion charging in water at 298 K. System 0 consists of a
single Lennard-Jones atom with charge of +1e and 216 SPC water molecules, and system 1 is
the same but with the charge turned off. One ‘work cycle’ contains 100 nonuniform steps in γ
from 0 to 1 and back. For a detailed description of the simulation, see [43]
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where x is the configurational space, U ′ is the umbrella potential, and UB is the
weighting function (also referred to as the biasing or perturbing potential). Then, the
average of a quantity F becomes

〈F 〉 =
〈F (x) exp(+βUB(x))〉B

〈exp(+βUB(x))〉B
, (6.80)

where the subscript B indicate that the system is sampled according to the umbrella
potential.

For the calculation of the free energy difference ∆A between two states 0 and
1, the umbrella sampling utilizes the biasing potential W to ensuring sampling of
phase space important to both 0 and 1 (cf. Fig. 6.1d). Then, F in (6.80) is taken as
exp[−β(U1 − U0)].

Weighted Histogram Analysis

The weighted histogram analysis method (WHAM) is often used to combine the
information of different simulations in an optimal way. The central idea and details
of WHAM are given in Chap. 3 of this book. Here we only present a brief overview.
Usually a number of simulations are performed at different values of the coupling
parameter (6.8). An umbrella biasing potential UBi can be used for each of the sim-
ulations. At simulation i (i = 1 . . . n) the unbiased probability distribution pi(ξ)
can be reconstructed from the biased one, p′i(ξ) and represented as a normalized
histogram obtained from the data collected in the umbrella sampling simulation

pi(ξ) = exp {−β [fi − UBi(ξ)]} p′i(ξ), (6.81)

where fi is the free energy difference between the biased state UBi(ξ) and the ref-
erence state [without UBi(ξ)]. The goal is to combine all the pi(ξ) to construct an
(unbiased) probability distribution p0(ξ), from which the free energy can be com-
puted as a function of ξ. After minimizing the statistical error in the total probability
distribution, i.e, ∂σ2(p0)

/
∂pi = 0 for all i, we have (in histogram form)

p0(ξ) =
n∑

i=1

Ni exp [−β(UBi − fi)]
n∑

j=1

Nj exp [−β(UBj − fj)]

pi(ξ)

=
n∑

i=1

Ni
n∑

j=1

Nj exp [−β(UBj − fj)]

p′i(ξ),
(6.82)

where n is the number of simulations and Ni is the number of samples (number of
configurations collected) on simulation i.

In the simulations, the free energy parameters {fi} are unknown. However they
can be obtained by solving (6.82) and the following equation self-consistently:
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exp(−βfi) =
Ni∑
j=1

exp (−βUBi)
n∑

k=1

Nk exp [−β (UBk − fk)]

, (6.83)

for all i = 1 . . . n.
In multiple simulations, both overlap sampling and umbrella sampling + WHAM

analysis can handle a wide range of problems that have different phase space
relationships (also discussed in Sect. 6.3.1). In the umbrella + WHAM technique, the
systematic error of the calculation is controlled by employing appropriate umbrella
biasing potentials, and the statistical error is reduced using the WHAM analysis.
However, the histogram analysis itself may produce both systematic and statistical
errors that depend on the number of bins and the bin size of the histograms [57]. One
drawback of umbrella sampling is that choosing the optimal weighting function may
be difficult [7]. Since the simulation is performed according to the biased umbrella
potential, an entirely new set of simulations needs to be conducted once the weight-
ing function is found to be badly chosen and needs to be changed. In contrast, the
OS technique offers full flexibility in optimizing the calculation without requiring the
simulations to be rerun. In fact, multiple estimates of the free energy difference can
be obtained from the same simulation data set, which provides an additional check
of convergence of the calculated free energies [35].

6.7 Extrapolation Methods

6.7.1 Block Averaging Analysis

Straightforward application of the Jarzynski formula leads to a nonlinear estimate
of relative free energy changes as the sample size increases. This is simply related
to the relatively rare occurrence of tail events that dominate the distribution of work
values. The jagged appearance of a graph of the running estimate of relative free
energy versus number of work events makes it difficult to imagine extrapolating to a
relative free energy estimate from a finite-sampled set of work values.

Thus, while the probability of a particular work value and the distribution of work
values can give some estimate of the relative error in the free energy (for example
by performing bootstrap or subsampling analysis over the full data set), there is no
inherent way to extrapolate from the full finite data set to a larger (better converged)
estimate.

The approach of block averaging provides some suggestions for how estimates
of the free energy from NEW can be extrapolated with some estimates for the error
in the extrapolation. The general idea is to transform the set of work values into a
smooth curve by considering subsets of the data (blocks) and the subset estimates
of relative free energy. By extrapolating along the smooth curves generated by this
block averaging method, it becomes possible to imagine estimates of NEW that may
be both efficient and labeled with an estimate of convergence quality [14, 15, 28, 58].
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Block averaging comes from a set of N work values {W1, W1, . . . , WN} gen-
erated in a NEW simulation. The free energy difference ∆A can be estimated by
computing the block average with different block sizes n

∆An =
n

N

N/n∑
j=1

−β−1 ln 〈exp(−βW )〉n,j , (6.84)

where the ratio N/n denotes the largest integer less than or equal to the literal frac-
tion, and the individual block averages are defined by

〈exp(−βW )〉n,j =
1
n

jn∑
i=(j−1)n+1

exp(−βWi). (6.85)

The result of this type of transformation is shown in Fig. 6.12. The jagged uneven
curve is from the running estimate for the relative free energy from the Jarzynski
formula. This running estimate would be very hard to use for extrapolation, due to
the large changes in the estimate as the rare events are sampled (remember that the
curve is based on the exponentially weighted distribution).

Note that the true free energy difference is ∆A = ∆A∞, and the other limit
gives the average work, 〈W 〉 = ∆A1. The second law of thermodynamics indicates
that ∆A∞ = ∆A ≤ 〈W 〉 = ∆A1. In fact, due to the monotonic behavior of the
Boltzmann factor in (6.84), one has the general inequality

∆An+1 ≤ ∆An. (6.86)

The uncertainty in the finite-data free energy values, δ∆A, can be estimated as twice
the standard error of the mean, δ∆A = 2σn/
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Fig. 6.12. Block averaging of an FEB or NEW calculation can be used to create a smoothed
running profile. This contrasts with the jagged steps of a running average based on the same
data. The running steps occur with the relatively rare sampling of events in the tails of the
distribution that dominate the relative free energy estimate. The smoothed running curve uses
the block procedure described in the text
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σ2
n =

1
N/n

N/n∑
j=1

(∆An,j − 〈∆An〉)2, (6.87)

which gives roughly a 90% confidence interval.
The inequality (6.86) suggests that the free energy difference ∆A may be

obtained by extrapolation of ∆An to n → ∞. While an extrapolation towards in-
finity is well defined in a general sense, an improved estimate may be obtained by
consideration of an extrapolation in 1/n where the infinite limit is reached by moving
to the left on the x-axis, rather than to the right. In the following, two extrapolation
schemes based on these ideas are discussed.

6.7.2 Linear Extrapolation

Observations suggest that ∆A ∼ n curves can be fit to a power law [15]:

∆An = ∆A∞ + φ1(1/n)τ1 . (6.88)

In a related form, ∆An is represented as a power series

∆An = ∆A∞ +
kmax∑
k=1

φk(1/n)kτ0 , (6.89)

where the parameter τ0 can be obtained by fitting to the data or in some other way
such as examining the leading 1/n behavior. Empirical tests suggest that τ0 = 0.266
is a good starting point. The estimate of ∆A is given as 1/nτ → 0 (i.e., n approaches
∞); this corresponds to the intercept at 1/nτ = 0 in a plot of ∆A ∼ 1/nτ .

This linear extrapolation scheme has one drawback: if the data do not include the
leading 1/n behavior, the fits will not exhibit optimal extrapolative power. And the
uncertainty of the extrapolated ∆A increases as 1/nτ approaches zero. Note that the
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Fig. 6.13. Extrapolation to a free energy estimate based on block averages can best be analyzed
in a 1/N plot. In this type of plot the large-N limit is towards the origin, rather than increasing
to the right. By fitting the data to an extrapolating estimate of the expansion (see text) an
estimate of the free energy difference can be made
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Taylor expansion of (6.89) is not based on a physical model, and more-complicated
nonlinear forms could be used. However, nonlinear extrapolation methods seem to
offer little improvement over their linear counterparts [58]. Larger improvements
appear to be achieved using the cumulative integral extrapolation method discussed
in Sect 6.7.3.

6.7.3 Cumulative Integral Extrapolation

Since the linear and related expansion formulas depend on fits to regions of the
curve that are statistically less and less reliable, it makes sense to find a measure
for extrapolation that depends on the relative accuracy of the relative free energy
estimate for all points along the curve. The cumulative integral extrapolation method
is one approach to this idea.

The general idea of this approach is to consider the relative free energy to be a
smooth function of ∆An from the inverse χ ≡ 1/nτ running from 0 to 1. At the
zero limit this reflects infinite sampling and is thus the direction of extrapolation.
Note that the value of τ that optimizes this transformation must be determined as
part of the procedure.

In more detail, the most precise ∆An values are obtained for smaller n, or larger
χ ≡ 1/nτ ≈ 1. The linear extrapolation scheme relies exclusively on small χ values.
More precise free energy estimate can be obtained by including all values of χ during
the extrapolation [58].

Now, consider treating ∆An as a smooth function ∆An(χ), from χ = 0 (n =
∞) to 1 (n = 1). The area under this function is given by the integral

∫ 1

0

dχ∆An(χ) =
∫ 1

0

dχ
d∆An(χ)

dχ
+ ∆An(χ = 0), (6.90)

in which the second step involves integration by parts. Here, ∆An(χ = 0) is the
extrapolated free energy estimate, ∆Arci. From (6.90) it follows that:

∆Arci =
∫ 1

0

dχ

[
∆An(χ) − (1 − χ)

d∆An(χ)
dχ

]
. (6.91)

The cumulative integral function can be defined by

CI(χ) =
∫ 1

0

dχ′
[
∆An(χ′) − (1 − χ′)

d∆An(χ′)
dχ′

]
, (6.92)

where the integral is performed in the reverse direction χ′ = 1 (where the data is
most precise) to χ′ = χ.

To obtain an extrapolated value for ∆A, consider the case where one has more
than enough data to obtain ∆A exactly. In this situation, for a carefully chosen τ ,
CI(χ) will have nearly zero slope for small χ, since accumulating more χ values will
not change the estimate. Thus, one can hope to extrapolate ∆A by simply finding
a value of τ for which the slope d[CI(χ)]/dχ is the smallest for all χ, then the
extrapolated free energy ∆Arci will be the value of CI(χ) for the smallest value of
χ available, χmin.
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A fully automated procedure can be used to choose the value of τ for which the
slope of the small-χ tail of CI(χ) ∼ χ is minimized. Then the free energy difference
is estimated by ∆Arci = CI(χ). Simulation tests show that one can obtain ∆A
estimates from the CI extrapolation using much less data than the direct Jarzynski
estimates [58].

6.8 Concluding Remarks

In principle, methods for calculating free energies that are based on rigorous statistical
mechanics equations, such as the FEP or the NEW method, which relies on
Jarzynski’s identity, are able to produce the exact relative free energies. However, in
these methods significant weight is put on important but rare samples, and as a result,
free energy estimates from both FEP and NEW are biased. In a practical simulation,
in which only a finite sample of configurations is collected, the free energy estimate
unavoidably suffers finite sampling error. These errors are usually reproducible, so
that they may not be easily recognized by repeating simulations (gauging precision).
Statistical methods, such as bootstrap analyses, are unable to recover the sampling
bias error if the important samples are missing in the first place. Understanding the
behavior of a free energy method in the finite sampling region becomes a key for
the development of reliable and efficient free energy methods and their application
to chemistry and biology.

In this chapter a detailed analysis of both the systematic and statistical errors due
to finite sampling is presented. The concept of important phase space is introduced to
understand characteristic features of FEP and NEW sampling processes. Sampling
may be problematic because of energetic or entropic barriers (or both), depending
on the overlap relationships of the important phase spaces for the system pairs under
study, as well as due to the choice of perturbation directions. The energetic bar-
rier is much more difficult to overcome in simulations. Then, it is more reliable to
start the calculation from the system with the larger important phase space regions,
so that important configurations to the free energy calculation can be well sampled
(given sufficient but finite-length sampling). To ensure an accurate estimate of the
free energy difference, one should choose appropriate perturbation directions, and
set up appropriate intermediate stages or switching paths for the calculation.

Quantitative models characterizing the finite sampling systematic error and sta-
tistical error are developed using the perturbation probability distribution functions
in both the forward and reverse directions. Without assuming any specific functional
form for the distributions, these models effectively describe the FEP or NEW cal-
culation behavior in the region of finite sample size. The sample size, the entropy
difference between the two systems of interest, and the finite-time switching process
(in NEW) are related to both the systematic and statistical errors of the free energy.
It is revealed that it is the entropy, rather than the free energy itself, that plays a more
important role in determining the reliability of free energy calculations. The analysis
also leads to some helpful heuristics for estimating the reliability level of a simula-
tion result, as well as the principles of optimal staging design in a multiple-stage FEP
calculation, where the entropy difference between two systems is a key quantity.
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Methods based on understanding of the behavior of the FEP and NEW methods
are proposed to improve calculation efficiency and reliability. In particular, the over-
lap sampling technique offers a simple (no requirement for modifying the simulation)
and effective (more reliable and efficient) way to improve the free energy estimate. In
the overlap sampling, a conceptual intermediate is constructed inside the overlapped
region of the important phase space of the two end systems (reference and target).
Then, two separate FEP or NEW calculations are performed in opposite directions
and sampling information from both of these is combined. Unlike the direct ave-
raging method, which takes the direct average of the forward and reverse results as
the free energy estimate, the overlap sampling is able to overcome the finite sampling
error and produce reliable free energy results. Further, its built-in feature allows for
optimization of the free energy calculation to minimize both statistical and system-
atic errors. For FEP, the optimal overlap sampling is identical to Bennett’s acceptance
ratio method. In the NEW case, however, it leads to the overlap funnel sampling
procedure, in which the finite-time transformation of the system follows funnel-like
paths from both end states to the common overlap sampling intermediate.

The bias in the large sampling region is characterized using the expansion of
the free energy difference with respect to the sample size. The block averaging
technique, in which the logarithm of the average of the exponential in Jarzynski’s
identity is computed with different block sizes, provides rich information about the
free energy difference. In particular, the block-averaged free energy difference is
a smooth, monotonically decreasing function of the block size, and can be fit to a
power series. This further allows the extrapolation of the free energy difference to
the limit of infinite sampling, i.e., where the free energy difference has its true value.
Both the linear extrapolation technique and the improved reverse cumulative inte-
gral extrapolation are presented. Compared to the original Jarzynski formula, these
techniques allow a better estimate of the free energy difference from a smaller set of
sample data.

Finally, the material presented in this chapter paves the way for further improve-
ments in free energy calculations. Two promising directions for future studies are:
improving the methods for sampling phase space so that is satisfies the most effective
overlap and/or subset relationships and developing better techniques for averaging
samples and extrapolating from finite-sampled sets.
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7

Transition Path Sampling and the Calculation
of Free Energies

Christoph Dellago

7.1 Rare Events and Free Energy Landscapes

Many interesting physical, chemical, and biological processes occur on time scales
that exceed those accessible by molecular dynamics simulation by orders of
magnitude. Often, these long time scales are due to high free energy barriers (large
compared to kBT ) that the system must cross when moving between long-lived sta-
ble states. Examples for rare barrier-crossing events include chemical reactions, the
nucleation of first-order phase transitions and the folding of proteins. One approach
to treat such rare events in computer simulations is based on selecting a putative reac-
tion coordinates and then determining the free energy as a function of that coordinate
using the methods described in Chap. 4. By combining the free energy calculation
with information obtained from dynamical trajectories initiated on a dividing surface
separating the long-lived stable states, reaction rates can also be calculated [1–3].

To define a good reaction coordinate it is necessary to identify those degrees
of freedom that capture the essential physics of the process. In complex systems,
however, such information is often unavailable and this approach fails. In order to
illustrate this problem in greater detail let us consider, as an example, a volume of
pure liquid water carefully cooled below the freezing temperature. Although under
such conditions the solid (ice) is the more stable phase, the system can remain liquid
for hours or days even for strong undercooling. The reason for this behavior is that
the phase transition from the liquid to the solid proceeds through the formation of a
small crystalline nucleus somewhere in the liquid. The nucleus can then grow and the
crystalline region eventually encompasses the whole sample. While overall the free
energy of the system decreases during the transition, the initial stages of the freezing
process are free-energetically uphill. This free-energetic cost is associated with the
formation of an interface between the solid and the liquid.

Within classical nucleation theory the free energy of the system as a function of
the radius r of a spherical crystallite can be expressed as

A(r) = 4πr2γ + (4/3)πr3ρs∆µ. (7.1)
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Here, γ is the surface tension of the solid–liquid interface, ρs is the particle
number density of the solid and ∆µ = µs−µl is the difference in chemical potential
between the solid and the liquid phase. The first term on the right-hand side of the
above equation is the surface free energy of the nucleus and it is proportional to
the surface area of the crystallization nucleus. The second term is proportional to the
volume of the nucleus and, since the chemical potential of the solid is lower than
that of the liquid, gives a negative contribution to the total free energy A(r). While
for growing crystallite size r the volume term will eventually prevail, for small sizes
the free energy A(r) is dominated by the surface free energy. As a consequence, the
free energy as a function of r increases initially. Then, it reaches a maximum at a
certain critical size r∗ and rapidly decreases after that. It is this free energy barrier
that prevents the metastable liquid from rapidly crystallizing and allows supercooled
water to stay liquid for long times. As recently shown by Moroni, ten Wolde, and
Bolhuis [4], however, the size of the critical nucleus is not sufficient to character-
ize critical nuclei for the crystallization of a liquid. In addition to the size, cluster
shape and structure play an important role in the freezing process. Such a failure to
include important degrees of freedom in the definition of the reaction coordinate can
lead to problems illustrated in Fig. 7.1.

The transition path sampling method, developed by Chandler and coworkers [5]
building on earlier work of Pratt [6], is a computer simulation technique designed
to overcome this kind of problem. Based on a statistical, reaction coordinate-free
description of pathways connecting long-lived stable states, it focuses on those
segments of the time evolution of the system on which the rare but important
barrier-crossing event actually occurs. To do this a priori knowledge of the reaction
mechanism in the form of a reaction coordinate is not required. Rather, it is suffi-
cient to describe the initial and final state of the system. In a transition path sampling
simulation the ensemble of transition pathways is sampled with a Monte Carlo pro-
cedure. As a result one obtains a set of dynamical pathways which can then be further
analyzed to obtain information about the reaction mechanism (or mechanisms).

In the next two sections we will briefly review the theoretical foundation of the
transition path sampling method and explain its practical application. For a detailed
description of the transition path sampling approach we refer the reader to recent
review articles [7–9]. After these introductory sections we will discuss how transi-
tion path sampling can be used for the calculation of the free energy as a function of
a predefined reaction coordinate. In a transition path sampling simulation one con-
siders only trajectories connecting certain regions in configuration space. Due to the
bias introduced by this requirement, configurations on transition pathways are not
distributed according to the equilibrium distribution of the system. Rather, configu-
rations with low weight in the equilibrium ensemble may have a much larger weight
in the transition path ensemble if they belong to regions in configuration space that
must be traversed by the system as it moves from the initial to the final region. Due
to this bias conventional free energy profiles as a function of some variable can not
be calculated in a straightforward way from pathways sampled according the transi-
tion path ensemble. Under certain circumstances, however, one can correct for this
bias and use transition path sampling methodologies to calculate free energy profiles
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Fig. 7.1. (a) Hypothetical free energy landscape A(ξ, ξ′) as a function of two selected degrees
of freedom ξ and ξ′. Such a free energy surface might result, for instance, for a system with a
first-order phase transition. The variable ξ could then be the size of a cluster of the stable phase
forming in the metastable phase and ξ′ could be some other, important degree of freedom. Due
to a rare fluctuation a system initially in the metastable state A can overcome the nucleation
barrier following a pathway (thick solid line) that crosses the transition state corresponding
to the critical nucleus. After passing the transition state the system then relaxes in the stable
state B. Although the cluster size ξ can be used to tell wether the system is in state A or B
it fails to capture all important features of the transition because during the transition system-
atic motion along ξ′ must occur. (b) The failure of ξ to include the essential physics of the
transition becomes apparent when we determine the free energy of the system as a function of
the variable ξ only, A(ξ) =

∫
dξ′ exp{−βA(ξ, ξ′)}. This function, shown in the lower panel

of the figure, displays a barrier separating the ξ-values corresponding to the region A from
those from region B. The top of the barrier, located at ξ∗, does, however, not coincide with
the transition region. Rather, configurations with ξ = ξ∗ (distributed along the dotted line in
the upper panel) will most likely belong to the basins of attraction of regions A or B

along a given reaction coordinate [10]. Of course, it is also trivially possible to gen-
erate an equilibrium distribution in configuration space by applying path sampling
techniques to a path probability in which the requirement that paths start and end in
certain regions has been removed. In this case free energies can be simply calculated
from configurations lying on the sampled pathways [11]. For such an unconstrained
ensemble of pathways additional precautions must be taken to guarantee that the rare
event of interest occurs at least on some of the trajectories collected in the simulation.
These issues are discussed in Sect. 7.4.

Transition path sampling can also be helpful in the calculation of free ener-
gies in the context of fast-switching methods described in Chap. 5. As shown by
Jarzynski [12], equilibrium free energies can be computed from the work performed
on a system in repeated transformations carried out arbitrarily far from equilib-
rium. From a computational point of view, this remarkable theorem is attractive
because it promises efficient free energy calculations due to the reduced cost of
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short nonequilibrium trajectories. A straightforward application of the Jarzynski the-
orem in the fast-switching regime, however, is plagued by severe statistical problems.
These difficulties stem from the fact that trajectories with important work values
are generated only very rarely, causing averages to converge very slowly. Transition
path sampling techniques can be used to alleviate this difficulty [13–16]. Whether
such a combination of the fast-switching approach with the transition path sam-
pling methodology can be superior to conventional free energy calculation methods
such as umbrella sampling or thermodynamic integration is still being debated [16].
The application of transition path sampling to the biased sampling of fast-switching
trajectories is discussed in Sect. 7.5.

In Sect. 7.6 we then describe how reaction rate constants can be calculated within
the transition path sampling approach. Reaction rate constants can be extracted from
time correlation functions of the population functions associated with the initial and
final regions of the reaction [17]. The mathematical expressions of such time corre-
lation functions are isomorphic to the equations for equilibrium free energy differ-
ences. Thus, free energy calculation methods such as thermodynamic integration [18]
(see Chap. 4), umbrella sampling [17] (see Chap. 3) and even novel fast-switching
approaches [19] (see Chap. 5) can be adapted to calculate ‘free energies’ in trajectory
space from which kinetic coefficients can then be determined. Such a generalized
free energy can be viewed as the reversible work necessary to transform an ensemble
of nonreactive trajectories into an ensemble of reactive ones.

7.2 Transition Path Ensemble

The basis of the transition path sampling method is the statistical description of
dynamical pathways in terms of a probability distribution. To define such a dis-
tribution consider a molecular system evolving in time and imagine that we take
snapshots of this system at regularly spaced times ti separated by the time step ∆t.
Each of these snapshots, or states, consists of a complete description z of the system
in terms of the positions q = {q1, q2, · · · , qN} and momenta p = {p1, p2, · · · , pN}
of all N atoms in the system, z = {q,p}. If we follow the system for a total time T
we obtain an ordered sequence of L = T /∆t + 1 states

z(T ) ≡ {z0, z∆t, z2∆t, . . . , zT }. (7.2)

This sequence of states is a discrete representation of the continuous dynamical tra-
jectory starting from z0 at time t = 0 and ending at zT at time t = T . Such a
discrete trajectory may, for instance, result from a molecular dynamics simulation, in
which the equations of motion of the system are integrated in small time steps. A tra-
jectory can also be viewed as a high-dimensional object whose description includes
time as an additional variable. Accordingly, the discrete states on a trajectory are also
called time slices.

The probability to observe a particular sequence of states depends on the distri-
bution of the initial conditions and the dynamical rule describing the time evolution
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of the system. If the dynamics is Markovian,1 i.e., if the probability to move from
zt to zt+∆t after one time step ∆t depends only on zt and not on the history of
the system prior to t, the total path probability can be written as the product of the
single-time-step transition probabilities p(zt → zt+∆t),

P[z(T )] = ρ(z0)
T /∆t−1∏

i=0

p(zi∆t → z(i+1)∆t). (7.3)

The first factor on the right-hand side of the above equation, ρ(z0), is the distribution
of initial conditions z0, which, in many cases, will just be the equilibrium distribu-
tion of the system. For a system at constant volume in contact with a heat bath at
temperature T , for instance, the equilibrium distribution is the canonical one

ρ(z) = exp{−βH (z)}/Z (7.4)

and
Z =

∫
dz exp{−βH (z)} (7.5)

is the partition function normalizing the canonical distribution. The transition prob-
ability p(zt → zt+∆t) is simply the conditional probability to find the system in an
infinitesimal region around zt+∆t at time t + ∆t provided the system was in state zt

a short time ∆t earlier.
The specific form of the short-time transition probability depends on the type of

dynamics one uses to describe the time evolution of the system. For instance, con-
sider a single, one-dimensional particle with mass m evolving in an external potential
energy V (q) according to a Langevin equation in the high-friction limit

mγq̇ = −∂V (q)
∂q

+ R. (7.6)

Here, γ is the friction coefficient and R is a Gaussian random force uncorrelated
in time satisfying the fluctuation dissipation theorem, 〈R(0)R(t)〉 = 2mγkBTδ(t)
[21], where δ(t) is the Dirac delta function. The random force is thought to stem
from fast and uncorrelated collisions of the particle with solvent atoms. The above
equation of motion, often used to describe the dynamics of particles immersed
in a solvent, can be solved numerically in small time steps, a procedure called
Brownian dynamics [22]. Each Brownian dynamics step consists of a deterministic
part depending on the force derived from the potential energy and a random displace-
ment δqR caused by the integrated effect of the random force

q(t + ∆t) = q(t) − ∆t

γm

∂V

∂q
+ δqR. (7.7)

The random displacement δqR is a Gaussian random variable with zero mean and
variance
1 See, for instance [20] for a detailed discussion of the Markov property and of Markov

processes.
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σ2 =
2kBT

mγ
∆t. (7.8)

From the statistics of this random displacement, a Gaussian short-time transition
probability follows:

p(qt → qt+∆t) =
1√

2πσ2
R

exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−

[
q(t + ∆t) − q(t) +

∆t

γm

∂V

∂q

]2

2σ2
R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7.9)

The probability of a complete Brownian path is then obtained as the product of
such single-time-step transition probabilities. For other types of dynamics, such as
Newtonian dynamics, Monte Carlo dynamics or general Langevin dynamics, other
appropriate short-time-step transition probabilities need to be used [5, 8].

In the transition path sampling method we are interested in trajectories that start
in a certain region of configuration space, which we will call region A , and end in
another region, B. We call such trajectories reactive. Accordingly, we restrict the
probability distribution from (7.3) to reactive trajectories only (see Fig. 7.2)

PA B[z(T )] ≡ hA (z0)P[z(T )]hB(zT )/ZA B(T ). (7.10)

Here, hA (z) is the characteristic function for the reactant region A , equal to unity
if state z is in this region and that vanishes otherwise. The characteristic function
hB(z) for the product region B is defined similarly. The factor

ZA B(T ) ≡
∫

Dz(T )hA (z0)P[z(T )]hB(zT ) (7.11)

normalizes the path distribution. The notation
∫

Dz(T ), familiar from path integral
theory, implies a summation over all pathways z(T ) of length T . For the discrete
pathways considered in the transition path sampling method this integration extends
over all variables zi at all times ti with i = 0, . . . , L. Through the multiplication of
the unrestricted path probability P[z(T )] by the characteristic functions of regions
A and B in (7.10) all paths either not starting in A or not ending in B (or both)
are assigned a vanishing weight. The ensemble of all reactive pathways statistically
described by the distribution (7.10) is called the transition path ensemble.

B

A

Fig. 7.2. Transition pathway connecting the stable regions A and B
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7.3 Sampling the Transition Path Ensemble

The path ensemble defined in (7.10) is a statistical description of all dynamical path-
ways connecting regions A and B whithin time T . Our goal now is to generate
trajectories according to this weight function, or, in other words, to sample the tran-
sition path ensemble. We can achieve this by carrying out a Monte Carlo procedure
acting on entire trajectories.

7.3.1 Monte Carlo Sampling in Path Space

Monte Carlo sampling of trajectories works in a way analogous to the Monte Carlo
simulation of, say, an atomic liquid [22, 23]. In that case the simulation proceeds
by repetition of a basic step. In each step, a new configuration is first generated
from an old one, for instance by displacing a randomly selected particle by a
small random amount. Then, the new configuration is either accepted or rejected
according to how the probability of the new configuration compares to that of the
old one. Most often in Monte Carlo simulations a convenient acceptance criterion is
derived from the detailed balance condition satisfied by the Metropolis rule [24]. By
repeated application of this acceptance/rejection procedure the system performs a
random walk through the configuration space, visiting configurations with a fre-
quency proportional to their statistical weight under the particular conditions (den-
sity, temperature, etc.) considered in the simulation.

The Metropolis Monte Carlo algorithm can be applied very generally to any kind
of probability distribution function. In particular, we can use Metropolis Monte Carlo
to sample the transition path ensemble, in which case the random walk is carried out
in the space of trajectories instead of configuration space. The general procedure,
however, remains the same. In each path sampling Monte Carlo step, a new trajec-
tory is generated from an old one. This new trajectory is then accepted or rejected
according to how the statistical weight of the new trajectory compares to that of the
old one. If the new trajectory is not connecting A with B, it has a weight of zero
in the transition path ensemble and it must be rejected. But if the new trajectory
is reactive, it is accepted with a certain nonvanishing probability. By repeating this
basic Monte Carlo step over and over again, one carries out a random walk in path
space visiting trajectories with a likelihood proportional to their weight in the tran-
sition path ensemble. Note that, while pathways are sampled with a Monte Carlo
procedure, the trajectories are fully dynamical pathways generated according to the
rules of the underlying dynamics. The pathways collected in this way can then be
further analyzed to find the reaction mechanism.

Just as in a conventional Monte Carlo simulation, correct sampling of the tran-
sition path ensemble is enforced by requiring that the algorithm obeys the detailed
balance condition. More specifically, the probability π[z(o)(T ) → z(n)(T )]2 to
move from an ‘old’ path z(o)(T ) to a new one z(n)(T ) in a Monte Carlo step must
be exactly balanced by the probability of the reverse move from z(n)(T ) to z(o)(T )
2 In the theory of Markov chains the probability π[z(o)(T ) → z(n)(T )] is called the tran-

sition matrix [20].
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PA B[z(o)(T )]π[z(o)(T ) → z(n)(T )] =
PA B[z(n)(T )]π[z(n)(T ) → z(o)(T )]. (7.12)

This detailed balance condition makes sure that the path ensemble PA B[z(T )] is
stationary under the action of the Monte Carlo procedure and that therefore the cor-
rect path distribution is sampled [23, 25]. The specific form of the transition matrix
π[z(o)(T ) → z(n)(T )] depends on how the Monte Carlo procedure is carried out.
In general, each Monte Carlo step consists of two stages: in the first stage a new
path z(n)(T ) is generated from an old one with a certain generation probability
Pgen[z(o)(T ) → z(n)(T )]. For simplicity, this so-called trial move is often carried
out such that the generation probability is symmetric, i.e., such that the probability
to generate z(n)(T ) from z(o)(T ) equals the probability to generate z(o)(T ) from
z(n)(T )

Pgen[z(o)(T ) → z(n)(T )] = Pgen[z(n)(T ) → z(o)(T )]. (7.13)

In the second stage of each Monte Carlo step the new (or trial) pathway is accepted
with a certain acceptance probability Pacc[z(o)(T ) → z(n)(T )]. The total proba-
bility π[z(o)(T ) → z(n)(T )] to move from z(o)(T ) to z(n)(T ) in a Monte Carlo
step is the product of the generation and the acceptance probability

π[z(o)(T ) → z(n)(T )] =
Pgen[z(o)(T ) → z(n)(T )] × Pacc[z(o)(T ) → z(n)(T )]. (7.14)

The detailed balance condition (7.12) can now be satisfied by selecting an appro-
priate acceptance probability. By inserting the product in (7.14) into the detailed
balance condition we find that for a symmetric generation probability the acceptance
probabilities for the forward and the reverse move must be related by

Pacc[z(o)(T ) → z(n)(T )]
Pacc[z(n)(T ) → z(o)(T )]

=
PA B[z(n)(T )]
PA B[z(o)(T )]

. (7.15)

This condition can be satisfied using the Metropolis rule [24]

Pacc[z(o)(T ) → z(n)(T )] = min
{

1,
PA B[z(n)(T )]
PA B[z(o)(T )]

}
. (7.16)

Here, the minimum function returns the smaller of the arguments. According to this
rule a new path is accepted, if a random number chosen from a uniform distribution
in the interval [0, 1] is smaller than PA B[z(n)(T )]/PA B[z(o)(T )]. To implement
the Monte Carlo procedure described above one must specify how to create a new
pathway from an old one. How to do that is the subject of Sect. 7.3.2.

7.3.2 Shooting and Shifting

The efficiency of a transition path sampling simulation crucially depends on how
new pathways are generated from old ones. Various schemes to do that are possible.
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Here, we will explain the most effective of them, the so-called shooting algorithm.
For simplicity we will focus on how to do it for deterministic trajectories such as
those obtained from a molecular dynamics simulation. We note, however, that very
similar algorithms can be applied to stochastic trajectories [5, 7, 8].

Consider a molecular system consisting of N atoms with Hamiltonian H (q,p)
= K(p) + V (q). K(p) and V (q) are the kinetic and potential energy, respectively.
Since the system evolves according to Hamilton’s equations of motion

q̇i =
∂H

∂pi
, (7.17)

ṗi = −∂H

∂qi
, (7.18)

the time evolution of the system is deterministic, i.e., an entire trajectory z(T )
is completely determined by its initial condition z0 (or any other point on the
trajectory). We can therefore write the state of the system zt at time t as a unique
function of the state of the system at time 0

zt = φt(z0). (7.19)

Here, the function φt(z) is also called the propagator of the system. Applying the
propagator φt to a given state z yields the state of the system at a time t later.
Although the specific form of the propagator is in general not known analytically,
it is possible to obtain good approximations for it by numerical integration of the
equations of motion [22].

For deterministic dynamics the state zt+∆t at time t + ∆t is of course com-
pletely determined by the state of the system zt a time step ∆t earlier. Therefore, the
single-time-step transition probability p(zt → zt+∆t) can be written in terms of a
delta function

p(zt → zt+∆t) = δ[zt+∆t − φ∆t(zt)]. (7.20)

Then the path probability from (7.3) consists of a product of such delta functions.
Due to the singular nature of such a path probability it is more convenient to view
the entire deterministic trajectory as represented by its initial state z0. In this case the
transition path ensemble from (7.10) reduces to a distribution of initial conditions z0

yielding pathways connecting A with B

PA B(z0) ≡ hA (z0)ρ(z0)hB(zT )/ZA B(T ), (7.21)

where zT = φT (z0). The normalizing factor ZA B(T ) is now simply obtained by
integration over phase space,

ZA B(T ) ≡
∫

dz0 hA (z0)ρ(z0)hB(zT ). (7.22)

Thus, the transition path ensemble is now represented by a distribution of initial con-
ditions in phase space (we have, in effect, ‘integrated out’ all path variables except
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those belonging to the initial state z0). For this ensemble of initial conditions the
Monte Carlo procedure described above is (for a symmetric generation probability)

Pacc[z(o)(T ) → z(n)(T )] = hA (z(n)
0 )hB(z(n)

T )min

{
1,

ρ[z(n)
0 ]

ρ[z(o)
0 ]

}
, (7.23)

where z
(o)
0 is the initial point of the old path and z

(n)
0 is that of the new one. Clearly,

pathways either not beginning in A or not ending in B have a vanishing acceptance
probability and are always rejected. A new pathway connecting A and B, on the
other hand, is accepted with a probability depending solely on the relative weight of
the initial conditions of the old and the new path.

So far we have developed a general Monte Carlo procedure that can be used to
sample a given path distribution such as the transition path ensemble (7.10). To im-
plement this procedure we must specify how a new pathway is created from an old
one. The efficiency of a transition path sampling simulation will crucially depend
on the particular way such a trial move is carried out. To obtain high efficiency one
needs to make sure that a newly generated pathway is as different as possible from
the old path. At the same time, it is important that the new pathway has a suffi-
cient probability to be accepted. These two requirements often oppose each other:
an algorithm in which the trial path is drastically different from the old path may be
very inefficient due to an extremely low acceptance probability. On the other hand,
algorithms with a high acceptance probability can be inefficient because the trial path
differs only slightly from the old path and so diffusion through path space is slow.
In the shooting and shifting procedures these two aspects are balanced by using the
propagation rules of the underlying dynamics to generate a new trajectory from an
old one. In the following we will explain how shooting and shifting moves can be
carried out for Hamiltonian systems, but we stress that very similar procedures can
be developed for other types of dynamics. For simplicity we will explain only the
general idea. For further details the reader is referred to [8].

In a shooting move a trial path is generated from an old path as follows. First, one
of the L states of the old path z(o)(T ) is selected at random with a uniform probabil-
ity, i.e., all states on the path have the same probability to be selected.3 The selected
state z

(o)
t consists of the positions q(o)

t and momenta p(o)
t of all particles. Next, new

momenta are obtained by adding a small perturbation δp to the old momenta

p(n)
t = p(o)

t + δp. (7.24)

The momentum displacements δp are, for instance, selected from a Gaussian distri-
bution whose width can be used to tune the acceptance probability. Note that it is
not strictly necessary to draw the momentum displacements from a Gaussian distri-
bution; any other isotropic distribution can be used as well for this purpose. Starting
from the new state z

(n)
t , which consists of the old positions and the new momenta,

3 It is, of course, possible to bias the selection toward certain segments of the path. In this
case, the bias must be properly taken into account in the acceptance probability.
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the equations of motion are integrated forward to time T and backward to time 0.
For the integration of the equations of motion any suitable molecular dynamics algo-
rithm can be used [22, 23]. Due to the added perturbation the new trajectory z(n)(T )
will differ from the old trajectory z(o)(T ). By how much depends on the amplitude
of the momentum displacement and the chaoticity of the underlying dynamics.

The new path must now be accepted or rejected. According to (7.23) the new
path can be accepted only if its initial state z

(n)
0 lies in region A and its final state

z
(n)
T lies in region B. If this is not the case, i.e., if the newly generated trajectory

does not connect A and B, the acceptance probability vanishes and the new path
is rejected. If, on the other hand, the trajectory is reactive, it is accepted with proba-
bility min{1, ρ[z(n)

0 ]/ρ[z(o)
0 ]}. Thus, for a canonical distribution of initial conditions

the acceptance probability depends only on the energy difference of the initial states
of the old and the new trajectory. Some computing time can be saved by first integrat-
ing the equations of motion backward to time t = 0 and then testing whether the new
initial point is in A . As pathways not starting in A are rejected, the forward segment
of the trajectory needs to be computed only if the new initial point is in region A .

For a microcanonical distribution of initial conditions all initial conditions have
the same energy and the acceptance probability becomes

Pacc[z(o)(T ) → z(n)(T )] = hA [z(n)
0 ]hB[z(n)

T ]. (7.25)

Thus, every trial trajectory that connects A and B is accepted. In the
microcanonical case momentum displacements δp must be selected such that the sys-
tem does not change its total energy. How to do that and how to take other constraints
such as conserved total linear and angular momentum into account is explained in
detail in [8].

Shooting moves can be complemented with shifting moves. In this computation-
ally inexpensive move a new path is generated from an old one by translating the tra-
jectory forward or backward in time. More specifically, in a forward shifting move a
trajectory segment of length δt is first removed from the beginning of the path. The
time length δt for this operation is selected from a random distribution (note that δt
needs to be a multiple of the step size ∆t). Then, a segment of the same length is
grown at the end of the path by integrating the equations of motion for δt/∆t time
steps starting from the final point of the old path. As a result of this procedure the new
path overlaps with the old one over a length T − δt and the initial point of the new
path is given by z

(n)
0 = z

(o)
δt . Of course, the segment at the end of the path needs to

be grown only if z
(n)
0 lies inside A . Otherwise the new pathway is rejected without

any need to integrate the equation of motion. For a backward-shifting move one pro-
ceeds in an analogous way. First one removes a trajectory segment of length δt from
the end of the old path and then regrows a new path segment of the same length by
integrating the equations of motion backward in time starting from the initial point
of the old path. Similar to the forward shift, one needs to grow the backward segment
only if the endpoint of the new path is inside B. The shifting procedure effectively
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translates the path in time in a way reminiscent of the reptation motion of a polymer
in a dense melt [26].

For Hamiltonian dynamics with a canonical or microcanonical distribution of
initial conditions the acceptance probability for pathways generated with the shift-
ing algorithm is particularly simple. Provided forward and backward shifting moves
are carried out with the same probability the acceptance probability from (7.23)
reduces to

Pacc[z(o)(T ) → z(n)(T )] = hA [z(n)
0 ]hB[z(n)

t ], (7.26)

implying that any new path that still connects regions A and B is accepted. Simi-
larly simple acceptance probabilities can also be derived for pathways generated with
stochastic instead of deterministic dynamics [8].

Although new pathways generated by the shifting algorithm differ little from the
corresponding old pathways, especially in the transition region, shifting moves can
improve the convergence of averages taken over the transition path ensemble. Since
shifting moves just translate a trajectory forward and backward in time, they must be
combined with other types of moves such as shooting moves to achieve an ergodic
sampling of the transition path ensemble.

In addition to the shooting and shifting algorithms, other path moves have been
devised for stochastic dynamics [8]. For instance, in the local algorithm a new
pathway is generated by modifying one single time slice of the old path [5]. In
the Crooks–Chandler algorithm [27] global path moves are carried out by local
changes in the sequence of random numbers used to generate the pathways. The
Crooks–Chandler algorithms is particularly useful for the simulation of rare fluc-
tuations in systems driven far away from equilibrium [27]. Exploiting the formal
similarity of dynamical pathways with polymers, the transition path ensemble can
also be sampled with a variant of the configurational bias Monte Carlo scheme
(CBMC) [5, 23, 28]. In this approach a guiding field biases the growth of path-
ways such that they are likely to be reactive. Pathways are modified globally also in
the dynamical algorithm, in which the path distribution is sampled by integration of
fictitious equations of motion [5]. Since all these algorithms do not make use of the
natural propensity of the dynamics to converge toward the stable regions, they lack
the efficiency of the shooting and shifting algorithms.

7.3.3 Efficiency

The efficiency of a transition path sampling simulation depends on how rapidly
the relevant regions of path space are sampled. For Hamiltonian trajectories, the
sampling speed can be optimized by tuning the magnitude of the momentum dis-
placement δp. For very small momentum displacements a newly generated pathway
closely resembles the old pathway. Although the average acceptance probability is
high in this case (similar pathways most likely have similar weights in the transition
path ensemble), sampling progresses slowly because of the similarity of consecutive
pathways. This is seen most clearly in the case of a vanishing momentum displace-
ment for which each new pathway is, trivially, exactly identical to the old pathway
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and so the simulation does not move at all although the acceptance probability is
equal to one. If, on the other hand, the momentum displacement is very large each
new pathway may be very different from the old one. Nevertheless, the sampling
speed can be slow due to an excessively small average acceptance probability. Most
likely, a new path that is drastically different from the old one does not connect
regions A and B and, therefore, is rejected.

To optimize the efficiency of a transition path sampling simulation one has to
select momentum displacements that reconcile these two opposing effects. A quan-
titative efficiency measure can be obtained by calculating autocorrelation functions
of path properties as a function of the number of sampling cycles [17]. Fast decay
of this autocorrelation function is indicative of rapid sampling and hence high
efficiency. In practical transition path sampling applications, it is rarely possible to
carry out a systematic efficiency analysis and then to select momentum displace-
ments minimizing correlations. Instead, one can tune the magnitude of the momen-
tum displacements to obtain a certain intermediate average acceptance probability.
Transition paths sampling simulations carried out for a simple model system indicate
that, as a rule of thumb, optimum efficiency is obtained for average acceptance rates
in the range 40–60% [17].4

7.3.4 Initial Pathway and Definition of the Stable States

To start the transition path sampling procedure an initial path connecting region A
with region B must be available. Such a first reactive trajectory can be generated in
various ways that depend on the particular problem of interest. No general procedure
to generate initial trajectories for transition path sampling simulations is available.
Of course, a straightforward molecular dynamics simulation started from one of the
stable states will eventually produce a suitable reactive trajectory. In most interesting
cases, however, the CPU time required to generate even one single reactive trajectory
exceeds by far the available resources. In some cases, a temperature increase may
help. For instance, to study the folding of a protein one may carry out a molecular
dynamics simulation starting from the folded state. The folded state is destabilized by
increasing the temperature until the protein unfolds. The resulting high-temperature
reactive trajectory can then be used as an initial trajectory to start the path sampling
procedure. Another way to generate an initial pathway consists of using a bias func-
tion to guide a molecular dynamics simulation from one stable state to the other. The
reactive trajectory obtained in this way can be used as an initial pathway in a transi-
tion path sampling without bias. Alternatively, artificially constructed sequences of
states connecting A and B can be used to start the transition path sampling simula-
tion. Most of these procedures to generate initial trajectories produce pathways that
are reactive but otherwise carry a very low weight in the transition path ensemble.
During the path sampling procedure any initial path will quickly relax toward more
likely regions of path space.

4 As in the case of conventional Monte Carlo simulations depending on the cost of rejected
moves the optimum acceptance probability may be lower than 40% [23].
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Another important issue in transition path sampling applications is the definition
of the stable regions A and B. It is convenient to define this regions with the help of
a (possibly multidimensional) order parameter ξ(q) depending on the atomic posi-
tions q.5 For instance, for the nucleation of the first-order phase transition discussed
in the introduction, ξ(q) could be the size of the largest cluster of the stable phase.
In the case of chemical reactions the order parameter ξ(q) might be a bond length, a
bond angle or a dihedral angle or a function thereof. Regions A and B can then be
defined by requiring that the order parameter ξ(q) lies within certain limits. These
limits need to be chosen such that the stable regions are large enough to accommo-
date most equilibrium fluctuations of the system such that the system is located in A
or B most of the time. Excursions of the system outside these regions should occur
only rarely. At the same time, it is important that regions A and B do not overlap.
Even more stringently, each of the two stable regions should not include configu-
rations that belong to the basin of attraction of the other regions. Here, the basin
of attraction of, say, A is defined to consist of all configurations that will quickly
evolve into region A . If one stable state contains points belonging to the basin of
attraction of the other stable state, the transition path sampling procedure will pro-
duce pathways that are not true reactive trajectories. Although specifying the stable
regions requires some care, appropriate definitions can usually be found with some
trial and error [8].

7.4 Free Energies from Transition Path Sampling Simulations

As discussed in previous chapters, one is often interested in calculating the free
energy as a function of a given reaction coordinate ξ. Such a free energy profile
A(ξ) is defined as

A(ξ) = −kBT ln P (ξ), (7.27)

where P (ξ) is the probability distribution of the reaction coordinate ξ in the equilib-
rium ensemble with distribution function ρ(q)

P (ξ̃) =
∫

dV ρ(q)δ[ξ̃ − ξ(q)]. (7.28)

Here, the integration extends over the entire configuration space. In computer sim-
ulations probability distribution functions are approximated by histograms that are
computed by determining how often the reaction coordinate ξ(q) falls within the
various histogram bins. Of course, to obtain the correct histogram, configurations
classified in the histogram must be sampled according to the equilibrium distribution
ρ(q). This can be done efficiently with various molecular dynamics and Monte Carlo
simulation methods, as discussed in Chap. 3.
5 In most applications of transition path sampling it is sufficient to define the stable regions

A and B in terms of configurational coordinates without reference to the momenta. The
transition path sampling formalism, however, can be also applied to situations in which A
and B also depend on the atomic momenta.
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If some values of the reaction coordinate are rarely sampled but are nevertheless
important, special techniques are needed as discussed extensively in several chapters
of this book. Umbrella sampling and other non-Boltzmann sampling methods may
be used to access low-probability regions of configuration space and to accurately
calculate strongly varying free energy profiles. Since the transition path sampling
method is designed to generate trajectories traversing exactly such low-probability
regions associated with rare events, it is tempting to use this approach for the cal-
culation of free energy profiles. In the transition path ensemble, however, pathways
are required to start and end in particular regions of configuration space. Due to this
requirement (or constraint) the distribution of configurations along such pathways
deviates from the equilibrium distributions ρ(q). Therefore, one cannot calculate the
probability distribution P (ξ) from the set of configurations on trajectories harvested
in a transition path simulation.

Although it is not possible to determine free energy profiles directly from a tran-
sition path sampling simulation in a straightforward way, path sampling techniques
such as shooting and shifting can be useful for this purpose.6 To generate configura-
tions according to the equilibrium distribution one can sample the path distribution
(7.3) without the requirement that the pathway starts in A and ends in B [11]. In the
shooting and shifting procedure new pathways can then be accepted with a probabil-
ity depending on the weight of the initial conditions alone

Pacc[z(o)(T ) → z(n)(T )] = min

{
1,

ρ[z(n)
0 ]

ρ[z(o)
0 ]

}
. (7.29)

In this case the shooting and shifting procedure may be viewed as a particular move
in a Monte Carlo simulation similar to hybrid Monte Carlo [30].

For Newtonian dynamics and a canonical distributions of initial conditions one
can reject or accept the new path before even generating the trajectory. This can be
done because Newtonian dynamics conserves the energy and the canonical phase-
space distribution is a function of the energy only. Therefore, the ratio ρ[z(n)

0 ]/ρ[z(o)
0 ]

at time 0 is equal to the ratio ρ[z(n)
t′ ]/ρ[z(o)

t′ ] at the shooting time and the new trajec-
tory needs to be calculated only if accepted. For a microcanonical distribution of
initial conditions all phase-space points on the energy shell have the same weight
and therefore all new pathways are accepted. The same is true for Langevin dynam-
ics with a canonical distribution of initial conditions.

Provided the underlying dynamics conserves the equilibrium distribution, as
does Newtonian dynamics, the phase-space points lying on the harvested trajecto-
ries are distributed according to the equilibrium distribution and can be used to cal-
culate equilibrium averages such as the free energy profile A(ξ). If some important
ranges of the reaction coordinate are rarely visited, biasing procedures may help to
achieve ergodic sampling of all important regions in configuration space. One may,

6 Note that the transition path sampling method can be also used for the calculation of
activation energies (as opposed to activation free energies) [29]. This approach is useful
for systems in which it is not possible to identify transition states.
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for instance, employ a variant of the umbrella sampling method and divide the order
parameter range of interest into several overlapping windows Wi [11]. Then, for each
window a path sampling simulation is carried out with path weight

PWi
[z(T )] ≡ HWi

[z(T )]P[z(T )]/ZWi
(T ). (7.30)

Here, HWi
[z(T )] is a function that is unity if the path z(T ) has at least one

configuration with the order parameter in the window Wi and vanishes otherwise.
The factor:

ZWi
(T ) ≡

∫
Dz(T )HWi

[z(T )]P[z(T )] (7.31)

normalizes the path ensemble PWi
[z(T )]. The function HWi

appearing in the above
path ensemble makes sure that each generated pathway includes at least one config-
uration with order parameter in the window Wi. All the configuration satisfying this
requirement can be used to calculate the order parameter distribution and, from it,
the free energy profile in the particular window. Just as in a regular umbrella sam-
pling simulations the free energy profiles in the various windows are then matched
to obtain a continuous curve over the whole range of interest. While such a path
sampling procedure is possible and practical [11], further studies will be necessary
to determine whether its efficiency is competitive with other free energy calculation
methods discussed in this book.

Free energy profiles can also be evaluated within the partial path transition
interface sampling method (PPTIS), a path sampling technique designed for the cal-
culation of reaction rate constant in systems with diffusive barrier-crossing events
[31, 32]. In this approach, the reaction rate is expressed in terms of transitions proba-
bilities between a series of nonintersecting interfaces located between regions A and
B. The interfaces can be defined by requiring that the reaction coordinate ξ(q) takes
particular values. The intervals between these values then correspond to the windows
defined above. The transition probabilities needed to determine the overall transition
rate constant are calculated in path sampling simulations based on the shooting algo-
rithm in which short trajectories are required to cross at least two adjacent interfaces.
Since this requirement introduces a bias in the distribution of configuration along
such pathways, order parameter distributions, which are equilibrium averages, can-
not be computed directly in a PPTIS simulation. By a clever comparison of path
ensembles belonging to neighboring interfaces, however, it is possible to correct for
this bias [10]. As a result, one can calculate a free energy profile A(ξ) as a function
of a given reaction coordinate ξ at no additional cost.

7.5 The Jarzynski Identity: Path Sampling of Nonequilibrium
Trajectories

As discussed in detail in Chap. 5, free energy differences can be calculated from the
statistics of the work carried out during nonequilibrium transformations. The basis
for this method, also known as ‘fast switching’, is an identity derived in 1997 by
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Jarzynski [12]. Although this identity is an exact result, statistical sampling problems
arise if the transformation moves the system too far from equilibrium. In this section
we will explain the origin of these difficulties and show how transition path sampling
can be used to overcome them.

Consider a thermodynamic system with an external parameter (or constraint)
λ that can be used to control the state of the system. When changing the control
parameter λ a certain amount of work is performed on the system. According to the
second law of thermodynamics the average work necessary to do that is smaller than
the Helmholtz free energy difference between the two equilibrium states correspond-
ing to the initial and final values of the constraint [33]

〈W 〉 ≥ ∆A. (7.32)

The equality is valid if the control parameter is changed reversibly, i.e., if the system
is in equilibrium at all times during the transformation. Equivalently, this result can
be stated as the maximum work theorem [34]: the amount of work delivered by a
system during a transformation from a specific initial to a specific final state is always
smaller than the free energy difference between the initial and final states. The work
is maximum and equal to the free energy difference for a reversible process, hence
the term reversible work for the equilibrium free energy.

The maximum work theorem can be used to calculate free energies. In the ther-
modynamic integration scheme, for instance, free energy differences are determined
by calculating the reversible work required to change a control parameter reversibly,
that is very slowly (see Chap. 4). This reversibility requirement, however, can be
relaxed within a recently developed fast-switching approach. In a remarkable theo-
rem, Jarzynski has proven that under very general conditions the so-called Clausius
inequality [(7.32)] can be turned into an equality by considering an exponential of
the work instead of the work itself [12, 35, 36]

〈exp(−βW )〉 = exp(−β∆A). (7.33)

The angular brackets 〈· · · 〉 in (7.33) denote an average over an ensemble of non-
equilibrium transformation processes initiated from states z distributed according to
a canonical distribution. The Jarzynski identity (7.33) is valid for nonequilibrium
transformations carried out at arbitrary speed.

The Jarzynski identity can be used to calculate the free energy difference between
two states 0 and 1 with Hamiltonians H0(z) and H1(z). To do that we con-
sider a Hamiltonian H (z, λ) depending on the phase-space point z and the control
parameter λ. This Hamiltonian is defined in such a way that λ0 corresponds to the
Hamiltonian of the initial state, H (z, λ0) = H0(z), and λ1 to the Hamiltonian of
the final state, H (z, λ1) = H1(z). By changing λ continuously from λ0 to λ1 the
Hamiltonian of the initial state is transformed into that of the final state. The free
energy difference:

∆A = −kBT ln

∫
dz exp{−βH1(z)}

∫
dz exp{−βH0(z)}

= −kBT ln
Z0

Z1
(7.34)
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can now be calculated by first generating initial conditions distributed according
to the canonical distribution exp{−βH0(z)}/Z0. Then, dynamical trajectories of
a certain length T in time are initiated at these initial conditions. While the system
evolves in time, the control parameter is changed from λ0 at time t = 0 to λ1 at
time t = T according to a certain arbitrary protocol. By changing the external para-
meter λ we perform the work W on the system, and this work may be different for
each trajectory. Averaging exp(−βW ) over all trajectories we obtain an estimate of
exp(−β∆A) and hence of ∆A. In the path integral notation introduced in Sect. 7.2
this average can be expressed as

exp(−β∆A) =
∫

Dz(T )P[z(T ), λ(T )] exp{−βW [z(T ), λ(T )]} (7.35)

where λ(T ) denotes the complete history of the control parameter λ from t =
0 to T . The path probability P[z(T ), λ(T )], which includes the probability
exp{−βH0(z)}/Z0 of the initial conditions and the work W [z(T ), λ(T )] per-
formed along the path, depends on the path z(T ) itself as well as on the progression
λ(T ) of the control parameter.

The Jarzynski identity (7.33) is an exact result and applies to transformations of
arbitrary length T . From a computational point of view this property seems very
attractive because it implies that free energy differences can be calculated from
short and therefore computationally inexpensive trajectories. However, the conver-
gence of the exponential average from (7.33) quickly deteriorates if the transforma-
tion (or the switching) is carried out too rapidly.

This statistical problem, which can easily offset the gain originating from the low
computational cost of short trajectories, is best understood by rewriting the Jarzynski
identity as an average over the work distributions P (W )

exp(−β∆A) =
∫

dW P (W ) exp(−βW ). (7.36)

Here, P (W ) is the probability density for observing a work value W . If the trans-
formation is carried out slowly, the work distribution is a function narrowly peaked
near the free energy difference ∆A. In the reversible limit of infinitely slow switching
each trajectory yields the same work W equal to ∆A and P (W ) is a delta function
centered at ∆A.7 For increasing switching rate the work distribution becomes wider
and is shifted toward work values that are large compared to the free
energy difference. In this case, the work distribution P (W ) and the integrand of
(7.36), P (W ) exp(−βW ), can be peaked at very different work values and have
little overlap. Thus, most trajectories have work values that essentially do not con-
tribute to the exponential average. Only work values from the low-W wing of the
work distribution generate significant contributions, but these work values are rarely

7 For isolated Hamiltonian systems the width of the work distribution remains finite even
in the limit of infinitely slow switching. This is a consequence of the so-called adiabatic
invariants [16].
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generated in a straightforward fast-switching simulation. As a consequence, free
energies estimated from a finite set of fast-switching trajectories can have large
statistical errors [16, 36, 37]. These difficulties are familiar from applications of
thermodynamic perturbation theory and have been discussed in Chaps. 2 and 6.

For straightforward fast-switching simulations this statistical problem limits the
switching rates to values for which the average work does not deviate from the free
energy difference by more than the thermal energy kBT [37]. A systematic analysis
of the statistical error in the estimated free energy shows that in this regime the fast-
switching method does not bring any computational gain. In other words, the error
in the free energy calculated from one single long trajectory or many shorter ones is
the same [37].8

A way to circumvent the statistical problems related to the work statistics of short
trajectories was recently suggested by Sun [13]. The basic idea of this approach,
which can be thought of as a generalization of thermodynamic integration to trajec-
tory space, is to devise a sampling scheme that favors the rare trajectories with work
values mostly contributing to the exponential average of the Jarzynski identity. Sun
achieves this by introducing a parameter α into the exponential average

exp{−β∆Ã(α)} =
∫

Dz(T )P[z(T )] exp{−βαW [z(T )]}. (7.37)

To simplify the notation we have dropped λ(T ) from the argument list of the path
probability P[z(T )] and the work W [z(T )]. Of course, in this definition the new
free energy difference ∆Ã(α) also acquires a dependence on the parameter α. The
parameter-dependent free energy ∆Ã(α) differs from the original free energy dif-
ference ∆A. For α = 0 the integral on the right-hand side of the above equation is
unity and ∆Ã(α) = 0. For α = 1, however, the original free energy is recovered,
∆Ã(1) = ∆A. We can hence calculate ∆A by taking the derivative of ∆Ã(α) with
respect to α and then integrating this quantity from 0 to 1

∆A =
∫ 1

0

dα
d∆Ã(α)

dα
. (7.38)

To carry out this integration we need to determine the derivative of ∆Ã(α). Differ-
entiating (7.37) we obtain

dÃ(α)
dα

=

∫
Dz(T )P[z(T )] exp{−βαW [z(T )]}W [z(T )]
∫

Dz(T )P[z(T )] exp{−βαW [z(T )]}
= 〈W 〉α. (7.39)

The notation 〈· · · 〉α used in the last equality of the above equation indicates that this
expression can be viewed as the average work in the so-called work-weighted path
ensemble

Pα[z(T )] = P[z(T )] exp{−βαW [z(T )]}/Zα (7.40)

8 Although in this slow-switching regime nonequilibrium simulations do not offer any direct
reduction of the computational cost of free energy calculation, they have the added advan-
tage of being easily parallelizable and of permitting an estimation of statistical errors.
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where the path ensemble is normalized by the partition function

Zα =
∫

Dz(T )P[z(T )] exp{−βαW [z(T )]}. (7.41)

In the work-weighted path ensemble the statistical weight of a particular trajectory
z(T ) explicitly depends on the work performed on the system along that trajectory.
The work distribution in the work-weighted path ensemble for a particular value of
α is

Pα(W ) =
P (W ) exp(−βαW )∫
dWP (W ) exp(−βαW )

. (7.42)

For α = 0 this work distribution is identical to the work distribution obtained in a
straightforward fast-switching simulation. In the other limit, at α = 1, the work dis-
tributions is proportional to the integrand in (7.36). Thus, Sun’s procedure guaran-
tees that all important work values are sampled regardless of the length path length.
Indeed, it has been demonstrated that the Sun approach can be used to calculate
free energy differences using very short pathways [13]. It also follows from these
considerations that the free energy difference ∆A can be viewed as the reversible
work necessary to transform the ensemble of unconstrained paths (7.3) into the work-
weighted path ensemble (7.40).

To calculate the path average 〈W 〉α from (7.39) we need to sample the work-
weighted path ensemble (7.40). Since the weight of a trajectory in this ensemble
explicitly depends on the work W performed along this trajectory, we cannot simply
do that by generating suitable initial conditions and growing fast-switching trajec-
tories from them. Instead, the work-weighted path ensemble can be sampled with
the transition path sampling procedures described in Sect. 7.3. With the shooting
algorithm we can generate a new fast-switching trajectory from an old one by first
changing the momenta at a randomly selected time slice. Then the equations of
motion are integrated backward and forward starting from the point with modified
momenta while the control parameter λ is changed according to the protocol λ(T ).
The new path is then accepted with a probability depending on the work of the new
and the old path. By carrying out such a path simulation for several different val-
ues of α between 0 and 1 we can determine work averages 〈W 〉α that, according to
(7.38), are then integrated numerically to obtain the free energy difference ∆A.

Although this path sampling procedure can be used to calculate free energy
differences from very short nonequilibrium trajectories, the question arises if such
an approach is competitive with conventional free energy calculation methods. As
shown by Sun [13], for infinitely fast switching the work-weighted path sampling
method reduces to the conventional thermodynamic integration algorithm that does
not make use of nonequilibrium trajectories. An error analysis carried out for dif-
ferent example systems indicated that optimum efficiency is obtained in this limit
of infinitely short trajectories, implying that conventional thermodynamic integra-
tion outperforms work-weighted path sampling. Whether this is true in general or
whether there are cases in which the fast-switching path sampling approach is more
efficient is an open question.
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An alternative path sampling method to evaluate Jarzynski’s exponential average
has been put forward by Ytreberg and Zuckerman [14] and by Athènes [15]. The
basic idea here is the same as in Sun’s work-weighted path sampling approach: tra-
jectories with rare but important work values are sampled with enhanced likelihood.
This can be achieved by introducing a bias function (or umbrella function) π[z(T )]
in the exponential path average [14]

exp{−β∆A} =

∫
Dz(T ) P [z (T )] π [z (T )]

[
exp {−βW [z (T )]}

π [z (T )]

]
∫

Dz (T ) P [z (T )] π [z (T )]
[

1
π [z (T )]

] (7.43)

=
〈exp{−βW [z(T )]}/π[z(T )]〉π

〈1/π[z(T )]〉π
. (7.44)

The notation 〈· · · 〉π used in the second line of the above equation implies a path
average over the biased path distribution

Pπ[z(T )] = P[z(T )]π[z(T )]/Zπ, (7.45)

where
Zπ =

∫
Dz(T )P[z(T )π[z(T )]. (7.46)

Since the bias function should enhance the sampling of pathways with important
work values it can be made to depend on the work only, π[z(T )] = π[W (z(T ))]. To
minimize the statistical error in the free energy difference the bias function needs to
be selected such that both the statistical errors of the numerator and the denominator
of (7.44) are small. Ideally, the bias function should have a large overlap with both the
unbiased work distributionP (W ) and the integrand of (7.36),P (W ) exp(−βW ). Just
as Sun’s work-biased ensemble Pα[z(T )], the biased path ensemble Pπ[z(T )] can
be sampled with the shooting algorithm [14]. Then, the acceptance probability for this
move also depends on the bias function π[z(T )] for the new and old trajectory. Note
that other non-Boltzmann sampling techniques, such as flat-histogram sampling [38],
multicanonical sampling [39], or parallel tempering [40], described in Chaps. 3 and
8, can be combined with the path sampling procedure to enhance the convergence
of Jarzynski’s exponential average. Another way to increase the efficiency of fast-
switching simulations is to determine only approximate trajectories by integrating
the equations of motion with large time steps [41]. It can be shown that Jarzynski’s
identity remains valid also for such computationally less expensive trajectories.

Zuckerman and Ytreberg have shown for several model systems that compared to
straightforward fast-switching simulations large efficiency gains can be achieved by
using the bias function π(W ) = exp(−βW/2). But as in the case of Sun’s method,
the question arises whether this biased path sampling approach is computationally
competitive with conventional approaches such as umbrella sampling. Expressions
for the statistical error in the free energies obtained in these biased path sampling
schemes have been developed and used to estimate the error for different example
systems [16]. These results indicate that conventional umbrella sampling with a good
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bias function is superior to the biased path sampling of nonequilibrium trajectories.
More research is necessary, however, to find out if this is true in general.

7.6 Rare Event Kinetics and Free Energies in Path Space

On a phenomenological level, transitions between long-lived stable states can be
described in terms of reaction rate constants. Since such reaction rate constants can
be measured in experiments, their calculation in computer simulations is of great
interest. Pathways harvested in transition path sampling simulations are true dynam-
ical trajectories. Therefore they can be used to calculate reaction rate constants for
the transitions between stable states.9 In this section, we will explain how to calculate
reaction rate constants in the framework of transition path sampling by exploiting an
isomorphism between time correlation functions and free energy differences. In a
sense, the strategy of such an approach is opposite to the free energy calculations
described in the previous sections. While path sampling methods were previously
used to calculate free energies, here free energy calculation methods are used to cal-
culate reaction rate constants in transition path sampling simulations. Note that reac-
tion rate constants can be also calculated with the very efficient transition interface
sampling (TIS) method which is based on path sampling ideas [31, 32]. Although
TIS is more efficient than the approach described below it is not discussed here,
because it does not make use of the free energy calculation methods to which this
book is devoted.

On a phenomenological level, transitions between long-lived stable states can
be described in terms of reaction rate constants. Consider, for instance a solution
of two well-defined chemical species A and B that can interconvert through the
unimolecular reaction

A � B. (7.47)

The solution is assumed to be sufficiently dilute that the solute molecules do not
interact with each other (at the same time we assume that there still is a macroscopic
number of solute molecules in the solution). Due to the reaction the concentrations
cA and cB of molecules of type A and B, respectively, can change in time. The
concentration of cA decreases when molecules of type A transform into molecules
of type B and increases due to the inverse reaction. Since, according to the assump-
tions, the solute molecules are statistically independent from each other, the time
evolution of cA (t) is well described by the phenomenological [33]

dcA (t)
dt

= −kA BcA (t) + kBA cB(t). (7.48)

9 The calculation of reaction rate constants with the transition path sampling methods does
not require understanding of the reaction mechanism, for instance in the form of an
appropriate reaction coordinate. If such information is available other methods such as the
reactive flux formalism are likely to yield reaction rate constants at a lower computational
cost than transition path sampling.
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An analogous loss–gain equation holds for the concentration cB(t)

dcB(t)
dt

= −kBA cB(t) + kA BcA (t). (7.49)

In these equation all microscopic details of the dynamics are condensed into the
forward and backward reaction rate constants kA B and kBA .

Linear response theory10 provides a link between the phenomenological descrip-
tion of the kinetics in term of reaction rate constants and the microscopic dynamics
of the system [33]. All information needed to calculate the reaction rate constants is
contained in the time correlation function

C(t) =
〈hA (z0)hB(zt)〉

〈hA 〉 (7.50)

for a particular molecule. The functions hA and hB are unity if a particular mole-
cule is in state A or B, respectively, and vanish otherwise. The angular brackets
denote an equilibrium average over all trajectories (or, for Hamiltonian dynamics, a
simple equilibrium phase-space average). The time correlation function C(t) is the
conditional probability to find a particular molecule in state B at time t provided it
was in state A at time zero. According to the fluctuation–dissipation theorem, for
long times C(t) behaves like the concentration cB(t) relaxing from a nonequilib-
rium state in which only molecules of type A exists. For long times, the behavior of
C(t) is hence completely determined by the values of the reaction rate constants

C(t) ≈ 〈hB〉(1 − exp(−t/τrxn)), (7.51)

where the reaction time τrxn is related to the forward and backward reaction rate
constants kA B and kBA by

τrxn = (kA B + kBA )−1. (7.52)

For short times, the correlation function C(t) depends on the microscopic details of
the dynamics as the system crosses from A to B. These motions take place on a
molecular time scale τmol essentially equal to the time required to move through the
transition region. For times t larger than τmol but still very small compared to the
reaction time τrxn (if the crossing event is rare τrxn � τmol such that such an
intermediate time regime exists), C(t) can be replaced by an approximation linear in
time. Using the detailed balance condition kBA /kA B = 〈hB〉/〈hA 〉 [33] one then
obtains

C(t) ≈ kA Bt. (7.53)

The slope of C(t) in the time regime τmol < t � τrxn is the forward reaction
rate constant. Thus, for the calculation of reaction rate constants it is sufficient to
determine the time correlation function C(t). In the following paragraphs we will
show how to do that in the transition path sampling formalism.
10 It can be shown that the assumption of a weak perturbation central to linear response theory

can be relaxed in this case [9]. The equations presented in this section relating the kinetic
coefficients with the microscopic dynamics of the system remain valid for arbitrarily strong
perturbations.
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In principle, the time correlation function C(t) can be calculated from a single,
long molecular dynamics simulation. However, such a simulation is impractical
because for the rare transitions of interest the computer resources necessary to col-
lect a statistically sufficient number of reaction events are excessive. The transition
path sampling method focuses exactly on these reactive events and is therefore not
plagued by this problem. To calculate the time correlation function C(t), however, it
is not sufficient to consider reactive trajectories only. Rather, it is necessary to deter-
mine the total weight of all the reactive trajectories relative to the total weight of all
nonreactive trajectories. In other words, we need to calculate how many of all pos-
sible trajectories originating in the initial region A arrive in the final region B after
some time t. Roughly, this corresponds to determining the ‘size’ in path space of the
subensemble of reactive trajectories relative to the size of the set of all trajectories
starting in A . But determining relative statistical weights of certain subensembles is
exactly what we do in free energy calculations. This analogy suggests to determine
reaction rate constants by applying free energy calculation methods to ensembles of
pathways.

To make this idea more precise we rewrite the time correlation function C(t) in
terms of integrals over pathways

C(t) =

∫
Dz(t)hA (z0)P[z(t)]hB(zt)∫

Dz(t)hA (z0)P[z(t)]
=

ZA B(t)
ZA

. (7.54)

This expression may be interpreted as a ratio of two partition functions. In the
denominator we have the partition function ZA of all trajectories starting in region
A with endpoint anywhere; the integral in the numerator is the partition function
ZA B(t) of all trajectories starting in A and ending in B [this is the normalizing
factor of (7.11)]. We can then view the ratio of partition functions as the exponential
of the free energy difference between these two ensembles of trajectories

C(t) ≡ exp{−∆AA B(t)}. (7.55)

Here, we have denoted this path ‘free energy’ with A typeset in sans serif to make
clear that this quantity differs from the conventional Helmholtz free energy A. The
free energy difference ∆AA B(t) can be interpreted as the reversible work necessary
to transform the ensemble of trajectories of length t starting in A without any restric-
tion on the endpoint into the ensemble of pathways starting in A and ending in B. By
virtue of this analogy between regular free energies and ‘free energies’ in trajectory
space we can choose from a number of free energy calculation methods to determine
the time correlation function C(t). In the following paragraphs we show how that
can be achieved with umbrella sampling. Of course, the path free energy ∆AA B(t)
can also be calculated with other free energy methods such as thermodynamic inte-
gration [18] or even with the fast-switching method of Sect. 7.5 [19].

As before, we imagine that we can define the stable regions A and B with the
help of an order parameter ξ(z). A phase-space point z is in region A if the order
parameter is within a certain range, ξmin

A ≤ ξ(z) ≤ ξmax
A , and the order parameters



7 Transition Path Sampling and the Calculation of Free Energies 273

of configurations belonging to B are in a distinct range, ξmin
B ≤ ξ(z) ≤ ξmax

B .
Let us now consider the probability11 that a trajectory starting in region A ends at a
configuration with an order parameter value of ξ̃

PA (ξ̃, t) =
∫

Dz(t)hA (z0)P[z(t)]δ(ξ̃ − ξ(zt)). (7.56)

This probability distribution is similar to the probability distribution from (7.28),
except that here we average only over configurations that have evolved from con-
figurations in A a time t earlier. By integrating this probability distribution over all
order parameter values corresponding to region B we obtain the total probability
that a system initially in A is in B at time t later. This is nothing other than the time
correlation function C(t) and we can write

C(t) =
∫ ξmax

B

ξmin
B

dξ PA (ξ, t). (7.57)

What remains to do is to actually determine the probability distribution PA (ξ, t).
If the transition from A to B is a rare event, PA (ξ, t) cannot be calculated by

initiating trajectories in A and averaging over them. Instead we can use the same
strategy as employed in Sect. 7.4 for the calculation of the distribution P (ξ) (7.28).
Again, we divide the order parameter range between A and B into a sequence of
overlapping windows. These windows correspond to the regions Wi in phase space
(we call these regions windows as well). In each of the narrow windows we now
carry out a separate path sampling simulations with pathways required to start in
A and end in Wi. The corresponding path ensemble that needs to be sampled for
window Wi is

PA Wi
[z(t)] ≡ hA (z0)P[z(t)]hWi

(zt)/ZA Wi
(t), (7.58)

where the function hWi
(zt) is unity if zt is in Wi and vanishes otherwise. The factor

ZA Wi
(t) ≡

∫
Dz(t)hA (z0)P[z(t)]hWi

(zt) (7.59)

normalizes this particular path ensemble. The order parameters at the path endpoints
are binned into histograms. If the windows are sufficiently narrow each of the path
sampling simulations yields an accurate distribution PA (q̃, t) up to a constant fac-
tor and restricted to the particular window for which the simulation is carried out.
By matching the distributions where they overlap one finally obtains the complete
distribution, from which C(t) can be calculate by integration.

Through a procedure such as umbrella sampling we can calculate the correla-
tion function C(t) for a particular time t. For a determination of the reaction rate
constants, however, we need the derivative of C(t). Of course, the time derivative
of C(t) could be determined by calculating C(t) at different path lengths t and tak-
ing the derivative numerically. Fortunately, such a computationally expensive proce-
dure is not necessary. One can derive expressions for the reaction rate constant that
11 Strictly speaking, we need to consider a probability density.
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require one single-path free energy calculation [8] yielding considerable computa-
tional savings.

7.7 Summary

In this chapter we have reviewed the principles of transition path sampling and we
have learned how this methodology, developed to study rare transitions between
long-lived stable states in complex systems, can also be used to perform and enhance
free energy calculations. As explained in Sect. 7.4, the free energy as a function of
a given reaction coordinate can be determined from pathways generated with the
shooting algorithm described in Sect. 7.3. In such simulations it is important to cor-
rect for the bias introduced by the requirement that the pathways visit particular
regions of configuration space.

Transition path sampling methods also offer a practical way to improve the cal-
culation of free energies based on the Jarzynski identity relating the reversible work
between two states to the work statistics of nonequilibrium transformations. Due to
the exponential averaging required by this approach, sampling problems occur at
high switching rates. The biased path sampling techniques described in Sect. 7.5 can
help to overcome these difficulties by favoring rare but important trajectories with
work values contributing most to the exponential average of the Jarzynski identity.
Whether this biased path sampling approach to the evaluation of Jarzynki’s exponen-
tial average will yield free energy calculations that are computationally competitive
with the other methods described in this book is an open question of current research.

Finally, in Sect. 7.6, we have discussed how various free energy calculation meth-
ods can be applied to determine ‘free energies’ of ensembles of pathways rather than
ensembles of trajectories. In the transition path sampling framework such path free
energies are related to the time correlation function from which rate constants can be
extracted. Thus, free energy methods can be used to study the kinetics of rare transi-
tions between stable states such as chemical reactions, phase transitions of condensed
materials or biomolecular isomerizations.
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Specialized Methods for Improving Ergodic Sampling
Using Molecular Dynamics and Monte Carlo
Simulations

Ioan Andricioaei

8.1 Background

One of the most important problems facing free energy calculations by computer
simulations for complex systems such as proteins and nucleic acids is the need to
enhance the search of their configurational space. One characteristic of such systems
is a broad range of energy barriers at many scales, both lower and higher than the
thermal energy. The ergodic hypothesis [1] relies on the assumption that equilibrium
time averages are equal to the corresponding thermodynamic ensemble averages. As
a consequence, every point in the phase space must be accessible from every other
point.

For example, when calculating free energy using umbrella sampling (or poten-
tials of mean force along a reaction coordinate), the requirement that neighboring
windows should overlap relates to ergodicity in the sense that neighboring regions
must be accessible from each other. For complex systems, the ergodic hypothesis is
broken on the time scale of conventional simulations since various regions of their
configuration space become disconnected (separated by large free energy barriers)
and configuration points trapped in such regions have their own invariant probability
distributions. Therefore, for such systems there is an acute need for methods with
enhanced configurational sampling to solve the problem of broken ergodicity [2].

Most illustrative in this regard is the work of Hodel et al. [3] on the free energy
errors caused by insufficient sampling. Even for a relatively small biomolecular sys-
tem such as a nine-residue peptide loop with anchored ends, improper sampling of
conformational substates caused by broken ergodicity was shown to result in errors
of the order of 1 kcal mol−1, which was estimated to be about 50% of the total free
energy difference. Importantly, this error was much larger than the statistical error,
the sample-size hysteretic error, and the systematic ‘error’ due to changing the force
field. It then becomes imperative for a reliable estimation of the free energy that
underlying equilibrium distributions in the configuration space be generated by em-
ploying existing, or devising new, methods that increase the rate of conformational
sampling.
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An overreaching theme of the present chapter, besides broken ergodicity, has to
do with the fact that most of the enhanced sampling methods that we shall discuss
address situations in which one cannot clearly identify a reaction coordinate that
can be conveniently used to describe the kinetic evolution of the system of interest.
While methods for enhanced sampling are designed to yield accurate results faster
than regular molecular dynamics or Monte Carlo (MC) methods, it is our belief that
there is no ‘perfect’ method, but that, rather, there are methods that perform better for
particular applications. Moreover, it should be noted that, while in instances when
a proper reaction coordinate can be identified methods described in other chapters
are probably more efficient, they could still benefit by sampling in conformational
directions perpendicular to the reaction coordinate.

This chapter begins by defining a means of measuring how efficiently confor-
mational space is explored, then introduces, in the next section, the need for and
the general approach to enhanced conformational sampling. The following sections
then describe selected methods for enhanced sampling, both for classical and quan-
tum systems. They form by no means an exhaustive list, but rather one that tries to
selectively (and subjectively) mix a few established methods with several new de-
velopments to give an overview of this active research area and to stimulate further
ideas and possible future developments from the reader. We have tried to impart a
sense of cohesion in the book by frequent references to other chapters.

8.2 Measuring Ergodicity

As discussed in the example from the work of Hodel et al. [3], one of the most
efficient ways to improve the accuracy of free energy calculations with a given force
field is to enhance the conformational sampling. Thus, it is important to assess the
extent to which phase space is covered.

The focus of this section is to answer the question of how one can know how thor-
oughly the space of conformations is sampled in a particular simulation. To quantify
the extent of sampling, we shall introduce measures in conformational space that
use self-averaging. We shall present the fluctuation metric and the energy metric as
ergodic measures, and will give examples of the exploration of the conformational
space of atomic clusters. In the context of free energy calculations, these ergodic
measures are recommended to gauge the contribution of conformational sampling to
the convergence of the free energy values.

The ergodic measure estimates the rate of self-averaging in an equilibrium MC or
molecular dynamics simulation [4–6]. Self-averaging is a necessary (but not a suffi-
cient) condition for the ergodic hypothesis to be satisfied. The rate of self-averaging
for a given property is expected to be proportional to the rate of conformation space
sampling. Let us consider the potential energy metric defined for two independent
trajectories α and β. We shall use a move average employing the potential energy
U . If the system of interest is inhomogeneous, as is the case for biomolecules for
instance, U is typically chosen to be the nonbonded energy. We define the potential
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U for the jth particle along the α trajectory after n moves exploring space according
to a known equilibrium distribution to be

uα
j (n) =

1
n∑
k

w(xk)

n∑
k

w(xk)Uj(xk). (8.1)

Here, w(xk) is the weighting factor for any property at a given position on the kth
step xk. For example, for a constant-temperature molecular dynamics or a Metropolis
MC run, the weighting factor is unity. However, we wish to leave some flexibility in
case we want to use non-Boltzmann distributions; then, the weighting factor will be
given by a more complicated function of the coordinates. The ergodic measure is
then defined as a sum over N particles

dU (n) =
1
N

∑
j

[
uα

j (n) − uβ
j (n)

]2
. (8.2)

For an ergodic system, if the simulation length n → ∞, then dU (n) → 0. By analogy
with molecular dynamics, for large n we expect the form of the convergence to be [5]

dU (n) = dU (0)
1

DUn
(8.3)

where DU is a rate for self-averaging of U over the two independent trajectories.
In other words, the inverse of the ergodic measure, dU (0)/dU (n), goes to infinity
linearly with the simulation time n, that is, it goes to infinity diffusively, and the
‘diffusion constant’, DU , characterizes how fast a particular sampling is ‘diffusing’
in conformation space.

Therefore, we associate rapid and effective sampling of phase space with a large
value of DU . The choice of the potential energy as a quantity to self-average in the
metric is arbitrary. However, it has been shown to be a good measure of the extent
of sampling in a variety of systems. For MC algorithms to calculate free energies
(using, for example, umbrella sampling), parameters that maximize DU should be
chosen. Additionally, DU can be used to compare the efficiency of distinct free en-
ergy methods.

8.3 Introduction to Enhanced Sampling Strategies

When calculating free energies, one generates, either by molecular dynamics or MC,
configuration space samples distributed according to a probability distribution func-
tion (e.g., the Boltzmann distribution in the case of the Helmholtz free energy).

As explained above, simulating systems whose phase space is partitioned by
‘broken ergodicity’ is a significant challenge. In such cases, any average that is cal-
culated effectively ‘breaks’ into sums of subaverages, with each subaverage taken
over a subset of the phase space. The problem is acute in complex disordered sys-
tems, in which the potential energy surface is rugged and regions of configurational
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space may be separated by energy barriers much greater than the thermal energy.
For many systems of interest, such as proteins and glasses, the time scale for
functionally important motions greatly exceeds that of molecular dynamics simula-
tion [7]. Enhanced sampling algorithms that increase the frequency of barrier cross-
ing and, by doing so, allow for an accelerated search of phase space are essential if
reliable equilibrium averages are to be computed. Because accurate free energy cal-
culations of the type described in this book invariably require good conformational
sampling as a necessary condition for convergence, it is advisable that such enhanced
sampling strategies are employed.

An important property of an enhanced sampling distribution is that it should
include a significantly enhanced probability of visiting barrier regions or making
moves in which the system crosses these barriers. In systems such as biomolecules
and glasses, it is difficult to make such nonlocal moves. A number of advances in MC
methodology that address the problem of broken ergodicity [8] have been reported
in recent years. Rossky et al. [9] proposed the use of Brownian dynamics as a smart
way of doing MC simulations. Cao and Berne [10] have developed an anti-force
bias MC method, in which the system is encouraged to move toward minima in a
convex region of the potential surface, or over barriers in a nonconvex region of the
potential surface. The algorithm leads to accelerated barrier crossing, which may be
an infrequent event. Frantz et al. [11] proposed the J-walking method, which uses a
high-temperature MC run to generate trial moves. At high temperatures barriers may
be crossed easily, overcoming problems of broken ergodicity. The trial moves are
accepted so as to compute averages at a lower temperature of interest. The J-walking
method was employed by Tsai and Jordan [12] to examine phase changes in small
rare gas and water clusters. A very powerful method, applied widely to a variety
of systems, is the parallel tempering method [13–15], in which walks at various
temperatures are used. Multicanonical MC [16, 17] and cluster move methods [18]
have been developed to address the problems of critical slowing down associated
with phase transitions. Some of these methods and many others have been successful
in simulations of biomolecular systems [19] with only a moderate computational
overhead.

8.4 Modifying the Configurational Distribution:
Non-Boltzmann Sampling

We start by reminding the reader of the original and seminal ideas of Torrie and
Valleau, introduced in Chap. 3. In doing so, we thereby prepare for the subsequent
sections in this chapter.

To handle broken ergodicity in the calculation of thermodynamic averages (i.e.,
time-independent averages of the type 〈A〉 ∝

∫
A(x) exp(−βE(x))dx) a host of

methods have been devised [2]. In a subset of these, the Boltzmann distribution is
altered and replaced with a more delocalized one, w(E). One is thus able to generate
(faster) samples distributed according to w and subsequently, one can use importance
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sampling manipulation [20] to obtain the average corresponding to the unaltered sys-
tem. Examples that improve upon using the venerable umbrella sampling technique
are the Blue Moon ensemble method [21] or the scaled force algorithm [22]. It is
of note that importance sampling manipulations in the context of umbrella sampling
have been used for free energy calculation from the early stages of the development
of such ideas [23]. The reason was similar, although not identical, to the broken
ergodicity argument. When calculating free energy differences between two states,
there needs to be a good overlap between the distributions of conformational points
corresponding to the two states. During regular Boltzmann sampling, such an over-
lap is unlikely (unless the two states are quite similar). Therefore, nonphysical sam-
pling was introduced to generate (i.e., broaden) the overlap (of course correcting for
the nonphysicality afterwards), much like nonphysical enhanced sampling is used to
broaden the distributions and make visiting barrier regions more likely than in the
case of physical sampling. There are several ingenious ways to enhance sampling
using nonphysical distributions. We present the details of just two methods in the
following sections.

8.4.1 Flattening the Energy Distribution: Multicanonical Sampling
and Related Methods

As detailed in Chap. 3, the multicanonical MC method [16, 17] has gained wide-
spread interest and has been applied to a variety of systems. While most of the de-
tailed implementation is covered in that chapter, here we review it briefly to frame it
in the more general context of generating nonphysical distributions as means for en-
hanced conformational sampling. Multicanonical MC sampling, and its twin, entropy
sampling MC [24], aim to carry out MC simulation with a uniform energy probabil-
ity distribution. In addition to improving sampling, the approach has the benefit that
the temperature dependence of the energy, the entropy, and other physical quantities
are obtained at the end of the simulation. Multicanonical samples were originally
generated by MC, but molecular dynamics and hybrid MC algorithms can also be
used [19, 25]. In multicanonical sampling, conformations with energy E [where E
is the potential energy if MC is employed, or the total energy if constant-temperature
MD (or hybrid MC) are used], are assigned a ‘multicanonical’ weight,

w(E) ∝ 1/n(E) = exp [−S(E)] , (8.4)

instead of the canonical weight exp(−βE). Here, n(E) is the density of states and
S(E) is the microcanonical entropy. With this choice of the weights w(E) (which
need to be precalculated), the distribution of energies P (E) is given by

P (E) ∝ n(E)w(E) = const. (8.5)

As a result, in multicanonical simulation one-dimensional free diffusion in the
energy space is generated, thereby permitting unhindered escape over energy bar-
riers. As with other nonphysical distribution algorithms, one calculates the thermo-
dynamic average of any physical observable by applying a reweighting factor, in
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this case, exp(−βE)/w(E). The free diffusion in the one-dimensional energy
space means that the ‘nonphysical’ probability density function generated through
multicanonical sampling is simply a uniform distribution in energy [viz. (8.5)].
Convenient uniform probability distributions in thermodynamic functions other than
the energy E have been proposed. Examples are random walks generating uniform
distributions in temperature space [26], (i.e., p(T ) = const.) and microcanonical-
entropy space [27] (p(S) = const.). A comment should be made here regarding
the comparison between multicanonical methods and methods relying on modifica-
tion of the underlying dynamics through the Hamiltonian (e.g., adaptive umbrella
sampling; see Chaps. 3 and 4). The latter yield a flat probability distribution func-
tion along a predefined order parameter(s), a predefined, low-dimensional manifold.
For example, in the multidimensional adaptive umbrella sampling method [28] or
in the adaptive biasing force (ABF) method [29], which have been shown to provide
rapid and accurate free energy profiles for peptides and small proteins, the underlying
Hamiltonian

H = H 0 + V (ξ1, ξ2, . . . , ξs), (8.6)

consists of the unperturbed Hamiltonian H 0 of the system plus an umbrella potential
V , which is a function of s important degrees of freedom, i.e., ξ1, ξ2, . . . , ξs, for
which we desire to have a uniform sampling distribution. The umbrella potential is
determined adaptively during the simulation. The correct potential of mean force
along ξ1, ξ2, . . . , ξs is recuperated in the adaptive umbrella simulation by the use of
the WHAM method [30], but this is not required in the ABF simulations.

As in multicanonical sampling, a general feature of enhanced sampling methods
is to ‘spread out’ the distributions in conformational space, such that the probability
of visiting the barrier region relative to minima is enhanced. While such methods are
able to achieve significant speed-up in the exploration of space, it is important to note
that an optimum compromise between the exploration of space and the convergence
of equilibrium properties must be achieved if thermodynamic averaging is desired.
If a multidimensional configurational space becomes flat and the system wanders
through this space aimlessly, it only occasionally visits its relevant parts.

Here an additional distinction is to be made between thermodynamic averages of
a conformational observable such as the internal energy, which converges well if po-
tential minima are correctly sampled, and statistical properties such as free energies,
which depend on the entire partition function.

Consider, for instance, the free energy A(ξ) projected onto important degrees of
freedom. This is a potential of mean force along ξ and is obtained by integrating out
all the other degrees of freedom, {q}. It is related to the probability of finding the
system at a particular value of ξ by

e−βA(ξ) =
∫

e−βV (ξ,{q})d{q}. (8.7)

Since the potential of mean force is a statistical property, it is insufficient to calculate
it directly by importance sampling which, by design, emphasizes potential minima
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and samples the maxima less frequently. This can be seen by expressing the potential
of mean force in (8.7) for a value ξM in a maximum-energy region as an ensemble
average, i.e., an average that can be accumulated in a direct sampling run in the
canonical ensemble

A(ξM ) =
1
β

ln〈eβV (ξM ,{q})〉. (8.8)

For a value ξM in the barrier region, the largest contribution to A(ξM ) comes from
terms with large V (ξM , {q}), which are exponentially unlikely to occur. To generate
correct free energy profiles, it is most efficient to use indirect methods that force
the system to sample regions which would not be sampled in regular methods that
directly sample the Boltzmann distribution at room temperature. In contrast, the poor
sampling in the barrier regions exhibited by the direct methods has little effect on
conformational equilibrium properties as long as the important low-energy regions
are sampled with the correct relative weight, such as in the smart darting method
described in Sect. 8.6.

8.4.2 Generalized Statistical Sampling

As one of the possible ways to alter the sampling distribution in a manner that is con-
ducive to enhanced sampling, we present a strategy based on probability distributions
that arise in a generalization of statistical mechanics proposed by Tsallis [31]. In this
formulation, the generalized entropy for an N -body system is defined as [31, 32]

Sq =
k

q − 1

∫
pq(x)(1 − [pq(x)]q−1)dx, (8.9)

where q is a real number and Sq tends to the Gibbs–Shannon entropy S = −k∫
p(x) ln p(x)dx when q = 1. To derive the configurational probability distribution

function the generalized entropy is optimized subject to the constraints

∫
pq(x)dx = 1 and

∫
[pq(x)]qV (x)dx = Vq (8.10)

where V (x) is the potential energy and Vq is the Tsallis ensemble average internal
energy. The probability of a point in configuration space is found to be

pq(x) =
1
Zq

[1 − (1 − q)βV (x)]
1

1−q (8.11)

where

Zq =
∫

[1 − (1 − q)βV (x)]
1

1−q dx (8.12)
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is the generalized configurational partition function. Most importantly, note that the
generalized probability depends as a power law on the energy, which is weaker than
the well-known exponential dependence in the Boltzmann distribution. As a result,
for q > 1, the generalized ensemble is more delocalized in conformation space than
the canonical ensemble.

One can perform a MC simulation based on the acceptance probability

p = min
[
1,

(
pq(xnew)
pq(xold)

)q]
. (8.13)

Because it is broader, the equilibrium distribution [pq(x)]q with q > 1 can be sam-
pled more effectively than in the standard Metropolis MC, which corresponds to
q = 1 [33]. Subsequently, equilibrium averages can be calculated more effectively
using a regular reweighting method based on standard importance sampling manip-
ulations [20]. The reason for enhanced sampling becomes clear if one analyzes the
simple one-dimensional example of a harmonic oscillator. Substituting V = kx2

into (8.11), one obtains a Gaussian distribution for q = 1, and a broader, longer-
tailed Cauchy–Lorenz distribution in x-space for q = 2.

Note that by defining the effective potential

V̄ =
q

β(q − 1)
ln [1 − (1 − q)βV ] , (8.14)

the MC acceptance probability equation (8.13) can be written in the familiar form

p = min
[
1, exp

(
−β∆V̄

)]
. (8.15)

The standard Metropolis MC corresponds to the q = 1 limit, in which case the
probability of accepting a new configuration of the system is

p = min [1, exp (−β∆V)] , (8.16)

where ∆V = V (xnew) − V (xold).
Also note that the definition of the effective potential V̄ in (8.14) enables one

to conceive a constant-temperature molecular dynamics method (instead of MC) to
generate the Tsallis distributions. Given this effective potential, it is possible to de-
fine a constant-temperature molecular dynamics algorithm such that the distribution
Pq(x) is sampled in the trajectory. The equation of motion takes on the simple and
suggestive form

mk
d2xk

dt2
= −∇xk

V̄ = −∇xk
V (x)q[1 − (1 − q)βV (x)]−1 (8.17)

for a particle of mass mk and position xk and V̄ defined by (8.14). The effective force
derived from the effective potential V̄ (x) has a number of interesting properties. It is
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of the form Fq(x;β) = −∇xk
V̄ = F1(x)αq(x;β), where F1(x) is the ‘exact’ force

for standard molecular dynamics (q = 1) and αq(x;β) is a scaling function, which
is unity when q = 1 but can otherwise have a strong effect on the dynamics.

Assume that the potential is defined to be a positive function. In the regime q > 1,
the scaling function αq(x, β) is largest near low-lying minima of the potential. In
barrier regions, where the potential energy is large, the scaling function αq(x, β) is
small. This has the effect of reducing the magnitude of the force in the barrier re-
gions. Therefore, a particle attempting to pass over a potential energy barrier will
meet with less resistance when q > 1 than when q = 1. At equilibrium, this leads to
more-delocalized probability distributions with an increased probability of sampling
barrier regions. This argument demonstrates that, when q > 1, generalized molecu-
lar dynamics trajectories will cross barriers more frequently and explore phase space
more efficiently. Here, an interesting connection can be made to the ‘scaled force’
version of the ABF method [29]. Instead of subtracting the force acting on the reac-
tion coordinate in the ABF method, one can scale it (e.g., by αq) to achieve exactly
the same effect – ‘flattening’ the configurational space. Here we see that two differ-
ent methods, which have different theoretical underpinnings, could lead to the same
effective result.

Enhanced sampling in conformational space is not only relevant to sampling clas-
sical degrees of freedom. An additional reason to illustrate this particular method is
that the delocalization feature of the underlying distribution in Tsallis statistics is
useful to accelerate convergence of calculations in quantum thermodynamics [34].
We focus on a related method that enhances sampling for quantum free energies in
Sect. 8.4.2.

In summary, an MC walk generated in algorithms based on sampling general-
ized distributions (or a constant-temperature molecular dynamics trajectory) allows
one to obtain a well-defined statistical distribution that is broader than its Boltzmann
counterpart. As usual, appropriately weighted averages lead one to calculate equi-
librium thermodynamic averages for the Gibbs–Boltzmann canonical ensemble. We
refer the reader to [35] for an application to a test case for conformational sampling,
a 13-atom cluster modeled by Lennard-Jones interactions, which demonstrate the
enhancement in sampling and efficiency in the computation of equilibrium thermo-
dynamic averages.

Another way to think about the reason for enhancement brought about by gen-
eralized sampling is to cast it as a general approach of scaling down the energy
barriers. Not just any kind of scaling will do, however. The transformation V → V̄
in (8.14) has the desirable feature of leaving invariant the position of minima and
maxima. For reasons of efficiency when converging to thermodynamic averages, one
would still like to visit minima more often than higher-energy states, even on the
transformed potential. While in thermodynamic integration (TI) and thermodynamic
perturbation methods the integration variable does constrain, by design, the system
along various high-energy intermediates along the pathway between which the free
energy is computed, thorough sampling in the degrees of freedom perpendicular to it
still necessitates excursions to the important low-energy states. The desirable feature
of preserving the places where sampling is supposed to matter in the case of V → V̄
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Fig. 8.1. The Tsallis-transformed effective potential V̄ is smoother than the physical,
untransformed potential V and sampling on it is enhanced; stationary points of any order
preserve their x location

translates to preserving the location of all stationary points on the potential energy
surface (see Fig. 8.1).

It is pedagogically interesting to compare the Tsallis sampling algorithm with the
multicanonical sampling method [16, 17]. In the latter, a random walk in energy is the
essential feature used to enhance sampling, with success in a number of applications.
It has been shown [36], however, that in the thermodynamic limit the multicanonical
algorithm is identical to the regular Metropolis scheme. The reasoning is that, in a
system with a large number of particles N , the entropy S(E) is a smooth function
of the energy E, and can thus be expanded to first order in ∆E. In this case, the
acceptance probability of the multicanonical sampling update becomes

lim
N→∞

exp(−∆S) = exp
(
− ∂S

∂E
∆E

)
= exp

(
−∆E

T

)
, (8.18)

where we have used the equality ∂S/∂E = 1/T .
In the thermodynamic limit, the Tsallis updating scheme has the form

lim
N→∞

exp
(
−∆Ē

T

)
=
(

E

E + ∆E

) q
1−q

, (8.19)

which is basically unity since the energy change ∆E is local (i.e., small) and E is of
order N .

It is ironic that in the N → ∞ limit the Tsallis sampling algorithm has the main
feature for which the multicanonical algorithm was designed – it performs a random
walk in energy – while the multicanonical algorithm loses this feature.

8.5 Methods Based on Exchanging Configurations:
Parallel Tempering and Related Strategies

A host of successful methods have been devised that use two or more replicas of the
system run in parallel and corresponding to different simulation parameters. The en-
hanced equilibrium averaging is achieved by Metropolis-type acceptance–rejection
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schemes for the swaps between the replicas indexed by these parameters. The swaps
can be attempted in a random or systematic (i.e., periodic) fashion. The basic idea
of these methods relies on the fact that, at different values of the parameter, the ac-
ceptance probabilities (or trajectories) are different. For example, higher acceptance
probabilities at larger parameter values can be used as an efficient means of transport
over barriers, whereas those at parameter values closer to those of the real physical
system provide good local sampling of the minima.

One of the most popular such techniques is parallel tempering in the canoni-
cal ensemble, for which the index parameter is temperature [13–15]. While parallel
tempering (or replica exchange) strategies had been independently proposed on mul-
tiple occasions in various scientific areas, perhaps the earliest seed of the idea can be
found in early work by Swendsen and Wang [37].

8.5.1 Theory

For clarity, let us present the details of the swap process in a temperature-based par-
allel tempering algorithm. Generally, parallel tempering involves the implementation
of the following iterative steps:

1. Run M replicas (walkers) in parallel at increasing temperatures

T1, T2, . . . , Ti, . . . , Tj , . . . , TM ,

where the temperature of interest is usually the lowest one.
2. Pick at random two temperatures Ti and Tj and attempt a swap x � x′ between

the configuration x of a walker at Ti and the configuration x′ of a walker at Tj

according to a predefined acceptance probability [cf. (8.22)].
3. If the swap is rejected, count in the current conformation. If the swap is accepted,

assign to the configuration of walker i temperature Tj and vice versa.
4. Repeat until convergence.

Assuming that after their previous swap the two walks were sufficiently long
to be in the asymptotic regime, this means that transient behavior has elapsed and
the system has relaxed to equilibrium for the respective parameters. Then, the joint
configurational probability density just before the current swap is simply

p(2)(x,x′) ∝ exp
(
−V (x)

kBTi

)
exp
(
−V (x′)

kBTj

)
. (8.20)

The probability to swap, W (x → x′,x′ → x), has to obey detailed balance

p(2)(x,x′)W (x → x′,x′ → x) = p(2)(x′,x)W (x′ → x,x → x′) (8.21)

and therefore the swap should be accepted with probability

min
{

1, exp
[(

1
kBTi

− 1
kBTj

)
(V (x′) − V (x))

]}
. (8.22)
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In this way, stationarity of the probability distribution in configuration space with
respect to swapping is enforced [38], with the advantage that the mixing resulting
from the swaps allows the lowest-temperature walker to equilibrate more rapidly by
coupling it to the faster-equilibrating walker at a higher temperature. In practical
terms, as can be verified from the acceptance formula above, if a swap is attempted
between two widely different temperatures Ti and Tj , the acceptance probability is
quite low, so one uses swaps between systems with small temperature differences,
usually adjacent to each other, i.e., with |i− j| = 1. With adjacent swapping, accep-
tance of configuration swaps will be significant if the energy probability distributions
of the two systems (at Ti and Ti+1) overlap significantly. Since for large systems the
relative spread of the probability distributions decays as

√
N , the step in temperature

∆Ti = Ti+1 − Ti will need to be small, and many replicas are needed [i.e., the
number of replicas M is of O(

√
N)]. Simulating M systems of size N for a given

number of steps obviously takes M times more effort than simulating one system
only. However, despite this M -fold increase in system size, parallel tempering is, in
general, still efficient because proper sampling at a single temperature usually takes
more than M times longer.

How many temperatures should the replicas be spread over, and what should be
the highest? In the close-kin method of simulated annealing, an optimal schedule for
changing the temperature from high to low is sought in the hope of finding the global
energy minimum without the simulation getting trapped in intermediates. Quite sim-
ilarly for parallel tempering, it is of substantial importance to find an optimal as-
signment for the replica temperatures. One approach involves tending to achieve an
equal acceptance probability for all swaps. Under the approximation of constant heat
capacity, Kofke [39] has shown that the asymptotic value of the acceptance depends
solely on the ratio Ti+1/Ti, which would imply a geometric progression of temper-
atures. Predescu et al. [40] have expressed, assuming negligible correlation between
successive swaps, the acceptance probability as a function of the effective fraction,
defined as the expected probability that a configuration from the lowest-temperature
replica successfully reaches the highest-temperature one. This represents an adequate
measure of the quality of a parallel tempering technique, as far as swapping is con-
cerned. Refinement of the simulation protocol has also been achieved by adaptively
changing the allocation of temperatures during the simulation to obtain a desired trial
exchange acceptance probability [41, 42].

As a result of stationarity, the partition function of the replicated ensemble can
be written

Q(T1, T2, . . . TM ) =
M∏
i=1

(Λ3
i )

−1

∫
dx e−V (x)/kBTi , (8.23)

where Λi =
∏

k=1 N(h2/2πmkkBTi)1/2 involves the products of the thermal
de Broglie wavelengths for the N particles, each of mass mk, that comprise the
replica at temperature Ti.

A useful feature of the multiple-temperature dependence of the partition function
Q(T1, T2, . . . , TM ) in the equation above is that it can be subsequently manipulated
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not only to derive thermodynamic properties at the ‘physical’ temperature of
interest, but also to map temperature dependencies across the whole range of uti-
lized temperatures.

Molecular dynamics has also been used to replace the MC moves for confor-
mational advancement [43]. In the molecular dynamics version of parallel temper-
ing, often referred to as replica exchange molecular dynamics, momenta are used
in the propagation scheme such that a constant temperature is maintained between
the swaps. After the swap in conformational space (with the same acceptance cri-
terion as in the MC implementation), a readjustment in momentum space is also
needed. This is done by renewing the momenta for replica i by the transformation
pnew

i =
√

T new/T oldpold
i .

While between the swaps the motion of the system is somewhat realistic, it is
important to emphasize that the swaps between two temperatures are nonphysical.
This therefore destroys the sequencing of dynamical events (that would be required
to calculate, for example, time correlation functions) and renders the dynamics and
kinetics artificial.

8.5.2 Extensions

Instead of attempting swaps between adjacent replicas, an alternative exchange strat-
egy for parallel tempering simulations has been proposed. In the all-exchanges paral-
lel tempering method of Calvo [44], the acceptance probabilities of all possible swap
moves are calculated a priori. One specific swap move is then selected according
to its probability and enforced. The efficiency of the method was illustrated in the
case of Lennard-Jones clusters. Judging by the convergence of the caloric curve for
Lennard-Jones particles, the scheme appears more than twice as fast as conventional
parallel tempering.

The index parameter can be energy as well, which is the case for parallel tem-
pering in the microcanonical ensemble [45]. Other methods have been devised using
as the index parameter the chemical potential, as in the hyper-parallel tempering
method [46], a delocalization parameter, as in q-jumping [47] (see also Sect. 8.4.2)
and generalized parallel tempering [48–50], or suitable modifications of the poten-
tial, as in the so-called Hamiltonian replica exchange method [51, 52]. Multicanon-
ical ensembles have also been used in the context of parallel tempering [53, 54],
which increased the efficiency of the algorithm relative to regular parallel tempering
by decreasing the number of replicas needed to be simulated.

8.5.3 Selected Applications

While applications of parallel tempering to various fields ranging from materials
science to chemistry to statistical physics abound, we would like to showcase here
its use in biomolecular conformational sampling, and in particular to protein folding.
Exciting in its own right, this problem is also prototypical for cases where parallel
tempering is expected to be most usefully employed, i.e., when the underlying energy
surface of the system is rugged. Biomolecular applications originated with the work
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by Hansmann [55] who used MC-based parallel tempering on the Met-enkephalin
peptide with encouraging results.

Molecular-dynamics-based parallel tempering methods (also known as replica
exchange molecular dynamics) have also been used to address the energetics be-
hind, and the detailed nature of, the protein folding mechanism. An example is the
work of Garcia and Onuchic [56], who used replica exchange MD for the study of
a three-helix bundle protein at atomic resolution over a wide range of temperatures
and sampling both unfolded and folded states, to obtain the free energy, entropy, and
enthalpy surfaces along structural folding coordinates. The observed multitude of the
transitions between all minima on the free energy surface enabled a quantitative de-
termination of the free energy barriers and the ensemble of configurations associated
with the underlying folding intermediates.

Other exciting applications involved using parallel tempering in connection with
available experimental data. For example, Falcioni and Deem [57] used X-ray data
to refine structures of zeolites, and Haliloglu et al. [58] refined NMR structural data
for proteins (in particular using residual dipolar coupling constraints).

8.5.4 Practical Issues

An issue to consider in practical implementations for various systems is size con-
sistency: when the control parameter, in this case the temperature T , is an intensive
variable, it has to change less between replicas as the system size increases, so that
significant acceptance for swaps is assured. Another observation is that the config-
urations in the underlying distributions obey the correct (equilibrium) statistics, but
dynamics inferred from the walkers may be nonphysical. An important advantage of
parallel tempering is that there is no need to define a configurational order parame-
ter. On the other hand, configurational order parameters are useful for approximating
kinetics, i.e., they are variables which could be advanced by dynamical equations of
motion, thereby imparting a time evolution to the system. This is discussed in depth
in Chap. 4.

Another practical limitation in complex applications lies in the fact that, if tem-
perature is used as a control parameter, one needs to worry about the integrity of a
system that is heated too much (e.g., water–membrane systems or a protein heated
above its denaturation temperature). When issues such as those mentioned above are
addressed, parallel tempering can be turned into a powerful and effective means of
enhanced conformational sampling for free energies over a range of temperatures for
various systems.

For an excellent overview of several other applications of parallel tempering, as
well as for details on the pertinent questions to be addressed in practical implemen-
tations, the reader is referred to a recent review by Earl and Deem [59].

8.5.5 Related Methods

A method related to parallel tempering is J-walking [60], in which, as in parallel
tempering, configurations from a high-temperature walk are used to make a low-
temperature walk ergodic. The J-walking strategy involves the high-temperature
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walk feeding configurations to the low-temperature walk, rather then the high- and
low-temperature walkers exchanging configurations as in parallel tempering. The re-
lationship between J-walking and parallel tempering has been analyzed in [61].

Improvements to parallel-tempering-type algorithms have been proposed. For ex-
ample, the generalized Tsallis distributions discussed earlier in this chapter have been
used to enhance the sampling properties of parallel tempering methods. Other exam-
ples are adding additional dimensions for the walker to wander, as in the catalytic
tempering of Berne et al. [62], which is reminiscent of Purisima and Scheraga’s
original ideas on increasing system dimensionality developed for global optimiza-
tion [63] (see also [64]).

8.6 Smart Darting and Basin Hopping Monte Carlo

In some instances, we have prior knowledge of states of the system that are ther-
modynamically meaningful. Then we can take advantage of such information and
generate the proper samples that allow, for instance, the calculation of the relative
free energy of such states. Let us reconsider the partition function for the ensemble
of states for N distinguishable particles in three dimensions,

Q(β) =
( N∏

k=1

Λ3
k

)−1
∫

dr e−βV (r) =
( N∏

k=1

Λ3
k

)−1

Z(β), (8.24)

where Λk = (h2β/2πmk)1/2 is the thermal de Broglie wavelength for a particle
of mass mk, V (r) is the potential energy, and Z(β) is the configuration integral.
In the inherent structure picture of statistical mechanics, proposed by Stillinger and
Weber [65, 66], the 3N -dimensional configuration space is decomposed into a set of
basins of attraction. Any point in configurational space (excluding maxima, saddle
points and ridges) will be mapped to a minimum on the potential surface (e.g., either
by steepest descent or by some form of annealing to average over thermal motion).
Labeling the basins i and calling Bi the regions of configuration space which form
basins of attraction draining to the ith minimum, located at Ri of energy Vi, the
configuration integral may be written

Z(β) =
∑

i

Zi(β) =
∑

i

∫
Bi

dr e−βV (r). (8.25)

The potential energy in the ith basin can be written V (r) = Vi + ∆iV (r) leading to

Zi(β) = e−βVi

∫
Bi

dr e−β∆iV (r). (8.26)

These are exact expressions for the configuration integrals. Alternatively, we can
write the partition function as

Q(β) =
∑

i

exp[−βAi] (8.27)
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where Ai is the Helmholtz free energy of the ith basin. A method that allows for
combining local sampling of the basins Bi with a convenient means of transportation
between the basins would constitute a good approach towards the sampling of the
configuration space. This is the spirit of the smart darting method described in this
section. Using a search method (e.g., high-temperature MC or q-jumping MC [47]),
pick configurations from which to perform steepest descents on the potential energy
surface, generating a set of M configurations, corresponding to distinct local minima
{Ri}i=1,2,...,M . From this set of minima construct M(M −1) displacement vectors,
or ‘darts,’ of the type

Dij = Rj − Ri, i �= j, i, j = 1, 2, . . . ,M (8.28)

Also, choose a real number ε. Then define an ε-sphere around each element of the
set {Ri}

Sε(Ri) = {r | ‖ r − Ri ‖< ε}. (8.29)

For efficient sampling, the value of ε should be chosen small in the following sense.
The difference in the potential energy of any configuration within any Sε(Ri) and
the configuration Ri of the local minimum of that ε-sphere should be much less
than the thermal energy of a degree of freedom. The parameter ε should be chosen
small enough that no two spheres overlap, otherwise the sampling procedure requires
modification. There are two types of steps: jumps and local moves, which occur with
probability P and 1 − P , respectively. Therefore, during MC sampling done locally
within a basin, check with probability P whether the current configuration r is in an
ε-sphere and do one of the following two things:

(1) If, say, r ∈ Sε(Rk), then randomly pick another local minimum, say the lth
one, and jump to the Sε(Rl) sphere by the translation

r → r + Dkl. (8.30)

Accept or reject the move according to the Boltzmann criterion.
(2) If r is outside any ε-sphere, then count again the current configuration r (i.e.,

reject an implicitly attempted jump along Dkl because it would land outside the
ε-sphere for minimum l). The remainder of the simulation steps, on the average a
fraction 1 − P of them, are local MC steps drawn from a uniform distribution and
accepted or rejected according to the Boltzmann criterion.

For this algorithm, one can prove that detailed balance is guaranteed and the
exact average of any configuration-dependent property over the accessible space is
obtained. Two key issues determine the detailed balance. The first is the fact that the
trial probability to pick the displacement vector Dkl to go from the kth to the lth ε-
sphere equals the trial probability to pick the displacement vector Dlk for the reverse
step. The second issue is that the trial probability for a local MC step that moves the
walker from a point inside an ε-sphere to a point outside that sphere is the same as
for the reverse move; i.e., (1−P ) times what it would be in a walk restricted to local
moves.
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The smart darting method has its roots in the approach previously suggested by
the smart walking method [67], and is related to the MC minimization [68] and newer
basin-sampling methods such as the puddle jumping strategy [69]. The smart darting
method has been recently improved and expanded [70] and has been combined with
parallel tempering [71].

In real-world implementations, a practical issue is that, if the walker enters a new
basin purely by local moves (as might happen at high temperatures), this must be
recognized. For large M , efficient implementation of this monitoring may require
neighbor-listing of the minima or some other form of bookkeeping, to prevent fre-
quent searches over all M minima.

In general, methods that couple local to global moves, of the types presented
in this section, are expected to depend critically on the ability to exhaustively map
all thermodynamically significant basins, which is not always guaranteed. However,
these methods are likely to be used profitably in particular applications where only
a small, known set of conformations are relevant (e.g., in biomolecular applications
where sets of structures are known from X-ray or NMR data).

8.7 Momentum-Enhanced HMC

This section is used to introduce the momentum-enhanced hybrid Monte Carlo
(MEHMC) method that in principle converges to the canonical distribution. This
ad hoc method uses averaged momenta to bias the initial choice of momenta at each
step in a hybrid Monte Carlo (HMC) procedure. Because these average momenta
are associated with essential degrees of freedom, conformation space is sampled ef-
fectively. The relationship of the method to other enhanced sampling algorithms is
discussed.

One general approach to enhancing sampling, which is the focus of this section,
is based on the fact that both fast and slow dynamical modes contribute to the time
evolution of biomolecular systems, but in most cases the motions of primary interest
are the slow ones, which typically correspond to the largest structural changes [72,
73].

While the actual time spent by an ensemble of molecules in the fast manifold
is the same as that spent in the slow manifold, the computer time needed for con-
vergence of properties in the slow manifold (when simulating a single molecule)
is much larger than that spent in the fast manifold. Therefore, identifying the slow
manifold and artificially accentuating the motion along it can decrease the amount
of computational time required for the events of primary interest to occur and for
statistical averages to converge.

The direction of slow motion can be found from normal-mode diagonalization.
However, such a procedure would require, for a system of N particles, O(N3) cal-
culations. Instead, we would like to find the direction of the slow modes by a method
that requires, for each evaluation of the slow direction, at most as many calculations
as the evaluation of an energy, roughly an O(N2) operation (if no cut-offs are used).
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As we shall see below, a useful strategy to identify the slow manifold is to calcu-
late an average of the momentum, p, over τ time units during a molecular dynamics
propagation

p̄ =
1
τ

∫ τ

0

p(t)dt. (8.31)

In order for the averaged momentum p̄ to point along the slow manifold (i.e., for
the components of momentum in the fast manifold to average to zero), one has to
choose the averaging time τ so as to be several times longer than the period of the
fast modes but shorter than those of the slow modes.

The choice of the momenta, rather than of the forces, is illustrated by the sim-
ple example of a two-dimensional harmonic oscillator described by the parametric
equations

x = X sin(ωxt + φx), y = Y sin(ωyt + φy). (8.32)

If ωx � ωy , the motion in x is fast and that in y is slow. Differentiation with respect
to t yields

px = Px cos(ωxt + φx), py = Py cos(ωyt + φy) (8.33)

and

fx = Fx sin(ωxt + φx), fy = Fy sin(ωyt + φy). (8.34)

Given equipartition of energy (i.e., mω2
xX2 = mω2

yY 2), the relative amplitudes of
the displacements, momenta, and forces are

X � Y, Px = Py, Fx � Fy. (8.35)

We observe in (8.35) that the magnitudes of the momenta in the fast and slow
directions are comparable, in contrast to the magnitudes of the forces. Due to the
fact that the instantaneous force in the fast direction is much larger in magnitude
than that in the slow direction, the time-averaged f̄x is comparable to f̄y , where the
bar denotes time averaging. In other words, the average force in the fast direction
converges to zero poorly because it involves differences of large numbers. In other
words the forces in the fast manifold, while taking on both positive and negative
values, can have absolute values several orders of magnitude larger than in the slow
manifold, and therefore do not cancel out to the same level of precision as if their
magnitudes were comparable to the slow ones. As a result, the guiding force does not
necessarily emphasize the slow degree of freedom. However, the average momentum
does. This is because the magnitude of the fast and slow momenta are comparable,
and therefore the fast momenta will average to zero within the precision used for the
slow momenta. We shall next present a momentum-based enhanced sampling method
that rigorously converges to the canonical distribution under particular limiting
assumptions.
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To incorporate the guiding momentum in a straightforward manner and to ensure
canonical sampling, we adapt an HMC scheme [74, 75] rather than molecular dy-
namics. At each step in an HMC simulation, random momenta are assigned, several
steps of molecular dynamics are performed to move the system, and the move is ac-
cepted or rejected according to a Metropolis-like criterion [76] based on the change
in total energy (which includes the kinetic energy). Because the time steps are much
larger than those employed in MD, the discretization errors lead only to an approxi-
mate conservation of the total energy, but not to exact conservation. The implemen-
tation of the HMC method is described below together with the variant we introduce
here. In brief, in the proposed self-guided scheme, the initial momenta at each step
are selected with a bias towards the soft degrees of freedom and the acceptance cri-
terion is modified accordingly to maintain detailed balance.

In the standard HMC method two ingredients are combined to sample states from
a canonical distribution efficiently. One is molecular dynamics propagation with a
large time step and the other is a Metropolis-like acceptance criterion [76] based on
the change of the total energy. Typically, the best sampling of the configuration space
of molecular systems is achieved with a time step of about 4 fs, which corresponds
to an acceptance rate of about 70% (in comparison with 40–50% for Metropolis MC
of pure molecular liquids).

In the standard HMC method, the 3N components of the vector p are usually
drawn randomly from a Gaussian (Maxwellian) probability distribution

PM (p) = Ce−
1
2pT Ap, (8.36)

where A = βM−1, β = 1/kT , M is the mass matrix, and C is a normalization
factor. If the slow manifold in the 3N -dimensional coordinate space were known,
one could enhance sampling of that manifold by skewing the matrix A to increase
the probability of larger components in the soft directions. Unfortunately, identifica-
tion of the slow manifold would require frequent diagonalization of the covariance
matrix of atomic fluctuations, which is not computationally efficient. However, it is
possible to use this idea in an approximate fashion that does not require matrix diag-
onalization. The Maxwell distribution function (8.36) is a special case of the general
multivariate Gaussian distribution

PG(p) = Ce−
1
2pT Ap−Bp, (8.37)

where A is now a positive-definite symmetric matrix which determines the width
along the eigendirections and B is a 3N -dimensional row vector which determines
the position of the maximum. We can choose A = M−1 and B = ±ξpT

0 , where ξ
is a multiplicative constant and p0(t) is the average momentum over the past tl time
units

p0(t) =
1
tl

∫ t

t−tl

pdτ, (8.38)
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which, in the numerical implementation, is calculated from the velocities during the
molecular dynamics propagation. In other words, one draws initial momenta at each
step from the bilobal distribution

PB(p) = C
(
e−β 1

2pT M−1p−βBp + e−β 1
2pT M−1p+βBp

)
, (8.39)

which is peaked around B and −B. For B to point along the slow manifold (i.e., for
the components of B in the fast manifold to be negligible), one has to choose the
averaging time tl to be larger than the period of the fast modes but smaller than those
of the slow modes.

After the momenta are selected from the distribution (8.39), the dynamics is prop-
agated by a standard leapfrog algorithm (any symplectic and time-reversible integra-
tor is suitable). The move is then accepted or rejected according to a criterion based
on the detailed balance condition

P(x)W (x → x′)dxdx′ = P(x′)W (x′ → x)dxdx′, (8.40)

where P(x) is the equilibrium (Boltzmann) probability of state x and W (x → x′)
is the transfer matrix element giving the probability that the system will go from x
to x′. The quantity W can be decomposed into

W (x → x′)dxdx′ = S (x → x′)A (x → x′)dxdx′, (8.41)

where S is the probability of attempting the move from x to x′ and A is the prob-
ability of accepting the move. For the deterministic dynamic mapping (p,x) →
(p′,x′) obtained from the integration of the equation of motion, the probability of
attempting the move x → x′ is equal to the probability of picking the specific mo-
mentum vector p, which leads (through the dynamic mapping) to x′:

S (x → x′)dxdx′ = PB(p)dxdp. (8.42)

Since the molecular dynamics integrator that we use is time-reversible, the reverse
move, x → x′, is generated if we pick, at x′, exactly the same momentum with
which we arrived there, but with opposite sign. In other words, the reverse move is
attempted with probability

S (x′ → x)dxdx′ = PB(−p′)dp′dx′ = PB(p′)dx′dp′. (8.43)

By substitution, the detailed balance condition becomes

P(x)PB(p)A (x → x′)dxdp = P(x′)PB(p′)A (x′ → x)dx′dp′. (8.44)

If the dynamic mapping is also area-preserving (i.e., dxdp = dx′dp′), (8.44) is
satisfied if we choose
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A (x → x′) = min
(

1, e−β∆V PB(p′)
PB(p)

)
= min

(
1, e−β∆H eβBp′

+ e−βBp′

eβBp + e−βBp

)
.

(8.45)
The last equality is obtained by substituting (8.39) for PB . In the limit of B = 0,
we recover the acceptance probability of the standard HMC method [75].

Equations (8.44) and (8.45) guarantee convergence to a canonical distribution
only in the case of fixed B. Because B varies (i.e., the method uses information
from momenta sampled in the past in determining the vector B), the evolution is
not strictly Markovian. As a consequence, the correlations introduced can lead to
the accumulation of systematic errors in the determination of configuration averages
[77]. However, these correlations can be broken if the update of B is not done each
step, but with a lower updating frequency. This is analogous to other approximately
Markovian procedures employed in MC simulations (e.g., update of the maximum
displacements allowed for individual atoms [78]).

The MEHMC method is part of a general class of enhanced sampling methods,
in which the dynamics along the soft (slow) degrees of freedom are emphasized
relative to those along the stiff (fast) degrees of freedom. One of the conceptu-
ally simplest and most widely used such methods is the SHAKE algorithm, in
which constraints are applied to selected bond lengths and angles to allow larger
time steps to be taken [79]. Another example, in which prior knowledge about the
system is used to group atoms into rigid substructures, is the multibody, order-N
dynamics [MBO(N)D] algorithm [80]. Faster integration of the equations of motion
can also be obtained by decomposing the dynamical propagator into fast and slow
components [81]. Other methods in this class seek to distinguish the slow and fast
motions automatically by eliminating high-frequency modes. These include large-
time-step dynamics based on a stochastic action [82, 83], a generalized moment
expansion [84], projection of a generalized Langevin equation onto degrees of free-
dom identified by mode coupling theory [85], dynamic integration within a subspace
of low-frequency eigenvectors [86], and digital filtering of the velocities [87, 88]. It
should be stressed that, for all enhanced sampling techniques in this category, one
should not overly enhance the sampling. Otherwise, the slow manifold is no longer
slow compared to the remaining degrees of freedom. In other words, one needs to
give the system enough time to equilibrate along orthogonal degrees of freedom.

Most other dynamic enhanced sampling methods fall into another class, in which
the effective energy surface is deformed or non-Boltzmann weighting is introduced
to facilitate movement on it. One way in which barriers can be lowered is to average
over multiple copies of selected atoms [89–92]. Another way is to introduce delocal-
ization [93–95]. Other methods in this class use non-Boltzmann sampling to increase
the probability of high-energy states [16, 28, 96–98]. Parallel tempering [99–101]
can be viewed as a member of the latter group.

Consideration of the various methods points to certain issues that could arise
in MEHMC simulations of systems other than those studied here. One source for
concern is that the efficiency of sampling clearly depends on the choice of aver-
aging period. A similar criticism has been put forward with regard to the essential
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dynamics method [72]. In this method, the directions of the essential dynamics are
identified as the lowest-frequency eigenvectors of the atomic position covariance ma-
trix accumulated during a molecular dynamics simulation; this method is therefore
for analysis rather than for the generation of a trajectory. Nevertheless, if the simu-
lation time is not long enough to obtain convergence of the collective motions, the
eigenvectors will resemble those of a system with the same number of degrees of
freedom executing random diffusion [73, 102]. A second source of concern is that
the momentum kick given by the MEHMC method may not be enough to overcome
large free enthalpy barriers along the slow manifold.

In such cases, the MEHMC method could be employed in combination with an
enhanced sampling method that deforms the effective energy surface (but preserves
the location of the potential minima), such as that in [29, 97]. Likewise, it may be
worthwhile to explore the use of a reversible multiple-time-scale molecular dynamics
propagator [103] with MEHMC to accelerate the dynamical propagation.

In spite of these potential concerns, the MEHMC method is expected to be a
useful tool for many applications. One task for which it might be particularly well
suited is to generate a canonical ensemble of representative configurations of a bio-
molecular system quickly. Such an ensemble is needed, for example, to represent
the initial conditions for the ensemble of trajectories used in fast-growth free energy
perturbation methods such as the one suggested by Jarzynski’s identity [104] (see
also Chap. 5).

Another interesting application of the MEHMC method could be to introduce
faster relaxation of the solvent (or certain portions of the solvent) upon changing
the conformation of a solute during a conformational free energy calculation. This is
analogous to importance sampling in MC solvation free energy calculations [105].
Such calculations are done using either a thermodynamic perturbation or a TI
approach (see Chaps. 2 and 4). In these two approaches, a series of simulations is
performed for several values of a coupling parameter λi by accumulating equilib-
rium averages 〈exp(−β(H (λi+1)−H (λi)))〉i or, respectively, 〈∂H /∂λi〉i, in the
ensemble corresponding to the perturbed Hamiltonian H (λi). It would be of interest
to quantify the extent to which the enhanced sampling promoted faster convergence
of the equilibrium averages in each λi window when the B vector was applied to
either solvent or solute molecules alone.

The potential applications presented in the two paragraphs above can be regarded
as special cases of a more general situation. As has already been discussed in free
energy perturbation (FEP) (see Chap. 2) and TI (see Chap. 4), a host of methods for
calculating the free energy require a thorough sampling of configurations represen-
tative of a given ensemble. The MEHMC method may very well help in generating
such configurations efficiently.

8.8 Skewing Momenta Distributions to Enhance Free Energy
Calculations from Trajectory Space Methods

The identification of the slow manifold introduced in the previous section for the
MEHMC method turns out to be effective not only for enhanced thermodynamic
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averaging, but also to enhance the generation of trajectories connecting distinct
states. A thorough sampling of such trajectories is important for methods that are
aimed at computing conformational transition rates or free energy barriers. Efficient
trajectory sampling is also important for the estimation of free energy profiles along
a reaction coordinate using the Jarzynski identity, i.e., in computing equilibrium free
energies from nonequilibrium fast trajectories (see Chap. 5). While the Jarzynski
identity is exact in practice, one of its computational drawbacks is that the trajec-
tories that count most are statistically rare. A computational method of preferentially
sampling those trajectories is desirable. Some strategies along these lines have al-
ready been discussed in Chaps. 5 and 6. Here, we discuss another method that allows
for computing the entire potentials of the mean force based on the formalism of
Hummer and Szabo [106].

8.8.1 Introduction

There has been considerable recent interest in using approaches that allow the gen-
eration of ensembles of dynamical paths to calculate kinetic properties of conforma-
tional transitions [107, 108] or to reconstruct entire free energy profiles [106] (see
previous chapter). These approaches are expected to be useful in particular for large-
dimensional systems (such as proteins or nucleic acids) because there is no need to
calculate saddle points, the number of which grows exponentially with the number
of degrees of freedom. The fundamental object for these types of calculations is an
average of an observable, A, over an infinite ensemble of trajectories that are initi-
ated from the equilibrium distribution of phase space vectors Γ = (x,p), and which
evolve over time t according to a specific dynamical flow, which may or may not
conserve an equilibrium distribution. The observable, A, can be a function of the
endpoints Γ0 and Γt, or a functional of the entire trajectory leading to Γt. Then, as
we shall see next, we are interested in the ensemble average of this quantity,

C(t) = 〈A[Γ(t)]〉, (8.46)

where 〈· · · 〉 indicates an average over the trajectory ensemble.
For the purposes of the present treatment, we wish to rewrite this trajectory

average as an average over the initial, equilibrium distribution. If the system evolves
according to deterministic (e.g., Hamiltonian) dynamics, each trajectory is uniquely
determined by its initial point, and (8.46) can be written without modification as an
average over the canonical phase space distribution.

If the system evolves according to some stochastic scheme, each initial point can
lead to a multitude of trajectories. We note, however, that as long as each trajectory is
initiated from an equilibrium distribution, (8.46) can still be rewritten as an average
over the initial distribution:

C(t) = 〈Q(Γ0; t)〉0, (8.47)

where Q(Γ0; t) is the average of the observable A over all realizations of the
dynamics of duration t, which begin from the initial phase space point Γ0. We
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have replaced A[Γ(t)], a functional of the trajectory, with a function of the initial
conditions. The notation 〈· · · 〉0 indicates an average over the equilibrium distribu-
tion at t = 0, so that Γt is uniquely determined by Γ0.

The particular correlation function of interest to free energy profile calculations
involves averages over fast, irreversible trajectories, with a nonconservative flow
obtained by augmenting the dynamics with a time-dependent pulling potential. On
the basis of the Jarzynski identity [104], this strategy allows one to reconstruct
free energy profiles along a given reaction coordinate z(Γ(t)) from single-molecule
pulling experiments [106] or from simulations. The pulling potential V is assumed
to depend explicitly upon only the pulling coordinate z and the time t. This leads to
a particular form of (8.46) that we shall employ in the present section:

C(t) ≡ exp(−βA(z)) = 〈δ(z − z(Γ(t)))e−β(Wt−V (z(Γ(t),t)))〉, (8.48)

where A is the free energy profile to be obtained, Wt is the irreversible work per-
formed by motion along the pulling coordinate z and where the average is over an
ensemble of trajectories with initial points Γ canonically distributed on the time-
dependent potential at t = 0. We note, however, that we can recast this average in
the form of (8.47):

exp(−βA(z)) = 〈Qt(Γ0)〉0 (8.49)

where Qt(Γ0) is the average of δ(z − zt) exp(−β(Wt − Vt)) over all trajectories of
length t initiated from the initial point Γ0.

The quantity Wt is the irreversible work done along a particular trajectory in time
t, defined by Wt ≡

∫ t

0
dτ∂H ((Γ(τ), τ)/∂τ . Because the system’s Hamiltonian

evolves at a finite rate, the dynamical flow of the system no longer preserves an
equilibrium distribution. Moreover, Wt is a functional of the trajectory, rather than a
function of the end points.

Although the calculation of the correlation function in (8.48) does not require
prior knowledge of the energy landscape, a significant computational burden still
remains because in complex systems one expects a multitude of reaction paths to
contribute to the average. Although low-work trajectories contribute most in the for-
mula, they are rarely sampled. This issue is especially prevalent in the case of free
energy profiles found from computational pulling simulations. In order to surmount
the barriers typically found in such profiles, fast trajectories are usually far from re-
versible, and therefore require significant work. Consequently, the average in (8.48)
converges slowly. In most instances, a smaller number of slow-pulling trajectories
will provide a more accurate estimate of the potential of mean force [109]. However,
in numerical analyses, the time required for a specific estimate varies linearly with
the speed of the pulling simulation but not with the number of trajectories, because
easy parallelization allows for the evaluation of additional trajectories without in-
creasing the simulation time. Therefore, if massively parallel computers are used it
may be more efficient to estimate a free energy surface from many fast trajectories
rather than a few slower ones.
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It therefore becomes apparent that enhanced sampling strategies are beneficial
for surmounting the difficulties presented above. To exemplify possible approaches,
we present a skewed momenta method, in which we calculate the quantities given
in (8.46) [or (8.48)] as weighted averages over initial phase space distributions, in
which the momenta are ‘skewed’ to bias the dynamics along certain directions. In the
calculation of C(t) in (8.46), we generate low-work trajectories that can surmount
entropic and enthalpy barriers, and by doing so yield improved accuracy of potentials
of mean force estimated from (8.48).

We start with some background on existing methods that alter the initial distrib-
utions in the ‘reactant’ basin, focusing in particular on the puddle jumping method
of Tully and coworkers [69, 110], which is the inspiration for the skewed momenta
method developed in the following section. We continue with a description of the
skewed momenta method, as applied to (8.48), with numerical examples for each
case. We end with a concluding discussion.

8.8.2 Puddle Jumping and Related Methods

In a recent development, Corcelli et al. [110] introduced a convenient bias func-
tion with general applicability that promises to accelerate the convergence of rate
calculations in systems with large enthalpy barriers. They apply a puddle poten-
tial (used previously by the same group to enhance thermodynamic averaging [69])
that changes the potential energy surface from which the trajectories are initiated
to become

V ∗(x) =
{

V (x) if V (x) ≥ Vpud

Vpud otherwise, (8.50)

and the correlation function in (8.46) can be written, without approximation

C(t) =

∫
dΓ0ρ

∗(x0)ρ(p0)w(x0)A[Γt)]∫
dΓ0ρ∗(x0)ρ(p0)w(x0)

=
〈A[Γt]w(x0)〉∗

〈w(x0)〉∗
, (8.51)

where w = exp[β(V ∗(x0) − V (x0))], ρ∗(x0) is the equilibrium spatial distribution
on V ∗, ρ(p0) is the equilibrium distribution of momenta, and 〈· · · 〉∗ indicates an
average over the equilibrium distribution corresponding to V ∗(x).

The puddle potential removes the deep energy minima that would ordinarily
dominate the initial distribution; trajectories from these deep minima have little
chance of crossing a large barrier into another important region (say, the product
region of a conformational change reaction). This strategy bears a resemblance to the
hyper-dynamics method of Voter [111, 112], (in which the bottoms of the potential
wells are raised without affecting the barrier tops), and to the related accelerated
dynamics method developed by Hamelberg et al. [113]. In the same category of
approaches are the methods of Laio and Parrinello outlined in Sect. 4.7 [114],
that of Huber and Kim [115], as well as Grubmüller’s conformational flooding
method [116]. In an even earlier reference, the strategy bears a resemblance, to
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some extent, to that used by Carter et al. [21] to generate a constrained ‘blue moon’
ensemble from which one originates free trajectories to obtain rates from correlation
functions.

Because the strategy of modifying the initial coordinate distribution proves to
be effective in accelerating the convergence of time-correlation calculations, it is of
interest to explore further modifications along the same lines. To this end, we will
consider in detail in the next few sections a modification of the method of Corcelli
et al. [110]. Instead of (or in addition to) applying a puddle potential, let us skew
the momentum distribution along certain directions in conformational space (e.g.,
along the long axis of the right-panel distribution in Fig. 8.2). These directions are
to be chosen to correspond to the local slow manifold, which is the conformational
subspace in which the natural dynamics of the systems evolves more slowly than in
the rest of the space. By increasing the probability to sample initial momenta that
have large-magnitude components in the slow manifold, the subsequent relaxation
dynamics is accelerated relative to that of the equilibrium distribution. The essence
of the skewed momenta method is to extend the variance along a precalculated di-
rection along which motion is encouraged, while discouraging motion in directions
that might lead the trajectories away from the states of interest. A two-dimensional
example of a spherical (in mass-weighted coordinates) and a skewed momentum
distribution is shown in Fig. 8.2. Using the skewed distribution, passage both over
enthalpy barriers and through entropic holes can be accentuated. In a procedure sim-
ilar to the Corcelli et al. method, the trajectories are reweighted and the appropriate
correlation function is eventually recovered.

Unlike the methods mentioned above, the skewed momenta method involves
accentuating the dynamics only along particularly relevant directions. Because the
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Fig. 8.2. Maxwell (left) and skewed momenta (right) distributions in two dimensions. If a slow
direction is identified, the probability can be skewed along that direction such that it is more
likely to kick the system along it; exact kinetics is recovered by reweighting
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puddle jumping method is designed to change the potential energy (i.e., to mod-
ify the coordinate distribution), whereas the proposed method yields altered kinetic
energy (i.e., a modified momentum distribution), the latter method can be trivially
combined with the former to enable a more efficient exploration of the entire phase
space dynamics.

Methods such as skewed momenta are expected to have an additional advantage
in high-dimensional systems. Puddle jumping is efficient in such systems only if
the ‘puddle’ can be selectively applied across a few pertinent degrees of freedom.
In contrast, the skewed momenta method can be applied without modification to
trajectories involving concerted changes to many degrees of freedom.

In addition to accelerating trajectories over enthalpy barriers, skewing momenta
can also accelerate convergence in high-dimensional systems with entropic barriers:
the momentum distribution can be chosen to encourage motion along a particular
direction while discouraging motion in directions that might lead the trajectories
away from the states of interest.

We will now turn our attention to the reconstruction of free energy profiles using
the Jarzynski identity. This identity can be cast in terms of an equilibrium average,
(8.49), as explained in Chap. 5. We can then bias the dynamics to follow the mo-
tion of the pulling potential, enhancing sampling of the low-work tail of the work
distribution and thereby increasing the accuracy of the calculation.

8.8.3 The Skewed Momenta Method

As alluded to above, the method relies upon the identification of a 3N -dimensional
vector in configuration space, ês, which points along a favored direction for the mo-
tion of the system. We then choose the initial momenta for the trajectory ensemble
from a Gaussian distribution artificially extended in the direction of ês, as illustrated
in the right panel of Fig. 8.2. In the case of free energy reconstructions from (8.49),
we wish to induce motion along a predefined pulling direction, and so ês can be
found by inspection.

Because it is cumbersome to generate a Gaussian distribution oriented along an
arbitrary axis in the natural coordinates of p, we generate momenta in a rotated
coordinate system p′ in which ês lies along the p′1 axis and then rotate the coordinate
axes to place the generated momenta in the original frame. To this end, we seek a
rotation matrix R that transforms ês onto the p1 axis; this matrix will transform
momenta generated in the p′ system to the natural coordinates of the system. For the
detailed algorithm to calculate R we refer the reader to [117].

In the case of (8.49), the situation is once again simplified by prior knowledge of
the pulling direction: ês can be taken without loss of generality to lie along one of
the natural Cartesian axes of the system, so that the p and p′ systems are equivalent,
and no axis rotations need be performed.

Skewed Momenta and Reweighting

At equilibrium, the components of the momentum vector p are drawn from the
distribution
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ρ(p) = C exp(−pT A p), (8.52)

where C is a normalization constant and A is the 3N × 3N diagonal matrix A =
1/2βM−1, in which M is the mass matrix.

We choose instead from a biased distribution, ρB , defined in the p′ coordinate
system as

ρB(p) = C ′ exp(−p′T A ′p′) (8.53)

where C ′ is another normalization constant and A ′ is a diagonal matrix with entries
A ′

i proportional to the variance of the Gaussian distribution along the ith axis of
the rotated coordinate system. Since we wish to bias the dynamics along ês (which
should then become the ‘longest’ direction of the skewed distribution), A ′

1 should
be the longest axis, but in general there is no restriction on the diagonal entries of
A ′ save that they be positive. The p′ are related to p via p = Rp′, where R is the
rotation matrix.

We write the average in (8.47) in the exact factorized form

C(t) =

∫
dΓ0ρ(x0)ρB(p0)w(p0)Qt(Γ0)∫

dΓ0ρ(x0)ρB(p0)w(p0)
, (8.54)

in which ρ(x0) is the equilibrium spatial distribution, ρB(p0) is defined in (8.53),
and the weighting function is w(p0) = exp(p

′T
0 A′p′

0 −pT
0 Ap0). Qt(Γ0) is defined

as before as the average of some observable A[Γ(t)] over all trajectories of length t
initiated from the initial point Γ0. C(t) can then be calculated as a weighted average
of Qt(Γ0) over the biased momentum distribution

C(t) =
〈Qt(Γ0)w(p)〉B

〈w(p)〉B
, (8.55)

where the notation 〈· · · 〉B indicates that the momenta in the calculation are drawn
from the biased distribution.

We emphasize that the average represented by Qt(Γ0) is introduced in the
interest of theoretical development only. In numerical simulations, C(t) is found
by averaging over the observable A[Γ(t)] directly. That is

C(t) =

∑
i

A
(i)
t w(i)

∑
i

w(i)
, (8.56)

where A
(i)
t and w(i) are the values for the ith trajectory (with initial momenta

drawn from the biased distribution) of the observable and the weighting factor,
respectively.

A two-dimensional example of a spherical and a skewed momentum distribution
is shown in Fig. 8.2; for this simple case, ês = 1√

2
(11), and the variance along ês has

been extended.
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Choosing A ′

To this point we have said nothing about the other entries in the matrix A ′, needed
to calculate the rotation matrix, R. Although (8.55) is exact for any momentum dis-
tribution in the rotated reference frame, in practical implementations it will often be
desirable to choose the entries of A ′ so that the momenta in the directions perpendic-
ular to ês are similar to their equilibrium values, thereby minimizing their contribu-
tion to the scaling factor. However, in systems in which different degrees of freedom
have different masses, the momentum-space shell of constant kinetic energy will be
a high-dimensional ellipsoid, the axes of which may not align with the axes of the
rotated reference frame. In such systems it is convenient to work in mass-weighted
coordinates, in which the equi-energetic shells are spherical. That is, define

πi ≡
pi√
mi

, (8.57)

where mi is the mass of the ith degree of freedom and pi is the unweighted
momentum. In these coordinates, the equilibrium matrix entries are simply defined
by the equipartition theorem, Ai = β/2, and the equilibrium distribution can be re-
produced in any rotated frame by choosing A ′

i = Ai = β/2. The desired bias along
ês can then be obtained simply by choosing A1 = α, for α < β/2, and momenta in
the natural coordinates of the system recovered subsequently by inverting (8.57).

The Slow Manifold

The objective of the method presented here is to develop a momentum distribution
that will bias path dynamics along the slow manifold, permitting the efficient calcu-
lation of kinetic properties of infrequent reactions.

Just like in the MEHMC method described in Sect. 8.7, we can identify the slow
manifold from the time average of the momentum, e.g., by choosing a conforma-
tional direction ês = p0/|p0|, where p0 is calculated as in (8.31).

Alternatively, ês can be found from either a normal-mode or a quasi-harmonic-
mode decomposition [118] by solving an eigenvalue–eigenvector problem

ês = min
λ

{ê | Hê = λê}, (8.58)

and choosing the lowest-eigenvalue eigenvector obtained from diagonalizing H,
which is either the Hessian of the potential (in the case of the harmonic modes) or
the inverse of the covariance matrix of atomic fluctuations (in the case of the quasi-
harmonic modes). The normal-mode decomposition can be performed for a mini-
mized structure in the reactant well, and ês aligned along a low-frequency mode (or
a linear combination of several such slow modes). The quasi-harmonic calculation
can be performed on the same trajectory that was used to generate the initial distri-
bution of the starting conformations; again, a combination of slow quasi-harmonic
modes can be used.
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Using the momentum-averaging scheme, it has been shown that slow-mode
directions are of promise for enhanced sampling and for the exploration of large
conformational changes, and provide a hybrid MC scheme to obtain exact thermal
equilibrium properties [119]. For the case of the alternative choice of ês in (8.58),
normal-mode analyses provided considerable insight into the nature of collective
motions in many proteins [120–124]. It has been demonstrated that, when the initial
and the final structure of the system are available, the first few low-frequency modes
are often sufficient to describe the large-scale conformational changes involved in
going from one structure to the other [125, 126]. This strategy has worked well both
for protein–DNA complexes [127] and for systems as large as the ribosome [128].

In cases when the slow manifold is higher than one-dimensional (which is likely
to be the case for complex biomolecular conformational changes), the guiding vector
ês is to be calculated for each initial configuration, or, if there is little variation in the
slow direction for certain initial regions, a single ês can be applied to some or all of
the initial points.

8.8.4 Application to the Jarzynski Identity

In this section we explore the use of the skewed momenta method for estimating the
equilibrium free energy from fast pulling trajectories via the Jarzynski identity [104].
The end result will be that generating trajectories with skewed momenta improves the
accuracy of the calculated free energy. As described in Chap. 5, Jarzynski’s identity
states that

exp(−β∆A) = 〈exp(−βWt)〉, (8.59)

where ∆A is the free energy change, Wt is the work performed on the system during
each nonequilibrium trajectory of length t, and 〈· · · 〉 indicates an average over an
infinite number of trajectories. Equation (8.49), which we presented in Sect. 8.8.1,
represents a specific application of (8.59) to free energy reconstructions from pulling
experiments. As already mentioned, even though Jarzynski’s identity is asymptoti-
cally exact, it suffers from the problem that the trajectories which count most for its
convergence, i.e., the low-work trajectories, are statistically rare. In computational
simulations, which can only sample a finite number of trajectories, it is important to
look for lower-work distributions.

With Jarzynski’s identity in the form of (8.46), we can apply to it the skewed
momenta method simply by setting A[Γ(t)] = exp(−βWt). However, we anticipate
that the method will be most useful in the particular case of calculating free energy
profiles from pulling experiments, for which Hummer and Szabo have provided a
modified form of Jarzynski’s expression [106].

The average defining the potential of mean force, (8.49), can be written as an
average over a skewed distribution of initial momenta as described by (8.55). We can
anticipate that skewed trajectories are associated with lower work, as the momenta
can be biased so that important degrees of freedom tend to move in the same direction
as the pulling potential. Specifically, the instantaneous contribution to the work of
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Fig. 8.3. Histogram of work values for Jarzynski’s identity applied to the double-well
potential, V (x) = x2(x − a)2 + x, with harmonic guide Vpull(x, t) = k(x − vt)2/2, pulled
with velocity v. Using skewed momenta, we can alter the work distribution to include more
low-work trajectories. Langevin dynamics on Vtot(x(t), t) = V (x(t)) + Vpull(x(t), t) with
kBT = 1, k = 100, was run with step size ∆t = 0.001, and friction constant γ = 0.2 (in
arbitrary units). We choose v = 4 and a = 4, so that the barrier height is many times kBT
and the pulling speed far from reversible. Trajectories were run for a duration t = 1000. Work
histograms for 10, 000 trajectories, for both equilibrium (Maxwell) initial momenta, with zero
average and unit variance, and a skewed distribution with zero average and a variance of 16.0

a given trajectory is found from an infinitesimal movement of the time-dependent
guiding potential at constant position and momentum, dW = ∂V

∂t (Γ(t))dt. The dW
contribution will tend to be smaller, or even negative, when the system follows the
motion of the guiding potential naturally rather than being ‘pulled along.’

As an illustrative example of this approach, consider applying Jarzynski’s iden-
tity to reconstruct a one-dimensional double-well energy profile of the form V (x),
assumed unknown and which is to be recovered by the method, from pulling trajec-
tories with a harmonic guiding potential

Vpull(x, t) =
k(x − vt)2

2
(8.60)

where k is the spring constant and v the pulling velocity. By artificially increasing the
variance of the momentum distribution, we can alter the work distribution to include
more low-work trajectories. To accomplish this, one can run Langevin dynamics for
the particle in the potential Vtot(x(t), t) = V (x(t)) + Vpull(x(t), t). If the barrier
height is many times kBT and the pulling speed is far from the reversible regime,
convergence difficulties are expected in the regular application of the Jarzynski strat-
egy, because the low-work values are rarely sampled. In Fig. 8.3 we display a typical
histogram of work values for trajectories for both an equilibrium initial momentum
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distribution, drawn from a Gaussian distribution with zero average and unit variance,
and a biased distribution with zero average and an accentuated variance along the
reactive coordinate.

Because an individual trajectory’s contribution to the average in (8.59) depends
exponentially on the work performed on the system during the trajectory, we expect
that the increased sampling of low-work trajectories will improve the accuracy of the
free energy calculation. As a test of the practical efficiency, we recreate the function
V (x) using (8.49) and (8.55) from a number of high-speed pulling simulations using
a technique analogous to the weighted histogram method [106]

exp(−βA0(z)) =

∑
t

〈δ[z − z(t)]W 〉
〈W 〉

∑
t

exp(−βV (z, t))
〈W 〉

(8.61)

A detailed numerical implementation of this method is discussed in [106]. W is
the statistical weight of a trajectory, and the averages are taken over the ensemble
of trajectories. In the unbiased case, W = exp(−βWt), while in the biased case an
additional factor must be included to account for the skewed momentum distribution:
W = exp(−βWt)w(p). Such simulations can be shown to increase accuracy in
the reconstruction using the skewed momenta method because of the increase in
the likelihood of generating low work values. For such reconstructions and other
applications, e.g., to estimate free energy barriers and rate constants, we refer the
reader to [117].

In future work, it should be of interest to explore the combination of the skewed
momenta method to alter the momentum distribution with novel methods that either
apply periodic loading [129] or MC sampling of nonequilibrium trajectories from
a work-weighted ensemble [130, 131]. A quantum analog of the Jarzynski method
has recently been proposed as a means to describe dephasing of quantum coher-
ences [132]. It would also be of interest to explore whether biasing the flow of adi-
abatic states in the corresponding master equation in a numerical realization of a
nonequilibrium line shape measurement would yield a faster convergence of spec-
troscopic properties.

8.8.5 Discussion

By drawing momenta for molecular dynamics from a distribution that is artificially
enhanced along an important degrees of freedom, we have shown that the ‘skewed-
momenta’ method addresses a problem endemic to the reconstruction of free energy
profiles from fast pulling experiments using Jarzynski’s identity. Namely, although
low-work trajectories have the largest statistical weight, they are rarely sampled,
especially when the pulling is fast. The skewed momenta method generates more
low-work trajectories by biasing the relevant degrees of freedom so that they tend
to move with the pulling potential, thereby lowering the work done on the system
and increasing the accuracy of the calculated potential of the mean force. This fact
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is in accord with recent theoretical work analyzing the Jarzynski identity for an ideal
gas. For this system, Lua and Grosberg [133] noted that the trajectories in the far
tails of the Maxwell distribution are the key ones in determining the accuracy of the
Jarzynski method when the system’s volume is altered rapidly. It is true that an ideal
gas is a crude ‘flat landscape’ approximation for a general system with a nonconstant
potential energy landscape. However, it is important to realize that, for such a general
system, the far tails of the Maxwell distribution are preferentially sampled in the
skewed momenta method only along the slow degrees of freedom along which the
potential is expected to be, at least locally, relatively flat (i.e., with low curvature).

The method is likely to be useful for the numerical calculation of other correla-
tion functions of importance to complex molecules. An example is the orientation
correlation functions of interest in NMR-derived dynamical estimates for proteins
and nucleic acids [134]. Such correlations are difficult to converge numerically when
multiple conformations separated by large free energy barriers contribute to their
measurement.

Future improvements of the method presented here should take into account that
the direction of the important manifold in general can change (i.e., the direction of
importance can curve around conformational space). For the method to be effective
in such instances, one would have to bias not only the initial momentum distribution,
but, using a periodically updated ês, also the actual trajectories that lead to relaxation
into the product well. In this case, one would also need to reweight the trajectory
itself, not only the initial points. If the propagation uses Langevin dynamics, the
formalism of stochastic path integrals [135] leads to the proper weight described
by the exponential of an Onsager–Machlup action [136–138] that would have to be
calculated along each trajectory according to the formula

S[Γ(t)] =
∫ t2

t1

dt(M ẍ(t) + γp(t) + ∇V [x(t)])2. (8.62)

8.9 Quantum Free Energy Calculations

We end with a section exemplifying a method for enhanced sampling that is needed
in a quantum context, i.e., when calculating quantum free energies through the
quantum-classical isomorphism (as popularized by Chandler and Wolynes [139]).
Although quantum free energies will be introduced later in Chap. 11, here we
broaden the scope of the enhanced sampling using generalized distributions such as
those in Sect. 8.4.2 by introducing a specialized method using generalized-ensemble
path-integral methods.

There is considerable interest in the use of discretized path-integral simulations to
calculate free energy differences or potentials of mean force using quantum statistical
mechanics for many-body systems [140]. The reader has already become familiar
with this approach to simulating with classical systems in Chap. 7. The theoreti-
cal basis of such methods is the Feynmann path-integral representation [141], from
which is derived the isomorphism between the equilibrium canonical ensemble of a
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quantum system and the canonical ensemble of a classical system of ring polymers
of P beads, or pseudo-particles. Each such ring corresponds to one quantum parti-
cle. The classical system of ring polymers can be simulated with either MC [142]
or molecular dynamics [143] methods. Examples of the applications of such simu-
lations are the studies of the quantum mechanical contributions to the structure of
water [144], electron localization in water clusters [145], and the reaction rates for
intramolecular proton transfer in acetylacetone [146].

For a system at temperature T = 1/kBβ in the potential V (x) and having the
Hamiltonian operator H ≡ K+V = −(�2/2m)∇2+V (x), the elements of the den-
sity matrix operator e−βH in the canonical ensemble are defined, in the coordinate
representation, as

ρ(x, x′;β) = 〈x|e−βH |x′〉. (8.63)

These are Green’s functions diffusing in what is interpreted as an imaginary time β,
according to the Bloch equation, ∂ρ/∂β = H ρ (a diffusion-type partial differential
equation). These Green’s functions satisfy the equation

∫
ρ(x1, x1;β)dx1 =

∫
. . .

∫
ρ(x1, x2;β/P ) . . .

ρ(xP−1, xP ;β/P )ρ(xP , x1;β/P )dx1 . . . dxP . (8.64)

For large P , β/P is small and it is possible to find a good short-time approxima-
tion to the Green function ρ. This is usually done by employing the Trotter product
formula for the exponentials of the noncommuting operators K and V

e−βH = lim
P→∞

(
e−βK/P e−βV/P

)P

. (8.65)

In the so-called primitive representation of the discretized path-integral
approach [141], the canonical partition function for finite P has the form

QP (β) ≡
∫

ρ(x, x;β)dx =
(

mP

2π�2β

)P/2 ∫
. . .

∫
e−β mP

2�2β2

∑P

i=1
(xi−xi+1)

2+ 1
P

∑P

i=1
V (xi)dx1 . . . dxP .

(8.66)
This is called ‘primitive’ in the sense that the short-time approximation, truncated
after the first term, is in its crudest form. Nonprimitive schemes would be those
that would improve this approximation, for instance by replacing the ‘bare’ potential
V (x) by an effective quantum potential (see [142, 149]).

With neglect of the quantum effects that arise from the exchange of identical
particles [147], (8.66) gives the exact quantum partition function in the limit P →
∞. For finite P , QP (β) is the canonical partition function of a classical system
composed of ring polymers. Each quantum particle corresponds to a ring polymer of
P beads in which neighboring beads are connected by harmonic springs with force
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constant mP/2�
2β2 and each bead is acted on by the interaction potential V/P .

The formulation gives a good approximation if
√

�2β/mP is small compared to a
characteristic length of the system. By simulating a classical system of ring polymers
for a large enough value of P , convergence to the quantum mechanical result can
be achieved. Quantum thermodynamic averages can be calculated using appropriate
estimators. For instance, the estimator UP for the internal energy U = 〈UP 〉 (the
average is over the canonical distribution) can be found by inserting (8.66) into (8.67)

U = −∂ ln Q

∂β
(8.67)

to find

UP =
P

2β
− mP

2�2β2

P∑
i=1

(xi − xi+1)2 +
1
P

P∑
i=1

V (xi). (8.68)

The quantum delocalization arising from the Heisenberg uncertainty principle is
equivalent, in the classical isomorphism picture, to the entropic part of the free en-
ergy of the system of ring polymers [148]. Just as a quantum-mechanical particle
cannot be localized exactly at the bottom of a potential energy well because of the
resulting infinite uncertainty in the momentum, in the classical isomorphic picture at
finite T , entropy, as a number of accessible states, competes with the energetics that
would favor the bottom minimum. For highly quantum systems, one thus expects that
the entropy of the corresponding classical system plays an important role. However,
in the simulation of the thermodynamics of classical systems, ‘statistical’ properties
such as entropy are difficult to calculate. The problem is even more acute for systems
(such as proteins) which suffer from ‘broken ergodicity.’ For such systems, the sam-
pling of the configurations representative of the thermodynamical equilibrium takes
too long from the simulation point of view. For such systems, it is desirable to use
methods that will enhance sampling of the configurational space.

For systems exhibiting sizeable quantum effects, a large value of P is needed.
However, this causes, in addition to an increase in the number of degrees of freedom
for the polymer rings, very slow relaxation of the springs connecting the pseudo-
particles. Thus, methods either to reduce the number of beads or to improve the
sampling efficiency for a finite value of P are highly desirable. Several techniques
have been devised for better convergence as a function of P . For systems with
strongly repulsive interactions Barker [142] proposed and Pollock and Ceperley
[149] implemented a short-time approximation scheme that replaces the potential
V with a quantum potential calculated by a numerical matrix multiplication. This
potential involves calculating a smoother version Veff(β) of V , a quantum effective
potential. The short-time propagator ρ̂(β/P ) can be thought of as a matrix. Multiply-
ing this matrix n times (where n = log2 P ) just up to time β yields the density matrix
that is proportional to exp(−βVeff(x;β)), from which Veff is found. It contains more
of the quantum mechanics, so in this sense it is a quantum potential.
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This scheme shows better convergence with increasing P for systems with
hard-core repulsions. A reduction in the value of P that is required can also be
achieved by renormalization techniques [139] or by choosing a higher-order short-
time approximation [150]. Staging MC [151], in which one grows the polymer ring
in stages, is another useful technique for improved sampling. Normal-mode decom-
position has also been used for improving the sampling efficiency by having dif-
ferent sizes for the MC steps along the eigendirections depending on the frequency
of the respective mode [152]. In addition, umbrella sampling techniques have been
employed to reduce the number P of beads that are needed [153]. All of these meth-
ods are within the framework of the regular primitive algorithm given in (8.66). We
present here a method that generalizes the distribution of the classical ring polymers.
The method not only shows better convergence but can also be used as a framework
for all other schemes (normal modes, staging, etc.) that improve the regular primitive
algorithm.

Which methods improve quantum convergence and which have better sampling?
It is not clear whether one can really separate these effects. For instance, one can
have an improved method that is designed primarily to reduce P , but which also
yields enhanced sampling. Thus, in the list of methods given above, we only state
the primary reason for the apparent success of each of them.

In previous work on enhanced configurational sampling [154, 155] it was con-
jectured that a method based on the Tsallis generalization of the canonical ensem-
ble [156] would be expected to have faster convergence with P , and an application
was produced to prove this conjecture [34]. Here we present a pedagogical outline
of the ideas behind this approach.

As we have seen in Sect. 8.4.2, in the Tsallis generalization of the canonical
ensemble [31], the probability density that the system is at position x is

pq(x) = (1 − (1 − q)βV (x))1/1−q (8.69)

which has the property that limq→1 pq(x) = exp(−βV (x)); i.e., Boltzmann statis-
tics is recovered in the limit of q = 1. For values of q > 1, the generalized probability
distributions pq(x) are more delocalized than the Boltzmann distribution at the same
temperature. This feature has been used as the main ingredient for a set of successful
methods to enhance the configurational sampling of classical systems suffering from
broken ergodicity [33, 35]. Because of their power-law form (Lévy-like distributions
are obtained naturally as stable distributions in the generalized formalism), the gener-
alized distributions appear naturally in systems with fractal properties of the relevant
space and time. In what follows, we present the application of this approach to quan-
tum systems simulated via the discretized path-integral representation. Note that the
structure of the chain of beads for highly quantum systems exhibits fractal scaling:
the variance of a polymer chain of P beads equals P times the nearest-neighbor
distance variance [157].

According to the central limit theorem, if one sums up random variables which
are drawn from any (but the same for all variables) distribution (as long as this distri-
bution has finite variance), then the sum is distributed according to a Gaussian. In this
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sense the Gaussian distribution is the attractor of all finite-variance distributions; it
is a stable distribution. If one relaxes the requirement that the variance is finite, then
the stable distribution is called a Lévy distribution. The Cauchy–Lorentz distribution
is an example. The Tsallis distributions have ‘tails’ which fit the Lévy distributions,
so in this sense they are Lévy-like. Lévy distributions appear whenever there exists
fractal scaling, i.e., multiplying the length by a constant factor yields the distribu-
tion that is equal to the distribution before multiplication times the constant factor to
some power. Chandler has observed that the polymer of beads in path integrals has
this property. This is the reason for speculating that the Tsallis distribution might be
rather appropriate for these polymers. While this speculation seems very attractive,
it has yet to be proven.

If we take

P =
1

q − 1
, (8.70)

the Tsallis probability density becomes

pP (x) =
(

1
1 + βV (x)/P

)P

(8.71)

and the sequence P = 1, 2, 3, . . . ,∞ is equivalent to q = 2, 3
2 , 4

3 , . . . , 1. Now, in-
stead of a small imaginary time step for the regular density matrix operator

e−βH /P 
 e−βK/P e−βV/P (8.72)

we write

e−βH /P 
 e−βK/P

(
1

1 + βV (x)/P

)
. (8.73)

One can show that (8.73) is exact up to first order in 1/P . To this end, start by
expanding the operators in powers of τ = β/P :

e−τK = 1 − τK +
τ2

2
K2 − · · · ,

e−τV̄ = 1/(1 + τV ) = 1 − τV + τ2V 2 − · · ·

e−τ(K+V̄ ) = 1 − τ(K + V ) +
τ2

2
((K + V )2 + V 2).

Then observe that the product of the series expansions of e−τK and e−τV̄ differs
from e−τ(K+V̄ ) by a correction of O(τ2).

Notice that the sequence limit P → ∞ needed for convergence to quantum
mechanics of the regular primitive algorithm (8.66) also yields the correct quan-
tum mechanics for the generalized primitive algorithm which makes use of the
propagator in (8.73) instead of that in (8.72). However, the key observation is that,
while for infinite P the two approaches yield the same, theoretically exact, quantum
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thermodynamics, for finite P there exists an important advantage in using the
generalized kernel since it corresponds to a more delocalized distribution. This is
very important because, for the simple case of a harmonic oscillator, it is known [148]
that for all finite P the classical treatment in the regular primitive representation
underestimates the delocalization of the particle. Faster convergence (with lower val-
ues of P ) obtained using the generalized algorithm is due to the fact that the pq, for
q > 1, are more delocalized functions than the Boltzmann distribution.

By defining

V̄ =
P

β
ln
(

1 +
β

P
V

)
(8.74)

the generalized algorithm can be cast in a familiar form, in which the canonical
partition function of the isomorphic classical system becomes

QP (β) ≡
(

mP

2π�2β

)P/2 ∫
. . .

∫
e−βWP dx1 . . . dxP . (8.75)

where

WP =
(

mP

2�2β2

) P∑
i=1

(xi − xi+1)2 +
1
P

P∑
i=1

V̄ (xi). (8.76)

As with the regular primitive path-integral algorithm, it is possible to use any MC
and molecular dynamics method to calculate thermodynamical averages of quantum
many-body systems by sampling the configuration space of the isomorphic classical
ring polymers according to exp(−βWP ). Generalizations of path-integral molec-
ular dynamics algorithms as well as centroid molecular dynamics [158] methods
are straightforward; the later is particularly important as an approach to quantum
dynamics.

8.10 Summary

In this chapter we have presented an eclectic set of enhanced sampling methods to
address the problem of conformational sampling, which is one of several key factors
for a successful free energy estimation. We have outlined the problem facing simu-
lations of complex systems, that of broken ergodicity, and have introduced a metric,
the ergodic measure, which can be used as a (necessary) criterion to assess whether
sampling is thorough. We have then reviewed several established, as well as newly
developed, methods for classical systems. Last, calculations of quantum free energy
in the context of an isomorphism to classical systems has been addressed, stressing
the utility of developing ad hoc enhanced sampling methods for this case as well.

While all enhanced sampling methods, reviewed here or not, are good strategies
in themselves because they improve convergence in the calculation of equilibrium
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averages, it is important to note that there is no ‘best’ method. Rather various meth-
ods may be good for various systems or reasons. We hope to have left the reader with
the conviction that it is often the case that ad hoc modification of existing strategies,
or newly devised ones, can bring about worthwhile improvements to aid the calcula-
tion of thermodynamical observables.
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Potential Distribution Methods and Free Energy
Models of Molecular Solutions

Lawrence R. Pratt and Dilip Asthagiri

9.1 Introduction

Computing thermodynamic properties is the most important validation of simu-
lations of solutions and biophysical materials. The potential distribution theorem
(PDT) presents a partition function to be evaluated for the excess chemical potential
of a molecular component which is part of a general thermodynamic system. The
excess chemical potential of a component α is that part of the chemical potential of
Gibbs which would vanish if the intermolecular interactions were to vanish. There-
fore, it is just the part of that chemical potential that is interesting for consideration
of a complex solution from a molecular basis. Since the excess chemical potential is
measurable, it also serves the purpose of validating molecular simulations.

In this chapter, we discuss, exemplify, and thus support the assertions that the
potential distribution theorem provides:

1. A general basis for the theory of solutions
2. A practical basis for the calculation of solution thermodynamic properties
3. A useful tool for the development of physically motivated approximate models

of solution thermodynamics, particularly in view of quasichemical extensions

The last of these assertions deserves emphasis here in advance of more-technical
developments. In the era of computing capabilities that are widely available and
steadily advancing, the lack of a revealing theoretical model often means that
simulation results are not as informative as they might be. An example is the theory
of classic hydrophobic effects. Decades of correct simulation of aqueous solutions of
hydrophobic solutes produced imperceptible progress in our physical understanding
of these systems [1]. But when cogent theoretical concepts based upon the potential
distribution and quasichemical theories were recognized [2–5], unanticipated con-
clusions could be identified [6–10], conclusions that could then be tested, refined,
and consolidated.

Potential distribution methods are conventionally called test particle methods.
Because the assertions above outline a general and basic position for the potential
distribution theorem, it is appropriate that the discussion below states the potential
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distribution theorem in a general way. This will seem somewhat unconventional. The
generality we seek will emphasize cases of nonrigid solute molecules, and cases for
which a sufficiently accurate force field describing solute–solvent interactions is not
available. The latter case is one for which a chemical description of solute–solvent
interactions is required as a practical matter. The ability to treat chemical interactions
is an important pay-off of our generality here.

We achieve this generality on the basis of two devices introduced below. The first
is the concept and notation of a conditional mean, average, or expected value. The
condition is often the conformation of a distinguished solute molecule. This permits
a proper and economical description of nonrigid molecules by consideration of rigid
cases. The second device is a rule of averages that permits translation of PDT results
into results for physical average values. These two devices have a close correspon-
dence to the classic statistical tools of stratification and importance weighting [11].
These devices are what makes the PDT a generally practical approach, and it is
remarkable that this approach can be viewed with such beautiful economy.

These devices – and the general picture that results – are discussed expansively
elsewhere [10]. Here, we emphasize brevity in discussing the general results in order
to leave space for consideration of some detailed examples.

9.1.1 Example: Zn2+(aq) and Metal Binding of Zn Fingers

Understanding the role of metals in biological processes is a frontier area in bio-
physics. Metals are widely distributed in the body and play key roles in many
processes, usually in association with metallo-proteins. These metallo-proteins,
thought to comprise nearly a third of the proteome, carry out tasks as diverse as gene
regulation, metal homeostasis, respiration, and metabolism. Understanding the func-
tioning of metallo-proteins at a molecular level using atomically detailed simulations
is the desideratum, but extant force fields are of limited utility in dealing realistically
with metals in aqueous and biological systems. This is due largely to the chemical
intricacies of the interactions involving the metal. The quasichemical approach dis-
cussed in Sect. 9.3 provides guidance for future studies of metallo-proteins.

Take the case of zinc-finger proteins (Fig. 9.1), which are important in gene reg-
ulation. The metal ion – Zn2+ – is necessary in maintaining the folded state. Why
is zinc selected for this task? How is this selection achieved? For example, Fe2+,
a cation comparable to Zn2+, is redox active; i.e., readily exists in different oxida-
tion states. This ability to accept or release an electron proximal to genetic material
makes Fe2+ undesirable. Indeed, nature utilizes a tetrahedral coordination of the
metal – see Fig. 9.1 – so that the protein binds Zn2+ more favorably than Fe2+ by
about 8 kcal mol−1. This energy difference is large on the thermal scale. This is even
more intriguing because coarse descriptors, such as the size of the ion and the net
charge, would suggest only modest differences between Fe2+ and Zn2+.

This difference between Fe2+ and Zn2+ is eventually related to the presence of
unfilled d-orbitals in Fe2+, whereas Zn2+ is a closed-shell ion. The organization
of these d-orbitals is sensitive to the environment. In bulk water, Fe2+(aq) is co-
ordinated by six water molecules, which leads to the splitting of the d-orbitals into
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Fig. 9.1. Left panel: A model zinc finger obtained using the second domain of the transcription
factor IIIA. The zinc ion (gray sphere) is coordinated tetrahedrally by two histidine (H) and
two cysteine (C) residues. Right panel: Results showing the free energy change for displacing
Zn2+ by other comparable ions Fe2+ and Co2+ from different binding motifs CCHH, CCHC,
and CCCC, respectively
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Fig. 9.2. Hydration free energies of dication transition metal ions in water, calculated as de-
scribed in Sect. 9.3.3, p. 339; see also [12]. Filled circles: the actual hydration free energy
computed using the quasichemical approach. Filled squares: the expected trend when the lig-
and field stabilization energy is removed from the hydration free energy. The stabilization
energy was inferred from spectroscopic experiments. Note that removing the ligand field sta-
bilization reveals the linear decrease along the period. The panel on the right illustrates the
splitting of the metal d-orbitals due to the six water ligands arranged octahedrally around the
cation

two groups, as shown in Fig. 9.2. The three T2g orbitals are lowered in energy, and
the two Eg orbitals are elevated above the original degenerate level. The size of the
splitting depends on the ligand. In water, the splitting is small, and the orbitals are
filled in a high-spin pattern. In a tetrahedral field, as occurs in the zinc-finger protein,
the splitting pattern is inverted. Considering again how electrons organize in this new
set of orbitals, the stabilization is less than in the octahedral field. This is the feature
that governs why Zn2+ preferentially binds the zinc-finger rather than either Fe2+

or Co2+.
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In Fig. 9.2 we present results of a first-of-a-kind study of the hydration of the first-
transition-row metals within the quasichemical framework. The biphasic behavior of
the actual hydration free energy is consistent with features inferred experimentally.
Removing the ligand field effects reveals the linear decrease [12]. The results shown
in Fig. 9.2 are largely outside the purview of extant simulation techniques, but are
treated simply in the quasichemical framework developed below.

9.2 Background Notation and Discussion of the Potential
Distribution Theorem

Here we establish notation that is integral to this topic in the course of discussion of
basic features of the potential distribution theorem (PDT).

9.2.1 Some Thermodynamic Notation

The PDT focuses on the chemical potentials µα that compose the Gibbs free energy

G (T, p,n) =
∑
α

nαµα , (9.1)

of a fluid solution. Here T is the thermodynamic temperature, p is the pressure, and
n = {n1, . . . , nα, . . .} are the particle numbers of molecules of each type.

For our problems here these chemical potentials are cast as

µα = kBT ln
[
ραΛ3

α

qint
α

]
+ µex

α . (9.2)

The first term on the right is the formula for the chemical potential of component α
at density ρα = nα/V in an ideal gas, as would be the case if interactions between
molecules were negligible. kB is Boltzmann’s constant, and V is the volume of the
solution. The other parameters in that ideal contribution are properties of the iso-
lated molecule of type α, and depend on the thermodynamic state only through T .
Specifically, V/Λ3

α is the translational contribution to the partition function of single
α molecule at temperature T in a volume V

1
Λα

=
1
h

∫
exp
[
− 1

kBT

(
p2

2mα

)]
dp , (9.3)

with h Planck’s constant, and mα the mass of the molecule. qint
α is the contribution

to that partition function due to all other degrees of freedom of that molecule. Thus,
we could follow the standard practice of textbooks on statistical thermodynamics,
writing (9.2) as

µα = kBT ln
[

nα

Q (nα = 1, T, V )

]
+ µex

α , (9.4)
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where Q (nα = 1, T, V ) = V qint
α /Λ3

α is the canonical partition function for the cir-
cumstances (nα = 1, T, V ). It is helpful to recognize the natural multiplicative con-
tribution of V to Q (nα = 1, T, V ), so (9.2) is preferred.

The PDT then asserts that

e−βµex
α =

〈〈
e−β∆Uα

〉〉
0

. (9.5)

Here β−1 = kBT , ∆Uα is the binding potential energy of a molecule of type α to
the solution of interest, and the brackets 〈〈. . .〉〉0 mean the average over the thermal
motion of the solution and the distinguished molecule, uncoupled. Dissecting, ana-
lyzing, and exemplifying this simple formula will be a principal task of what follows.
Note that it is a defined sum over cases of the Boltzmann factor – with temperature
in a customary position – of a defined energy. Thus, this formula should be seen as
analogous to conventional partition functions.

The potential distribution theorem has been around for a long time [13–17], but
not as long as the edifice of Gibbsian statistical mechanics where traditional par-
tition functions were first encountered. We refer to other sources [10] for detailed
derivations of this PDT, suitably general for the present purposes.

Our point of view is that the evaluation of the partition function (9.5) can be
done by using any available tool, specifically including computer simulation. If that
computer simulation evaluated the mechanical pressure, or if it simulated a system
under conditions of specified pressure, then µex

α would have been determined at a
known value of p. With temperature, composition, and volume also known, (9.2) and
(9.1) permit the construction of the full thermodynamic potential. This establishes
our first assertion that the potential distribution theorem provides a basis for the
general theory of solutions.

The remaining two assertions are to be established more inductively, and we
reveal facts and include examples supporting these assertions in the following
discussions.

9.2.2 Some Statistical Notation

Notation to describe general results for possibly complicated molecular components
can be tricky. The notation exploited here is satisfactorily detailed, yet not bur-
densome. Specifically, we strive to cast important results in terms of coordinate-
independent averages to permit generality and transparency.

Carrying out a simulation, which we view as the readiest source of data, does
require coordinate choices. Thus, we do need some notation for coordinates, and we
use Rn generically to denote the configuration of a molecule of n atoms, includ-
ing translational, orientational, and conformational positioning; see Fig. 9.3. This
notation suggests that Cartesian coordinates of each atom would be satisfactory, in
principle, but does not require any specific choice.

Specification of the configuration of a complex molecule leads next to an es-
sential element in our notation: conditional averages [18, 19]. The joint probability
P (A,B) of events A and B may be expressed as P (A,B) = P (A|B)P (B) where
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Fig. 9.3. Illustration of the definition of conformational coordinates, and the rotation
Rn = {r1, r2, . . . , rn}

P (B) is the marginal distribution of B and P (A|B) is the distribution of A con-
ditional on B, provided that P (B) �= 0. The expectation of A conditional on B is
〈A|B〉, the expectation of A evaluated with the distribution P (A|B) for specified B.
In many texts [19], that object is denoted as E(A|B) but the bracket notation for
‘average’ is firmly establish in the present subject, so we follow that precedent.

Our statement of the PDT (9.5) specifically considers two independent systems:
first, a distinguished molecule of the type of interest and, second, the solution of
interest. Our general expression of the PDT (9.5) can then be cast as

e−βµex
α = V −1

∫ 〈
e−β∆Uα |Rn

〉
0
s(0)

α (Rn)d (Rn) . (9.6)

V −1s
(0)
α (Rn) is the normalized thermal distribution of configurations of the dis-

tinguished molecule in isolation [10], i.e., the required marginal distribution. The
remaining set of brackets here indicates the average over solvent coordinates. The
second set of brackets are not written on the right here because the averaging over
solute coordinates is explicitly written out. This last formula is

e−βµex
α = V −1

∫
e−βµex

α (Rn)s(0)
α (Rn)d (Rn) , (9.7)

with the natural identification

e−βµex
α (Rn) ≡

〈
e−β∆Uα |Rn

〉
0

. (9.8)

The average indicated on the right is the average over the thermal motion of the so-
lution with the solute positioned at Rn, with no coupling between these subsystems.
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Notice that if we assign number densities of solute molecules, ρα(Rn), in
conformation Rn, according to

ρα(Rn) = s(0)
α (Rn)

(
eβµαqint

α

Λα
3

)〈
e−β∆Uα |Rn

〉
0

, (9.9)

then (9.5) is obtained from (9.9) by integrating over all solute conformations, recog-
nizing that

nα =
∫

ρα(Rn)d (Rn) . (9.10)

That integrating out produces the desired interaction contribution µex
α to the chemical

potential. Eliminating the quantities in parentheses produces the interesting form [20]

βµex
α =

〈
ln

[
ρα(Rn)

ραs
(0)
α (Rn)

]〉
+ 〈βµex

α (Rn)〉 . (9.11)

The first term on the right suggests an entropic contribution associated with a shift of
conformational probability due to the solution environment. In fact, the form (9.11)
holds for each Rn without the brackets. This then shows that

eβµex
α = nα

−1

∫
eβµex

α (Rn)ρα(Rn)d (Rn) , (9.12)

a relation pleasingly symmetrical to (9.7). This connects to the inverse formula (9.15)
that comes up later.

9.2.3 Observations on the PDT

Physical Generality of Molecular Interactions is Permitted

The PDT partition function formula (9.5) does not require that ∆Uα adopt a specifi-
cally simplified form such as additive contributions over pairs of molecules involved.
∆Uα is simply

∆Uα = UN+α − UN − Uα , (9.13)

where UN and Uα are the mechanical potential energies of the two independent
subsystems, the solution and distinguished molecule, respectively, and UN+α is the
mechanical potential energy of the joint system. Thus, systems with N -body inter-
action forms, for example, with polarizability and induction effects, are naturally
treated in this development. For example, ab initio molecular dynamics calculations
involve non-pair-decomposable interactions.
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Rule of Averages and the Inverse Formula

To evaluate physical averages involving the two subsystems considered jointly, sup-
ply the Boltzmann factor of the coupling energy in a numerator and denominator
according to

〈Fα〉 =

〈〈
e−β∆UαFα

〉〉
0

〈〈e−β∆Uα〉〉0
. (9.14)

Taking the case Fα = eβ∆Uα leads to a nontrivial formula for the inverse of (9.5)

〈
eβ∆Uα

〉
= eβµex

α . (9.15)

The brackets on the left of (9.15) indicate the fully coupled thermal averages, involv-
ing the actual interactions between the solution and the distinguished molecule of
the joint system, specifically with the distinguished solute present. Equation (9.12)
made a preliminary presentation of this result.

To assist in considering the averages in (9.5) and (9.15), introduce the probability
distribution functions P

(0)
α (ε) = 〈〈δ(ε − ∆Uα)〉〉0, and Pα(ε) = 〈δ(ε − ∆Uα)〉. For

example, then

e−βµex
α =

〈〈
e−β∆Uα

〉〉
0

=
∫

P(0)
α (ε)e−βεdε , (9.16)

and, with (9.14)

Pα(ε) = e−β(ε−µex
α )P(0)

α (ε) . (9.17)

This casts the PDT partition function as a normalizing denominator, as is customary
for a partition function.

The determination of the distribution P
(0)
α (ε), or Pα(ε), to sufficient accuracy

in the required ε range is a common practical difficulty. Since the averaging that
defines Pα(ε) concentrates on thermally optimal interactions ∆Uα, sampling of
configurations with less-than-favorable interactions can be sketchy or nonexistent.
Those unfavorable interactions are typically important to the integrated value

eβµex
α =

∫
Pα(ε)eβεdε , (9.18)

because of the exponential weight in the integrand. This is an issue that we take up
again in the example of Sect. 9.4. In such a case, coming at the problem from an
inverse direction, also utilizing (9.17), can be advantageous.

As an attractive statement of such a two-sided approach, consider cutting off the
integral of (9.18) at a value ε = ε̄ above which the determination of Pα(ε) is not suf-
ficiently accurate. For ε > ε̄, consider exploiting P

(0)
α (ε) and (9.17) to characterize

Pα(ε) in that high-interaction-energy regime. A simple calculation then shows that

µex
α = kBT ln

∫ ε̄

−∞
Pα (ε) eβεdε − kBT ln

∫ ε̄

−∞
P(0)

α (ε) dε . (9.19)
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The mean value of the interaction potential energy should provide some guidance on
the value of the first of the terms on the right; it helps that those interaction energies
will have a lower bound. The second term then primarily addresses entropic contri-
butions to µex

α ; that integral accumulates the weight of the favorable configurations,
well-bound to the solute, that the solvent host offers the solute without coercion.

The result (9.19) should not depend on the cut-off parameter ε̄, but a pragmatic
choice is necessary for a practical calculation. It is clear that the practical success
of such an approach depends on the availability of a parameter ε̄ that cuts off both
distributions to a measurable extent. This formula therefore expresses the basic idea
of histogram overlap procedures [21, 22]; see Fig. 9.5, p. 345, for an example.

Dependence of the PDT Partition Function on the Simulation Ensemble

Occasionally alternative expressions of the PDT (9.5) have been proposed [23–25].
These alternatives arise from consideration of statistical thermodynamic manipula-
tions associated with a particular ensemble, and the distinguishing features of those
alternative formulae are relics of the particular ensemble considered. On the other
hand, relics specific to an ensemble are not evident in the PDT formula (9.5). These
alternative formulae should give the same result in the thermodynamic limit.

As an example [24, 25] consider calculation of
〈〈

V e−β∆Uα
〉〉

0
/ 〈〈V 〉〉0 in an

isothermal–isobaric ensemble, for which the volume V fluctuates. In this formula V
is a relic of the ensemble considered. A calculation using the rule of averages (9.14)
then leads to [10]

〈〈
V e−β∆Uα

〉〉
0

〈〈V 〉〉0
=
〈〈

e−β∆Uα
〉〉

0

〈V 〉
〈〈V 〉〉0

∼
〈〈

e−β∆Uα
〉〉

0

(
1 +

1
〈V 〉

[
∂ 〈V 〉
∂nα

]
T,p,nγ �=α

)

=
〈〈

e−β∆Uα
〉〉

0

(
1 +

1
〈V 〉

[
∂µα

∂p

]
T,n

)
. (9.20)

The correction displayed is negligible relative to 1, in the macroscopic limit. The
independence in the thermodynamic limit of the PDT on a choice of simulation
ensemble used for statistical evaluation is a difference from the partition functions
encountered in Gibbsian statistical thermodynamics.

Size Consistency and the Thermodynamic Limit

The chemical potentials sought are intensive properties of the system, in the usual
thermodynamic language [26]. Furthermore, ∆Uα is a quantity of molecular order
of magnitude. Specifically, the ∆Uα defined by (9.13) should be system-size inde-
pendent for typical configurations of thermodynamically large systems. Because of



332 L.R. Pratt and D. Asthagiri

that, the probability distribution functions of (9.17) should be independent of system
size for large systems. This aspect facilitates the development of physical models for
those distribution functions.

The General Computational Tricks Work also for the PDT

The general principles for estimating free energies and of high-dimensional inte-
grals [11] typically also apply to the estimation of the PDT partition function (9.5).
These principles include importance weighting and stratification, which can lead to
thermodynamic integration methods. These topics are treated extensively elsewhere
in the earlier chapters of this book, and we limit ourselves here to a couple of specific
points. It is worth noting examples [27–33], not discussed further, of coordinated
theoretical studies of realistic cases using these general tools.

The PDT approach enables the precise assessment of the differing consequences
of intermolecular interactions of different types. Separate the interaction ∆Uα into
two contributions ∆Ũα + Φα. If Φα were not present, we would have

e−βµ̃ex
α =

〈〈
e−β∆Ũα

〉〉
0

. (9.21)

The tilde over µ̃ex
α indicates that this is the interaction contribution to the chemi-

cal potential of the solute when Φα = 0. The properties of the solution alone are
unchanged.

With the result (9.21) available, consider the remainder

e−β(µex
α −µ̃ex

α ) =

〈〈
e−β∆Uα

〉〉
0〈〈

e−β∆Ũα

〉〉
0

. (9.22)

Noting, e−β∆Uα = e−β∆Ũα × e−βΦα , choose Fα=e−βΦα , and then use the rule of
averages to find

e−β(µex
α −µ̃ex

α ) =
〈
e−βΦα

〉
r

. (9.23)

This takes the conventional form of standard thermodynamic perturbation theory,
but with the decisive feature that interactions with only one molecule need be ma-
nipulated. Here 〈. . .〉r indicates averaging for the case that the solution contains a
distinguished molecule which interacts with the rest of the system on the basis of
the function ∆Ũα, i.e., the subscript ‘r’ identifies an average for the reference sys-
tem. Notice that a normalization factor for the intramolecular distribution cancels
between the numerator and denominator of (9.22).

As an example, consider assessment of classic electrostatic solute–solvent inter-
actions associated with solute partial charges in force-field models. The contribution
of electrostatic interactions is then isolated as

e−β(µex
α −µ̃ex

α ) =
∫

P̃α(ε)e−βεdε , (9.24)
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where P̃α(ε) ≡ 〈δ (ε − Φα)〉r, and Φα = ∆Uα − ∆Ũα is the electrostatic contri-
bution to the solute–solvent interactions. The reference interactions would typically
include van der Waals interactions, and the perturbation corresponds to transforming
an uncharged molecule to a charged molecule.

Modeling of P̃α(ε) can be motivated by a simple thermodynamic model for this
electrostatic contribution. The Born model [34] for the hydration free energy of a
spherical ion of radius Rα with a charge qα at its center is

µex
α ≈ µ̃ex

α − q2
α

2Rα

(
ε − 1

ε

)
. (9.25)

The dielectric constant of the external medium is ε. The electrostatic contribution is
proportional to qα

2. To isolate this behavior, change variables as Φα = qαϕα, and
consider the Gaussian model

P̃α(ε|Rn) ≈ 1√
2π 〈δϕα

2|Rn〉r
exp

[
−1

2
(ε − 〈ϕα|Rn〉r)

2

〈δϕα
2|Rn〉r

]
, (9.26)

adopting the notation of conditional means to treat the conformational status in the
general molecular solute case. ϕα is the electrostatic potential exerted by the solu-
tion on the distinguished solute. Consideration of the quantity 〈ϕα|Rn〉r requires
some conceptual subtlety. This is intended to be the electrostatic potential of the so-
lution induced by reference interactions between the solute and the solution. Any
contribution to the electrostatic potential that exists in the absence of those reference
interactions, i.e., the potential of the phase, is trickier, and we defer discussion of
those issues to another forum [10]. Here, we find

µex
α (Rn) ≈ µ̃ex

α (Rn) + qα 〈ϕα|Rn〉r −
βqα

2

2
〈
δϕα

2|Rn
〉
r

. (9.27)

The thermodynamic chemical potential is then obtained by averaging the Boltz-
mann factor of this conditional result using the isolated solute distribution function
s
(0)
α (Rn). Notice that the fluctuation contribution necessarily lowers the calculated

free energy.
This analysis of the consequences of interactions of different types is an exam-

ple of the general technique of importance weighting, discussed in Chap. 3. An op-
erational view is that the additional factor eβ∆Ũα serves to broaden the sampling.
Following this idea, we might consider another configurational function 1/Ω that
helpfully broadens the sampling and write

e−βµex
α (Rn) =

〈
e−β∆UαΩ|Rn

〉
1/Ω

〈Ω|Rn〉1/Ω

. (9.28)

The sampling distribution indicated for 〈. . . |Rn〉1/Ω is proportional to

PB (N ) /Ω (N ) .
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The denominator of (9.28) would correspond to the factor eβµ̃α
ex(Rn) of (9.22). In

contrast to the view of (9.22), here it is not assumed that 〈Ω|Rn〉Ω is separately
known. Thus bias or variance-reduction issues would involve both the numerator
and the denominator of (9.28). Compare the discussion of this topic in Chap. 6.

1/Ω is called an importance function or sometimes an umbrella function [35].
The latter name arises from the view that 1/Ω broadens the sampling to cover rele-
vant cases more effectively. Since 1/Ω is involved as an unnormalized probability,
it should not change sign, and it should not be zero throughout regions where the
unmodified distribution and integrand are nonzero.

As an example of importance-weighting ideas, consider the situation that the
actual interest is in hydration free energies of a distinct conformational states of a
complex solute. Is there a good reference system to use to get comparative thermody-
namic properties for all conformers? There is a theoretical answer that is analogous
to the Hebb training rule of neural networks [36, 37], and generalizes a procedure
of [21]

1
Ω

=
∑

conformations

e−β∆Uc . (9.29)

The sum is over interesting conformations to be exploited in this way, and the sum-
mand is the Boltzmann factor of the solute–solvent interaction when the solute adopts
a specific conformational structure. When this umbrella function is used to get the
free energy for the solute in a specific conformation, it should resemble at least one
conformer in the sum. So the umbrella should cover every conformation in the family,
and this is literally the point of the original umbrella sampling: 1/Ω “should cover
simultaneously the regions of configuration space relevant to two or more physical
systems” [35]. Jointly matching several members of the family will help too. The
penalty is just the sum over the family. The hydration free energy of the reference
system, that is the denominator of (9.28), is not required for the evaluation of free
energy differences between conformations.

Thermodynamic Integration and Stratification

To organize the description of interactions of a specified type, it is often helpful to
introduce an ordering parameter λ in

µex
α (Rn) = µ̃ex

α (Rn) − kBT ln
〈
e−βλΦα |Rn

〉
r

(9.30)

with the intention that λ = 1 provides the physical interactions of interest. λ might
be viewed as a perturbative parameter in cases where it appears naturally as a gauge
of the strength of solute–solvent interactions. The derivative

∂µex
α (Rn)
∂λ

=

〈
Φαe−βλΦα |Rn

〉
r

〈e−βλΦα |Rn〉r
= 〈Φα|Rn〉λ (9.31)

is then a straightforward consequence that uses a rule of averages in a natural way.
The final average indicates that the solute–solvent interactions are ∆Ũα + λΦα, i.e.,
the reference system plus the perturbation coupled to the extent λ. The use of λ to
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scale partial atomic charges on the distinguished solute is an example. On this basis,
mere quadrature provides an evaluation of

µex
α (Rn) = µ̃ex

α (Rn) +
∫ 1

0

〈Φα|Rn〉λ dλ . (9.32)

From (9.27), we see that this approach will work nicely if the variance is always
small; Taylor’s theorem with remainder tells us that the error of the first-derivative
– mean-field – contribution is proportional to the second derivative evaluated at an
intermediate λ. That second derivative can be identified with the variance as in (9.27).
If that variance is never large, then this approach should be particularly effective. For
further discussion, see Chap. 4 on thermodynamic integration, and Chap. 6 on error
analysis in free energy calculations.

Evaluation of the integrand of (9.32) at several intermediate values of λ to per-
form the quadrature amounts to a divide-and-conquer method that is an example of
stratification. The advantage of stratification can be considered generally [11, Sect.
5.3], [38, Sect. 4.5], [39, Sect. 7.8], or for specific cases [10]. The idea is that sta-
tistical uncertainties are mitigated by a nonstatistical subdivision of the problem,
solution of the subdivided problems, and then recomposition of the whole. Strati-
fied calculations such as thermodynamic integration are typically decisive, enabling
maneuvers [10]. Such a computational strategy can be embarrassingly parallel.

We can return to the issue of analysis of electrostatic contributions to hydration
free energies of ions to give an example of stratification [40]. Suppose that we recog-
nize a partitioning of the statistical possibilities so that the distribution P̃α(ε|Rn)
in (9.24) can be expressed as a linear combination of contributions from different
strata corresponding to configurational substates of the system. For the case of elec-
trostatic interactions in aqueous solutions the strata, or substates, might be distinct
configurations defined by different hydrogen-bonding possibilities for the solute and
solvent molecules. Indexing those substates by s, we then analyze the joint proba-
bility distribution of ϕα and s, P̃α(ε, s|Rn), assuming that the marginal distribu-
tions pα(s|Rn) =

∫
P̃α(ε, s|Rn)dε can be obtained from simulation calculations,

and further assuming that the conditional probability distributions P̃α(ε|s,Rn) are
Gaussian, again with parameters obtained from simulation data. Then

P̃α(ε|Rn) =
∑

s

P̃α(ε|s,Rn)pα(s|Rn) (9.33)

is the generally valid total probability formula. Any structural parameter s that is
considered to be significant could be exploited here.

Test Particle Techniques

As noted in the Introduction, the PDT is widely recognized with the moniker test
particle method. This name reflects a view of how calculations of

〈〈
e−β∆Uα

〉〉
0

might be tried: solute conformations are sampled, solvent configurations are sam-
pled, and then the two systems are superposed; the energy change is calculated, and
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the Boltzmann factor for that the energy change is scored. Such an approach can be
practical when the test solute interrogates the shortest length scale of the solvent, as
when the solute is literally a particle. In fact, in Sect. 9.4, we give an example of such
a calculation.

Direct test particle methods are expected to be inefficient, compared to other
possibilities, for molecular systems described with moderate realism. Successful
placements of a test particle may be complicated, and placements with favorable
Boltzmann factor scores may be rare. Fortunately, the tools noted above are generally
available to design more-specific approaches for realistic cases.

Nevertheless, direct test particle calculations have been of great conceptual
importance, particularly in cases where there is a consensus on the relevance of sim-
plified model solutes [2–4, 6, 9, 10, 41–45]. The related particle insertion techniques
are used for simulating phase equilibria, as discussed in Chap. 10.

9.3 Quasichemical Theory

Quasichemical theory (QCT) is an important general extension of the PDT formula;
expansive discussions are available elsewhere [10, 46–48]. As with the PDT, we
focus on a distinguished molecule of the species of interest. We then define an inner-
shell region for association of the solution components with the distinguished mole-
cule. This inner shell is a region proximal to the distinguished molecule where the
interactions with other solution components are particularly important, intricate, or
strong. Consider an ion such as Be2+ in water as an example. The interactions with
contacting water molecules are fundamentally chemical in character, and thus are
expected to be strong and complicated.

For simplicity of notation, we will here discuss the circumstance that the distin-
guished molecule is present at the lowest concentration. The occupants of the inner
shell will be of one type only, solvent of type denoted by “w”; “w” = H2O for exam-
ple. Then our discussion can be more economical, though the ideas do have broader
relevance. For a distinguished molecule of type α, we will encode the definition of
the inner shell by an indicator function bα (k) which is one when the kth solvent
molecule occupies the defined inner shell, and zero otherwise. Then the PDT for-
mula can be recast as

e−βµex
α =

⎛
⎝1 +

∑
m≥1

Kmρw
m

⎞
⎠×

〈〈
e−β∆Uα

∏
k

[1 − bα (k)]

〉〉

0

. (9.34)

The right-most term is similar to the familiar PDT formula except that the indicator
function combinations forbid binding of solution molecules to the defined inner shell.
That last factor is recognized as the Boltzmann factor of the hydration free energy
that would result if inner-shell binding were prohibited. The Km are recognizable
ratios of equilibrium concentrations – equilibrium constants – that are discussed
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further below, and ρw is the bulk number density of the solvent. The leading factor
on the right of (9.34) is a sum over cases for binding of solvent to the defined inner
shell. Only a finite number of terms contribute to this sum. Notice that this expresses
a stratification of the statistical problem. Here the variable identifying the strata is
the number m of solvent occupants of the inner shell.

The Km are descriptors of the aggregation reactions

α (H2O)m−1 + H2O � α (H2O)m , (9.35)

specifically

Km

Km−1
=

ραwm

ραwm−1ρw

=

(
qint
αwm

Λαwm

3

)
e−βµex

αwm

(
qint
αwm−1

Λαwm−1
3

)
e−βµex

αwm−1

(
qint
w

Λw
3

)
e−βµex

w

, (9.36)

with K0 = 1. Together with the identification

e−βµex
αwm =

〈〈
e−β∆Uαwm

∏
k∈m

bα (k)
∏
j �∈m

[1 − bα (j)]

〉〉

0

, (9.37)

this adapts the concepts of the PDT to the cluster species αwm viewed as conven-
tional components of the solution. Further definition, and a fuller discussion of how
this arises, can be found in [10]. The appearance of the language of chemical thermo-
dynamics suggests an essentially thermodynamical derivation of the QCT (9.34); that
is developed next as a worked exercise.

9.3.1 Cluster-Variation Exercise Sketched

Here we sketch a heuristic derivation of the quasichemical formula (9.34). Consider
a solution of species α and w. The Gibbs free energy is

G = µwnw + µαnα . (9.38)

If we can identify complexes αwm that may form, we might wish to express G as

G = µ̂wn̂w +
∑
m≥1

µαwm
nαwm

. (9.39)

n̂w is intended to be the number of uncomplexed water molecules, and (9.39) requests
the chemical potential µ̂w for those uncomplexed water molecules. The motivation
for (9.39) is that species αwm might be available to be purchased and scooped from
a jar, so treating it as another chemical component seems natural. A conceptual hitch
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is that (9.39) seems to have more composition variables than (9.38) does. To address
this hitch, note that

nα =
∑
m≥0

nαwm
, (9.40a)

nw = n̂w +
∑
m≥1

m nαwm
. (9.40b)

Substitution of (9.40) into (9.38) permits a comparison with (9.39). Such a com-
parison helps, but does not solve the problem that (9.39) seems to have superfluous
variables.

This conceptual hitch is addressed by adjusting the values of the superfluous
variables, subject to the constraints of (9.40), to make G stationary – minimal.
Accounting for the constraints (9.40) by the standard procedure of Lagrange’s
undetermined multipliers [49] yields:

(µ̂w − λw) δn̂w +
∑
m≥1

(µαwm
− λα − mλw) δnαwm

= 0 , (9.41)

where λw and λα are the necessary Lagrange multipliers, and the indicated compo-
sition variations are now unconstrained. The conclusion is that:

µ̂w = λw , (9.42a)
µαwm

= λα + mλw . (9.42b)

With these specifications, the variation of G is

δG = λwδn̂w +
∑
m≥1

(λα + mλw) δnαwm
, (9.43)

= λwδnw + λαδnα , (9.44)

using (9.40). Now comparison with (9.38) leads to the identification λw = µw, λα =
µα, and then further µ̂w = µw.

The relation µα = µαwm
− mµw leads to the quasichemical approach. This

relation can be put into the form

βµex
α = βµex

αwm=0
+ lnxm − ln Kmρw

m , (9.45)

using the definitions (9.2) and (9.36), and the notation

xn =
ραwm

ρα
=

ραwm∑
m≥0

ραwm

=
Kmρw

m

1 +
∑
m≥1

Kmρw
m

. (9.46)

Then, finally

βµex
α = βµex

αwm=0
− ln

⎛
⎝1 +

∑
m≥1

Kmρw
m

⎞
⎠ (9.47)
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which is the first important message of (9.34).
The ideal factor K

(0)
m (T ) can be extracted from the result (9.36)

Km = K(0)
m (T )

〈〈
e−β∆Uαwm

〉〉
0〈〈

e−β∆Uαwm=0
〉〉

0
(〈〈e−β∆Uw〉〉0) m

. (9.48)

In the cases that are the target of the present development, the evaluation of K
(0)
m (T )

can be a challenging calculation in its own right.

9.3.2 Results of Clustering Analyses

The development leading to (9.47) is extremely broad, and the notation of (9.48) is
correspondingly broad. An important question is just what is meant precisely by no-
tations such as

〈〈
e−β∆Uαwm

〉〉
0

and specifically
〈〈

e−β∆Uαwm=0
〉〉

0
. A development

that uses more specific notation [10] clarifies that

〈〈
e−β∆Uαwm=0

〉〉
0

=

〈〈
e−β∆Uα

∏
k

[1 − bα (k)]

〉〉

0

. (9.49)

The quantities averaged on the right here are the Boltzmann factor for the binding
energy, as is usual for the PDT, but multiplied by the indicator function for the event
that there are zero occupants of the defined inner shell.

Notice that the quantity of (9.49) is the right-most factor of (9.34), and also ap-
pears in the denominators of the equilibrium ratios (9.48). Thus, that factor in (9.34)
cancels precisely the same factor in the denominator of contributions from (9.48).
This observation gives some perspective on how the basic quasichemical formula
(9.34) is built, but does not address the leading term in (9.34) of “1”, which does not
have such a denominator. But in multiplying out of (9.34) we see that the term (9.49)
is the correct contribution to the PDT formula for the case m = 0. Again, this obser-
vation serves to explain how the equilibrium ratios and the outer-shell contribution
come together to formulate the general result.

If we simplify the sum of (9.34) to include only the maximum term, the m̂th
term, we find the formula

µex
α ≈ −kBT ln

(
K

(0)
m̂ ρw

m̂
)

+
(
µex

αwm̂
− m̂µex

w

)
(9.50)

in which the outer-shell contribution does not appear explicitly because it has been
cancelled precisely.

9.3.3 Primitive Quasichemical Approximation

Equation (9.50) is the primitive quasichemical approximation that was used to obtain
the results of Figs. 9.1 and 9.2. Primitive emphasizes that the equilibrium constants
are obtained with initial neglect of the effects of the outer-shell material, as (9.50)
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suggests. It remains to establish practical methods of calculation for the various
quantities that appear there, and we here provide some of the specifics that form
the basis of the results in Figs. 9.1 and 9.2.

K
(0)
m is readily calculated by considering the inner-shell clustering reactions

Mq+ + mH2O � M (H2O)m
q+ ,

where Mq+ is the metal ion, and utilizing the Gaussian [50] suite of programs, as an
example. First the metal–water clusters were geometry optimized using the B3LYP
hybrid density functional [51] and the 6-31+G(d,p) basis set. Frequency calculations
confirmed a true minimum, and also yielded zero point corrections to the energy and
vibrational contributions to the entropy change. The final electronic energies are cal-
culated with the larger 6-311+G(2d,p) basis set. For the open-shell transition metals,
the unrestricted formalism was used. The transition-metal ions and their water com-
plexes were modeled in the high-spin state, since water typically leads to only a small
splitting in the d-orbital energies. Further technical details can be found in [12].

The second necessary ingredient in the primitive quasichemical formulation is
the excess chemical potential of the metal–water clusters and of water by itself.
These quantities µex

αwm
− mµex

w can typically be obtained from widely available
computational packages for molecular simulation [52]. In hydration problems where
electrostatic interactions dominate, dielectric models of those hydration free energies
are usually satisfactory. The combination µex

αwm
− mµex

w is typically insensitive to
computational approximations because the water molecules coat the surface of the
αwm complex, and computational errors can compensate between the bound and
free ligands.

The final ingredient that enters the calculation is the density factor ρw. This is
the actual density of water appropriate to the thermodynamic state intended in the
calculation. For the usual case of 1 atm. pressure and 298 K, this is 1 g cm−3. The
reference density in the electronic structure calculations is ρ◦ = 1 atm/RT , however.
Hence to account properly for the entropic cost of sequestering water in the metal–
water complexes, the free energies should be adjusted by −mRT ln (ρH2O/ρ◦) =
−mRT ln (1354). With these inputs the excess chemical potential is readily com-
posed as per (9.50), provided the optimal value of m̂ is known. This is found by
composing the excess chemical potential for different assumed m values and identi-
fying the most stable case. For the dication transition metals studied, this is found to
be six, consistent with experiment [12].

The above procedure readily yields Fig. 9.2. For estimating the excess chemical
potential in the protein, again we need to know the ligation state of the metal ion.
This is well known for the zinc-finger case. So we followed the above procedure,
deciding what clusters to study quantum mechanically, and then composing the free
energies as above.

For the metal ions that have been tried [12], this procedure works remarkably well
in determining hydration free energies. There has been little [47] detailed attempt to
determine hydration entropies and volumes in this way, and those properties are not
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expected to be accurately represented in this model. For those properties it is prob-
ably necessary to consider seriously the description of packing problems in dense
solutions. Though the necessary ideas seem to be in place [10], serious experience is
nonexistent.

For anions in water – with the exception of HO−(aq) [53–55] – this primitive
quasichemical model is complicated for a different reason. In anion cases, determin-
ing m̂ and the geometry for the clusters on the basis of gas-phase calculations can
lead to problematic results. In contrast to the hydrated metal ions, in anion cases the
hydrogen bonding of inner-shell water molecules to the outer-shell material is some-
times decisive in establishing the most probable inner-shell structure. A signature
of this problem is effective H-bonding between inner-shell water molecules – intra-
cluster H-bonding – in gas-phase calculations. This is not observed in the hydrated
metal ion and the HO−(aq) cases. The approach for treating those problematic anion
cases is to treat the outer-shell effects on the basis of molecular-field developments
as discussed below.

9.3.4 Molecular-Field Approximation Km ≈ K(0)
m [ϕ]

Let us return to our basic formula (9.34). Notice that lots of the detail of ∆Uα ex-
pressed in the outer-shell factor (9.49) will have no effect because the indicator func-
tion

∏
k [1 − bα (k)] multiplies by zero in the inner-shell region. This suggests that

analysis of this contribution has a chance of producing results of general utility. The
extreme case is the one in which ∆Uα is short-ranged to the extent that it is nonzero
only in the inner-shell region. To analyze this, let us consider the case for which
∆Uα = 0 everywhere. In that case, (9.34) becomes

1 =

⎛
⎝1 +

∑
m≥1

K̃mρw
m

⎞
⎠×

〈〈∏
k

[1 − bα (k)]

〉〉

0

. (9.51)

We adopt the tilde-notation K̃m as a reminder that these equilibrium ratios are the
ones appropriate to the ∆Uα = 0 case considered. Notice then that the indicator
function

∏
k [1 − bα (k)] corresponds to the Boltzmann factor for the solute–solvent

interactions of hard-core type, i.e., interactions that are infinitely unfavorable for
molecular overlap, but otherwise zero. Thus [56]

〈〈∏
k

[1 − bα (k)]

〉〉

0

= e−βµex
HC =

1

1 +
∑
m≥1

K̃mρw
m

. (9.52)

The identifier “HC” means that this is the solvation free energy for the case of a hard-
core solute with the excluded-volume region established by the inner-shell definition.

In applying this approach to the equation of state of the hard-sphere fluid [57], it
was found that the molecular-field approximation
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K̃m ≈ K̃
(0)
m [ϕ] , (9.53a)

δ

δβϕ(r)
ln

⎡
⎣1 +

∑
m≥1

K̃(0)
m [ϕ] ρw

m

⎤
⎦ = ρw . (9.53b)

was a suitable physical approximation, producing an equation of state for that system
as accurate as the most accurate previous theory. The motivation for this approxima-
tion scheme is that the integrals K̃

(0)
m [ϕ] are numerically accessible, the molecular

field ϕ expresses the effects of the outer-shell material on each m-cluster, and the
prescription for determination of that field – the second member of (9.53) – requires
that the predicted density pattern implied within the defined inner shell be the known
uniform density.

This approach is suggestive of the Hartree approximation of atomic and molec-
ular physics. The outer-shell interactions are important, but complicated because of
the correlations involved when they are considered directly. The suggested response
to this difficulty is to treat these effects as uncorrelated – as a product contribution
to the distribution – but with the product factors optimized by (9.53) to be consistent
with the basic data.

The first point from this development and example is that, although the quasi-
chemical approach is directed towards treating strong attractive – chemical – inter-
actions at short range, it can describe traditional packing problems accurately. The
second point is that this molecular-field idea permits us to go beyond the primitive
quality noted above of the primitive quasichemical approximation, and specifically
to account approximately for the influence of the outer-shell material on the equilib-
rium ratios Km required by the general theory. This might help with cases of delicate
structures noted above with anion hydrates.

Equation (9.53) for the desired molecular field is nonlinear, typically solved iter-
atively. For this molecular-field approach to become practical, an alternative to this
nonlinear iterative calculation is required. A natural idea is that a useful approxi-
mation to this molecular field might be extracted from simulations with available
generic force fields. Then with a satisfactory molecular field in hand, the more am-
bitious quasichemical evaluation of the free energy can be addressed, presumably
treating the actual binding interactions with chemical methods specifically. This is
work currently in progress.

How the latter application of QCT can be formulated has been discussed in some
detail [10]. That discussion nearly closes a logical circle: PDT → QCT → pdt. The
final pdt is, however, approximate, as is natural when utilizing a molecular-field
description of the influence of the outer-shell material. Specifically,

µex
α (Rn) ≈ −kBT ln

〈
e−β∆Uα |Rn

〉
0
[GC : ϕ] . (9.54)

Here the notation [GC : ϕ] indicates that the system to be treated is only the inner-
shell volume, and the material enclosed is described by an ensemble of fluctuat-
ing composition – as with the grand canonical ensemble – under the influence
of the molecular-field ϕ. With longer-ranged interactions, a correction for those
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interactions would also be required, much as a tail correction for traditional com-
puter simulations [58, 59]. This emphasizes that these approximations are so firmly
grounded that implementations are reincarnated as simulations, but with the system
size drastically reduced.

9.4 Example

9.4.1 µex
α = kBT ln

∫ ε̄

−∞
Pα (ε) eβεdε − kBT ln

∫ ε̄

−∞
P(0)

α (ε) dε

Here we present and discuss an example calculation to make some of the concepts
discussed above more definite. We treat a model for methane (CH4) solute at infinite
dilution in liquid under conventional conditions. This model would be of interest to
conceptual issues of hydrophobic effects, and general hydration effects in molecular
biosciences [1, 9], but the specific calculation here serves only as an illustration of
these methods. An important element of this method is that nothing depends restric-
tively on the representation of the mechanical potential energy function. In contrast,
the problem of methane dissolved in liquid water would typically be treated from
the perspective of the van der Waals model of liquids, adopting a reference system
characterized by the pairwise-additive repulsive forces between the methane and wa-
ter molecules, and then correcting for methane–water molecule attractive interac-
tions. In the present circumstance this should be satisfactory in fact. Nevertheless,
the question frequently arises whether the attractive interactions substantially affect
the statistical problems [60–62], and the present methods avoid such a limitation.

The example we consider is based upon the beautiful (9.17), which relates the
probability distribution function for the interaction energy of the solute with the rest
of the system in the fully coupled and the uncoupled cases, Pα (ε) and P

(0)
α (ε),

respectively. This relation leads to the identity (9.19) which motivates an interesting
view of the hydration free energy. The initial contribution on the right of (9.19) seems
to be principally a coupling interaction energy between a CH4 molecule and the
liquid water matrix. The next term suggests a packing contribution even though we
have not troubled to separate a repulsive force of interaction on which a packing
theory might be based.

By seeking a satisfactory value of ε̄ in a low range, (9.19) attempts to isolate
a mean interaction potential energy as a contribution to the free energy that might
be weakly dependent on the thermodynamic state. In the case of model interactions
that accurately conform to a van der Waals equation of state [64], Pα (ε) would be
essentially δ-distributed. The distribution associated with the packing contribution
is expected to be extremely broad, but only the cumulative probability is required,
specifically without an exponential weight. Thus, evaluation of that packing contribu-
tion could be accomplished with insertion trials [2, 41] as are applicable to hard-core
excluded-volume interactions.
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Fig. 9.4. Pα(ε) and P(0)
α (ε) as a function of the binding energy. The simulations treated

216 water molecules, utilizing the SPC/E water model, and the Lennard-Jones parameters for
methane were from [63]. The number density for both the systems is fixed at 0.03333 Å−3,
and T = 298 K established by velocity rescaling. These calculations used the NAMD pro-
gram (www.ks.uiuc.edu/namd). After equilibration, the production run comprised 200 ps in
the case of the pure water simulation and 500 ps in the case of the methane–water system.
Configurations were saved every 0.5 ps for analysis

To exemplify this interesting formula, we performed two simulations, one of
pure water and another of a single methane molecule in water, as shown in Fig. 9.4
which also shows the distribution functions Pα(ε) and P

(0)
α (ε) obtained from the

simulation records. Pα is the more tightly confined distribution. P
(0)
α , on the other

hand, is a broader distribution. This suggests again how this latter contribution is
supplying information on entropic effects attendant with the hydration process. Both
data sets find about the same lower limit on the binding energy.

Figure 9.5 shows the standard histogram overlap analysis following (9.17), and
helps identify an overlap region for ε̄ of (9.19). The computed excess chemical poten-
tial is in excellent agreement with the earlier result of [63]. The inferred temperature
agrees with the specified simulation temperature. Equation (9.17) is best applied in
the region −2.5 kcal mol−1 < ε̄ < −0.5 kcal mol−1.

The application of (9.19) is shown in Fig. 9.6. Note that the packing contribution,
the second term on the right-hand side of (9.19), is always positive. Here it is of
sufficient magnitude to make the net hydration free energy positive, consistent with
the folklore of hydrophobic effects [9]. It is a remarkable point that truncation of the
integral (9.18) over the range of observations of Fig. 9.4 would produce a result of
the wrong sign, leading to qualitatively erroneous conclusions.

The upper, ‘packing,’ curve of Fig. 9.6 will decrease to zero for large ε̄; the lower,
‘chemistry,’ curve will increase, cross the ‘packing’ curve, and approach the desired
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Fig. 9.5. Plot of ln[Pα(ε)/P(0)
α (ε)]. The region between −2.5 kcal mol−1 and

−0.5 kcal mol−1 is satisfactorily linear, and (9.17) yields T ≈ 302 K, in good agreement with
the simulation temperature of 298 K. The intercept gives µex = 2.5 kcal mol−1 in agreement
with a value of 2.5 kcal mol−1 for the SPC water model [63]
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Fig. 9.6. Analysis of µex following (9.19), p. 330. The packing curve is the rightmost term of
(9.19), the chemistry curve is the preceding term, the diamonds are the sum as given by (9.19),
and the horizontal dashed line is the hydration free energy of Fig. 9.5. µex is insensitive to ε̄.
Here the packing contribution raises the hydration free energy to a substantial positive value
consistent with the low solubility of CH4 in water. The upper bound of (9.56) is given by the
open triangles. The minimum value of this upper bound is attained near the thermal mean
binding energy, about –2.2 kcal mol−1

µex
α asymptotically from below. The desired weight

∫ ε̄

−∞ P
(0)
α (ε) dε in the low-

energy wing conforms to the bound [65]
∫ ε̄

−∞
P(0)

α (ε) dε ≤ eβ(ε̄−µex
α ), (9.55)
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which is analogous the Tchebycheff inequality [66]. (Note that this gives a trivial, but
true, result when ε̄ ≥ µex

α .) This relation yields an upper bound on the free energy

µex
α ≤ ε̄ − kBT ln

∫ ε̄

−∞
P(0)

α (ε) dε . (9.56)

Choosing ε̄ = 〈ε〉 gives the interesting result

µex
α ≤ 〈ε〉 − kBT ln

∫ 〈ε〉

−∞
P(0)

α (ε) dε . (9.57)

The evidence from Fig. 9.6 suggests that this can be accurate enough to be useful;
that might be important in cases where the interactions are less simple than those
assumed here. We reemphasize that these relations do not depend on particularly
simple forms of the interactions. Of course

〈ε〉 ≤ µex
α , (9.58)

also. Equations (9.58) and (9.57) thus bracket the desired free energy.

9.4.2 Physical Discussion and Speculation on Hydrophobic Effects

The present example does support some speculation on an outstanding puzzle for
our conceptualization of hydrophobic effects. It is known that the sum of the stan-
dard hydration entropies of K+(aq) and Cl−(aq) is about twice the standard hy-
dration entropy of Ar(aq) [67]. The case of methanol as the solvent is qualita-
tively different. If hydrophobic effects are conceptualized on the basis of hydra-
tion entropies and specific hydration structures then this is paradoxical: according
to the measured entropies K+(aq) + Cl−(aq) is about as hydrophobic as Ar(aq)
+ Ar(aq), but the hydration structures neighboring K+(aq), Cl−(aq), and Ar(aq)
should be qualitatively different. This paradox has not been given a satisfactory
explanation.

We can initiate this discussion with the following straw-man argument: viewed
from the perspective of (9.27), p. 333, evidently the contribution of the leading –
zeroth-order – term is most of the net entropy of hydration; and the entropy contribu-
tions of the succeeding terms must be comparatively small. This is not an explanation
because it does not explain why those succeeding contributions make small contri-
butions to the entropy despite the fact that the interactions involved with those terms
have large effects on the hydration structure. Therefore, this straw-man argument
serves only to sharpen the paradox. We pass over the question of why a perturbative
treatment should be satisfactory when those interactions have a large effect on the
hydration structure.

The interactions that have to be considered in the three cases here are also differ-
ent from each other. Nevertheless, some features of the graphs of Figs. 9.4 and 9.6 are
likely to be generally observed. P

(0)
α (ε) will populate higher energies than P(ε),

and P
(0)
α (ε) will be extremely broad relative to P(ε). P(ε) will be much more
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concentrated, but – because the interactions are so different in the cases considered –
with significantly different locations. We speculate that for the cases considered
here a satisfactory low value of ε̄ can be identified so that the ‘chemistry’ contri-
bution might be less sensitive to temperature T because of the exceptionally slow
decrease of the density of liquid water with increasing T along the vapor satura-
tion curve [7]; then we further speculate that the T dependence of the ‘packing’
contribution at that value of ε̄ might be somewhat generic. In fact, the ‘packing’ con-
tribution only assesses a fraction of favorable cases, and so might be insensitive to
details of the different interactions. This speculation then amounts to the suggestion
that:

µex
α ≈ 〈∆Uα〉 − kBT ln

∫ µex
α

−∞
P(0)

α (ε) dε , (9.59)

with the interesting temperature sensitivity in the right-most term. It is interesting to
note also that 〈∆Uα〉 probably will exhibit parabolic dependence on the ionic charge
[68], as does the approximation (9.27). Nevertheless, refinement of this speculation
will require detailed studies for the cases of interest here.

9.5 Conclusions

Return now to the assertions of the Introduction. The explanation of assertion (1)
was pointed out previously. Assertion (2), that the PDT is a practical computational
tool, was the subject of Sect. 9.2.3. See especially the discussion “the general com-
putational tricks work for the PDT also,” emphasizing the general statistical methods
of stratification and importance weighting, and their correspondence to the natural
theoretical analyses of the PDT partition function.

The final assertion (3) is that the PDT is a natural vehicle for the organization
and comprehension of data, either experimental or simulation, i.e., for the dev-
elopment of physically motivated models. This is an evolving conclusion to be
supported by scientific induction. The discussion above supports this view in several
places, including dielectric models of hydration involving electrostatic interactions
(9.27), p. 333, chemical problems (9.50), and packing problems (9.52). Refer-
ence [10] discusses the further examples of the van der Waals model of liquids
and liquid mixtures, the Debye–Hückel model of electrolyte solutions, the Flory–
Huggins model of polymer solutions, and the information theory approaches that
underlie recent progress in understanding classic hydrophobic phenomena
[7, 9].

The reason that the PDT is an effective tool for the generation of physical models
is that it treats an intensive thermodynamic property, and the distribution functions
involved are simpler in the thermodynamic limit than if this were not the case [10].
An extended family of modeling tools then applies directly. The quasichemical
approach is a ‘general example.’ It amounts to stratification of the statistical problem
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according to the number of neighbors of a solution molecule of interest. The cluster-
variation exercise sketched in Sect. 9.3.1 gives a new derivation of the principal
features of that quasichemical approach.
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Methods for Examining Phase Equilibria

M. Scott Shell and Athanassios Z. Panagiotopoulos

10.1 Introduction

This chapter focuses on methods to obtain free energies and phase equilibria of
classical, i.e., nonquantum fluids. One distinguishing issue with these systems rel-
ative to lattice models of fluids is of course the existence of continuous degrees
of freedom and their associated continuous macroscopic parameters. This expands
configuration space relative to the lattice systems, but also allows greater flexibility
in propagating the system, including the possible application of hybrid Monte
Carlo/molecular dynamics methods. Nonetheless, there are a number of subtleties as-
sociated with both the formalism and implementation of off-lattice phase-equilibria
calculations, and it is these issues which form the focus of this chapter. In particular,
we have endeavored to review a collection of algorithms which have an established
record of effectiveness with fluids; these methods do not always correspond to the
most efficient approaches one would employ for systems reviewed elsewhere in this
book.

The main emphasis of the chapter is on Monte Carlo (MC) rather than mole-
cular dynamics (MD) methods. While some of the algorithms described here have
analogs using MD, MC is a more natural and flexible framework for performing
the calculations of free energies and phase equilibria presented. MC methods easily
incorporate ‘unphysical’ moves, such as particle insertions and deletions, or cutting
and regrowing segments of molecules. Furthermore, while MD can be formulated in
various ensembles including those of non-natural state probabilities, as in the mul-
ticanonical approach, both the conceptual framework and implementation in these
situations is often significantly more straightforward in an MC setting. We therefore
feel that, in an introductory text such as this, the reader is best served if we focus on
MC algorithms and provide references to related MD methods where appropriate.

In any MC simulation, three ingredients form the basis of the way in which
properties are extracted from the model system: the prescribed microstate probabili-
ties: the ensemble of interest, the set of random moves which propagate the system
according to these probabilities, and the estimators which extract the appropriate
property averages. In this discussion, we will not be concerned with the intermediate
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of these; we will largely ignore the issue of good move design. This is not to trivialize
that aspect, as effective move schemes can often mean the difference between feasi-
ble and impractically long simulations, but it is because the free energy calculations
themselves are more suitably addressed by the other two elements. We therefore
assume that the reader is familiar with conventional moves such as single-particle
displacement, volume scaling, and particle addition/deletion.

We remind the reader that a particular ensemble and a collection of moves
completely specifies the acceptance criteria, as a consequence of detailed balance.
In general mathematical form, these two components are described by a microstate
probability scheme, the probabilities associated with each configuration in the en-
semble, denoted here by ℘(q) where q are the positions of the N particles, and by
and the transition proposal probabilities, tprop(qA → qB), which give the probability
that a particular move will be attempted between two configurations A and B. By ap-
plying the detailed balance condition, one ensures that the limiting distribution of the
simulation is ℘(q). This condition provides an expression for the probabilities with
which proposed random moves from A to B must be accepted, Pacc(qA → qB).
The general relationship is

Pacc(qA → qB)
Pacc(qB → qA)

=
tprop(qB → qA)
tprop(qA → qB)

℘(qB)
℘(qA)

. (10.1)

This expression is most frequently satisfied using the Metropolis criterion

Pacc(qA → qB) = min
{

1,
tprop(qB → qA)
tprop(qA → qB)

℘(qB)
℘(qA)

}
. (10.2)

A more detailed discussion of the subtleties in formulating correct acceptance crite-
ria can be found in [1]. For the purpose of this chapter, we will focus on ensembles
in general rather than acceptance criteria specifically, with the understanding that
once the configurational probabilities are fixed the criteria follow directly. With this
in mind, we will sometimes present the microstate probability scheme without dis-
cussing the associated acceptance criteria.

A number of textbooks and review articles are available which provide back-
ground and more-general simulation techniques for fluids, beyond the calculations
of the present chapter. In particular, the book by Frenkel and Smit [1] has compre-
hensive coverage of molecular simulation methods for fluids, with some emphasis on
algorithms for phase-equilibrium calculations. General review articles on simulation
methods and their applications – e.g., [2–6] – are also available. Sections 10.2 and
10.3 of the present chapter were adapted from [6]. The present chapter also reviews
examples of the recently developed flat-histogram approaches described in Chap. 3
when applied to phase equilibria.

This chapter presents a collection of algorithms varied in application and gener-
ality, and is designed to provide a diverse toolkit for dealing with free energies and
phase equilibria of fluids. We discuss both methods which aim to calculate the free
energy or entropy directly, as well as those which characterize these functions indi-
rectly, as in Gibbs ensemble calculations. Our discussion begins with more-specific
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methods, such as the test particle method for the chemical potential, proceeds to
more-general phase-equilibrium techniques, and finally ends with the widely ap-
plicable flat-histogram approaches. Our goal is to illustrate the general principles
of these calculations, rather than be an exhaustive reference. Indeed, it is our belief
that much remains to be explored with many of the methods, and thus a ‘big-picture’
formalism better serves the reader in applying them to novel problems.

10.2 Calculating the Chemical Potential

10.2.1 Widom Test Particle Method

Most free energy and phase-equilibrium calculations by simulation up to the late
1980s were performed with the Widom ‘test particle’ method [7]. The method is still
appealing in its simplicity and generality – for example, it can be applied directly
to MD calculations without disturbing the time evolution of a system. The poten-
tial distribution theorem on which the test particle method is based as well as its
applications are discussed in Chap. 9.

The method is based on the following expression for constant-NVT simulations
(modified expressions are available in other ensembles [1])

exp(−βµ) = 〈exp(−βUtest)〉 /ρ, (10.3)

where µ is the chemical potential of a component in a system (to within a temperature-
dependent constant that does not affect phase-equilibrium calculations), Utest is the
energy experienced by a ‘test’ particle of that component placed in a random posi-
tion in the simulation cell, and ρ is the molar density. Most attempted insertions of
test particles result in overlap with existing particles in the fluid, with Utest large and
positive. These insertions do not contribute significantly to the ensemble average.
For simple single-site intermolecular potentials, such as the Lennard-Jones poten-
tial, sampling using the Widom test particle method can be performed throughout
the fluid state. Sampling fails for ordered solid phases. For multisegment molecules,
the Widom method can be combined with configurational bias techniques [1]. Even
if a molecule is not multisegmented but is not spherically symmetric, one must per-
form averaging over orientations and possibly conformation. This is discussed in
Chap. 9.

10.2.2 NPT + Test Particle Method

The NPT + test particle method [8, 9] aims to determine phase coexistence points
based on calculations of the chemical potentials for a number of state points. A phase
coexistence point is determined at the intersection of the vapor and liquid branches of
the chemical potential versus pressure diagram. The Widom test particle method [7]
of the previous paragraph or any other suitable method [10] can be used to obtain
the chemical potentials. Corrections to the chemical potential of the liquid and va-
por phases can be made, using standard thermodynamic relationships, for deviations
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between the pressure at which the calculation were made and the actual coexistence
pressure. Extrapolations with respect to temperature are also possible [11].

In contrast to the Gibbs ensemble discussed later in this chapter, a number of
simulations are required per coexistence point, but the number can be quite small,
especially for vapor–liquid equilibrium calculations away from the critical point. For
example, for a one-component system near the triple point, the density of the dense
liquid can be obtained from a single NPT simulation at zero pressure. The chemical
potential of the liquid, in turn, determines the density of the (near-ideal) vapor phase
so that only one simulation is required. The method has been extended to mixtures
[12, 13]. Significantly lower statistical uncertainties were obtained in [13] compared
to earlier Gibbs ensemble calculations of the same Lennard-Jones binary mixtures,
but the NPT + test particle method calculations were based on longer simulations.

The NPT + test particle method shares many characteristics with the histogram
reweighting methods discussed in Chap. 3. In particular, histogram reweighting
methods also yield the chemical potentials and pressures of the coexisting phase from
a series of simulations. The corrections to the chemical potentials for changes in pres-
sure [9] and temperature [11] are similar to the concept of reweighting the combined
histograms from grand canonical simulations to new densities and temperatures.

Spyriouni et al. [14, 15] have presented a powerful method (called ‘SPECS’) for
calculations of polymer phase behavior related to the NPT + test particle method.
The method of Spyriouni et al. targets the calculation of the phase behavior of
long-chain systems for which the test particle method for the calculation of chemi-
cal potentials fails. For sufficiently long chains, even configurational bias sampling
methods become impractical. For binary mixtures of a low-molecular-weight sol-
vent (species 1) and a polymer (species 2), two parallel simulations are performed in
the (µ1, N2, P, T ) ensemble at conditions near the expected coexistence curve. The
chemical potential of component 2 is determined through the ‘chain increment’ tech-
nique [16]. Iterative calculations at corrected values of the chemical potential of the
solvent are performed until the chemical potential of the polymer in the two phases is
equal. For the special case of a dilute solutions, estimates of the chemical potentials
of the solvent and polymer for compositions different from the original simulation
conditions can be made using standard thermodynamic relations and the number of
required iterations is significantly reduced.

10.3 Ensemble-Based Free Energies and Equilibria

10.3.1 Gibbs Ensemble

The Gibbs Ensemble MC simulation methodology [17–19] enables direct simula-
tions of phase equilibria in fluids. A schematic diagram of the technique is shown
in Fig. 10.1. Let us consider a macroscopic system with two phases coexisting at
equilibrium. Gibbs ensemble simulations are performed in two separate microscopic
regions, each within periodic boundary conditions (denoted by the dashed lines in
Fig. 10.1). The thermodynamic requirements for phase coexistence are that each
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Fig. 10.1. Schematic diagram of the Gibbs ensemble MC simulation methodology. Reprinted
with permission from [6]. c©2000 IOP Publishing Ltd

region should be in internal equilibrium, and that temperature, pressure and the
chemical potentials of all components should be the same in the two regions. System
temperature in MC simulations is specified in advance. The remaining three condi-
tions are satisfied by performing three types of MC moves, displacements of particles
within each region (to satisfy internal equilibrium), fluctuations in the volume of
the two regions (to satisfy equality of pressures) and transfers of particles between
regions (to satisfy equality of chemical potentials of all components).

The acceptance criteria for the Gibbs ensemble were originally derived from fluc-
tuation theory [17]. An approximation was implicitly made in the derivation that re-
sulted in a difference in the acceptance criterion for particle transfers proportional to
1/N relative to the exact expressions given subsequently [18]. A full development of
the statistical mechanics of the ensemble was given by Smit et al. [19] and Smit and
Frenkel [20], which we follow here. A one-component system at constant tempera-
ture T , total volume V , and total number of particles N is divided into two regions,
with volumes VI and VII = V − VI, and number of particles NI and NII = N − NI.
The partition function, QNV T is

QNV T =
1

Λ3NN !

N∑
NI=0

(
N
NI

)∫ V

0

dVIV
NI
I V NII

II

∫
dsNI

I exp[−βUI(NI)]

×
∫

dsNII
II exp[−βUII(NII)], (10.4)
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where sI and sII are the scaled coordinates of the particles in the two regions and
U(N) is the total intermolecular potential of interaction of N particles. Equa-
tion (10.4) represents an ensemble with probability density, ℘(NI, VI;N,V, T ) pro-
portional to

℘(NI, VI;N,V, T ) ∝ N !
NI!NII!

exp [NI ln VI + NII ln VII

−βUI(NI) − β UII(NII)] .
(10.5)

Smit et al. [19] used the partition function given by (10.4) and a free energy min-
imization procedure to show that, for a system with a first-order phase transition,
the two regions in a Gibbs ensemble simulation are expected to reach the correct
equilibrium densities.

The acceptance criteria for the three types of moves can be obtained immediately
from (10.4). For a displacement step internal to one of the regions, the probability of
acceptance is the same as for conventional constant−NV T simulations

℘move = min[1, exp(−β∆U)]. (10.6)

where ∆U is the configurational energy change resulting from the displacement. For
a volume change step during which the volume of region I is increased by ∆V with
a corresponding decrease of the volume of region II,

℘volume = min

[
1, exp

(
− β∆UI − β∆UII + NI ln VI +

∆V

VI

+NII ln VII −
∆V

VII

)]
. (10.7)

Equation (10.7) implies that sampling is performed uniformly in the volume itself.
The acceptance criterion for particle transfers, written here for transfer from region
II to region I is

℘transfer = min

[
1,

NIIVI

(NI + 1)VII
exp
(
− β∆UI − β∆UII

)]
. (10.8)

Equation (10.8) can be readily generalized to multicomponent systems. The only
difference is that the number of particles of species j in each of the two regions,
NI,j and NII,j replace NI and NII, respectively. In simulations of multicomponent
systems dilute in one component, it is possible that the number of particles of a
species in one of the two regions becomes zero after a successful transfer out of that
region. Equation (10.8) in this case is taken to imply that the probability of transfer
out of an empty region is zero.

To this point, the acceptance rules have been defined for a simulation, in which
the total number of molecules in the system, temperature and volume are constant.
For pure component systems, the phase rule requires that only one intensive variable
(in this case the system temperature) can be independently specified when two phases
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coexist. The vapor pressure is obtained from the simulation. In contrast, for multi-
component systems pressure can be specified in advance, with the total system being
considered at constant NPT. The probability density for this case, ℘(NI, VI;N,P, T )
is proportional to

℘(NI, VI;N,P, T ) ∝ N !
NI!NII!

exp
[
NI ln VI + NII ln VII

−βUI(NI) − βUII(NII) − βP (VI + VII)
]
. (10.9)

and the only change necessary in the algorithm is that the volume changes in the two
regions are now made independently. The acceptance criterion for a volume change
step in which the volume of region I is changed by ∆V , while the other region
remains unchanged is then:

℘volume = min

[
1, exp

(
− β∆UI + NI ln VI +

∆V

VI
− βP∆V

)]
. (10.10)

An interesting extension of the original methodology was proposed by Lopes and
Tildesley to allow the study of more than two phases at equilibrium [21]. The exten-
sion is based on setting up a simulation with as many boxes as the maximum number
of phases expected to be present. Kristof and Liszi [22, 23] have proposed an imple-
mentation of the Gibbs ensemble in which the total enthalpy, pressure and number
of particles in the total system are kept constant. Molecular dynamics versions of the
Gibbs ensemble algorithm are also available [24–26].

The physical reason for the ability of the Gibbs ensemble to converge to a state
that contains phases at their equilibrium density in the corresponding boxes, rather
than a mixture of the two phases in each box, is the free energy cost of creating and
maintaining an interface. Near critical points, Gibbs ensemble simulations become
unstable because the free energy penalty for creating an interface becomes small.
A better approach to dealing with systems near critical points is provided by the
histogram reweighting methods described in Chap. 3. The finite-size critical behavior
of the Gibbs ensemble has been examined by Bruce [27], Mon and Binder [28], and
Panagiotopoulos [29]. The ‘standard’ procedure for obtaining critical points from
Gibbs ensemble simulations is to fit subcritical coexistence data to universal scaling
laws. This approach has a weak theoretical foundation, since the universal scaling
laws are only guaranteed to be valid in the immediate vicinity of the critical point,
where simulations give the wrong (classical) behavior due to the truncation of the
correlation length at the edge of the simulation box. In many cases, however, the
resulting critical points are in fair agreement with more-accurate results obtained
from finite-size scaling methods.

In summary, the Gibbs ensemble MC methodology provides a direct and effi-
cient route to the phase coexistence properties of fluids, for calculations of moderate
accuracy. The method has become a standard tool for the simulation community,
as evidenced by the large number of applications using the method. Histogram
reweighting techniques (Chap. 3) have the potential for higher accuracy, especially if
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equilibria for a large number of state points are to be determined. Histogram methods
are also inherently better at determining critical points. In its original form, the Gibbs
ensemble method is not practical for multisegment or strongly interacting systems,
but development of configurational bias sampling methods [30, 31] has overcome
this limitation.

10.3.2 Gibbs–Duhem Integration

Most methods for the determination of phase equilibria by simulation rely on parti-
cle insertions to equilibrate or determine the chemical potentials of the components.
Methods that rely on insertions experience severe difficulties for dense or highly
structured phases. If a point on the coexistence curve is known (e.g., from Gibbs
ensemble simulations), the remarkable method of Kofke [32, 33] enables the calcu-
lation of a complete phase diagram from a series of constant-pressure, NPT , simu-
lations that do not involve any transfers of particles. For one-component systems, the
method is based on integration of the Clausius–Clapeyron equation over temperature,

(
dP

dβ

)
sat

= − ∆H

β∆V
, (10.11)

where sat indicates that the equation holds on the saturation line, and ∆H is the dif-
ference in enthalpy between the two coexisting phases. The right-hand side of (10.11)
involves only ‘mechanical’ quantities that can be simply determined in the course of
a standard MC or MD simulation. From the known point on the coexistence curve,
a change in temperature is chosen, and the saturation pressure at the new tempera-
ture is predicted from (10.11). Two independent simulations for the corresponding
phases are performed at the new temperature, with gradual changes of the pressure
as the simulations proceed to take into account the enthalpies and densities at the
new temperature as they are being calculated.

Questions related to the propagation of errors and numerical stability of the
method have been addressed in [33, 34]. Errors in initial conditions resulting from
uncertainties in the coexistence densities can propagate and increase with distance
from the starting point when the integration path is toward the critical point [34].
Near critical points, the method suffers from instability of a different nature. Be-
cause of the small free energy barrier for conversion of one phase into the other,
even if the coexistence pressure is set properly, the identity of each phase is hard to
maintain and large fluctuations in density are likely. The solution to this last problem
is to borrow an idea from the Gibbs ensemble and couple the volume changes of the
two regions [33]. Extensions of the method to calculations of three-phase coexistence
lines are presented in [35] and to multicomponent systems in [34]. Unfortunately, for
multicomponent systems the Gibbs–Duhem integration method cannot avoid particle
transfers; however, it avoids transfers for one component, typically the one that is the
hardest to transfer. The method and its applications have been reviewed in [36].

In some cases, in particular for lattice and polymeric systems, volume change
moves may be hard to perform, but particle insertions and deletions may be relatively
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easy, especially when using configurational bias methods. Escobedo and de Pablo
[37, 38] proposed a modification of the Gibbs–Duhem approach that is based on the
expression: (

d(βµ)
dβ

)
sat

= −∆(ρu)
∆ρ

, (10.12)

where ρ is the density (= N/V ) and u is the energy per particle. This method has been
applied to continuous-phase polymeric systems in [37] and to lattice models in [39].

The Gibbs–Duhem integration method excels in calculations of solid–fluid coex-
istence [40, 41], for which other methods described in this chapter are not applicable.
The calculation of the free energies of solids is typically performed via thermody-
namic integration along an appropriate singularity-free coordinate, as described else-
where in this book and in [1]. An extension of the Gibbs–Duhem method, in which
it is assumed that the initial free-energy difference between the two phases is known
in advance, rather than requiring it to be zero, has been proposed by Meijer and El
Azhar [42]. The procedure has been used in [42] to determine the coexistence lines
of a hard-core Yukawa model for charge-stabilized colloids.

The Gibbs–Duhem integration method represents a successful combination of
numerical methods and molecular simulations. Taking this concept even further,
Mehta and Kofke [43] proposed a ‘pseudo-grand canonical ensemble’ method, in
which a system maintains a constant number of particles and temperature, but has a
fluctuating volume to ensure that, at the final density, the imposed value of the chem-
ical potential is matched. The formalism still requires that estimates of the chem-
ical potential be made during the simulation. The main advantage of the approach
over more traditional grand canonical ensemble methods is that it provides additional
flexibility with respect to the method to be used for determination of the chemical
potential. For example, the ‘chain increment’ method [16] for chain molecules,
which cannot be combined with grand canonical simulations, can be used for the
chemical potential evaluations in a pseudo-grand canonical simulation (as in [14]).

The same ‘pseudo-ensemble’ concept has been used by Camp and Allen [44] to
obtain a ‘pseudo-Gibbs’ method in which particle transfers are substituted by volume
fluctuations of the two phases. The volume fluctuations are unrelated to the ones
required for pressure equality (10.7) but are instead designed to correct imbalances
in the chemical potentials of some of the components detected, for example, by test
particle insertions.

While the main driving force in [43, 44] was to avoid direct particle transfers,
Escobedo and de Pablo [38] designed a ‘pseudo-NPT ’ method to avoid direct
volume fluctuations which may be inefficient for polymeric systems, especially on
lattices. Escobedo [45] extended the concept for bubble-point and dew-point calcu-
lations in a ‘pseudo-Gibbs’ method and proposed extensions of the Gibbs–Duhem
integration techniques for tracing coexistence lines in multicomponent systems [46].

10.3.3 Phase Equilibria in the Grand Canonical Ensemble

A grand-canonical Monte Carlo (GCMC) simulation for a one-component system
is performed as follows. The simulation cell has a fixed volume V , and periodic
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boundary conditions are applied. The inverse temperature, β = 1/kBT and the
chemical potential, µ, are specified as input parameters to the simulation. In this
ensemble, histogram reweighting requires collection of data for the joint probability
℘(N,U) of the occurrence of N particles in the simulation cell with total configura-
tional energy in the vicinity of U . This probability distribution function follows the
grand-canonical partition function

℘(N,U) =
Λ−3NΩ(N,V, U)exp(−βU + βµN)

Ξ(µ, V, β)
, (10.13)

where Ξ(µ, V, β) is the grand partition function. We do not know Ω or Ξ at this
stage, but Ξ is a constant for a run at given conditions. Since the left-hand side of
(10.13) can be easily measured in a simulation, an estimate for Ω and its correspond-
ing thermodynamic function, the entropy S (N,V, U), can be obtained by a simple
transformation of (10.13)

S (N,V, U) = lnΩ(N,V, U) = ln℘(N,U)+βU −βµN +3N ln Λ+C, (10.14)

where C is a run-specific constant. As in the example of Chap. 3, using the measured
distribution in energy, (10.14) is meaningful only over the range of particle number
and energies covered in a simulation. If two runs at different chemical potentials
and temperatures have a region of overlap in the space of (N,U) sampled, then the
entropy functions can be ‘merged’ by requiring that the entropy functions are iden-
tical in the region of overlap. To illustrate this concept, we make a one-dimensional
projection of (10.13) to obtain

℘(N) =
Q(N,V, β)exp(βµN)

Ξ(µ, V, β)
. (10.15)

Histograms for two runs at different chemical potentials are presented in Fig. 10.2.
There is a range of N over which the two runs overlap. In Fig. 10.3 we show the
function ln ℘(N) − βµN for the data of Fig. 10.2. Rearranging (10.15) and taking
the logarithm, we see that this function is related to the Helmholtz free energy

βA(N,V, β) = − ln Q(N,V, β) = ln℘(N) − βµN + lnΞ(µ, V, β). (10.16)

The raw curves for µ1 and µ2 as well as a ‘composite’ curve formed by shifting data
for the two runs by the amount indicated by the arrows are shown in Fig. 10.3 . The
combined curve provides information over the combined range of particle numbers,
N , covered by the two runs. Note that by keeping one-dimensional histograms for N
we are restricted to combining runs of the same temperature, while the more general
form (10.14) allows combination of runs at different temperatures.

As before, our simulation data are subject to statistical (sampling) uncertainties,
which are particularly pronounced near the extremes of particle numbers and ener-
gies visited during a run. When data from multiple runs are combined, as shown in
Fig. 10.3, the question arises of how to determine the optimal amount by which to
shift the raw data in order to obtain a global free energy function. As reviewed in
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Fig. 10.2. Schematic diagram of the probability f(N) of occurrence of N particles for two
GCMC runs of a pure component system at the same volume V and temperature T , but dif-
ferent chemical potentials, µ1 and µ2, respectively. Reprinted by permission from [6]. c©2000
IOP Publishing Ltd
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Fig. 10.3. The function ln[f(N)] − βµN for the data of Fig. 10.2. The figure shows the raw
curves for µ1 and µ2 as well as a ‘composite’ curve formed by shifting the data by the amount
indicated by the arrows. Reprinted by permission from [6]. c©2000 IOP Publishing Ltd

Chap. 3, Ferrenberg and Swendsen [47] provided a solution to this problem by mini-
mizing the differences between predicted and observed histograms. Since a complete
derivation of this procedure is available in [1], we will only present the result here.
In this approach, one considers a collection of histogram data from multiple simula-
tions at differing conditions, denoted by i = 1, 2, . . . , R. The Ferrenberg–Swendsen
approach then determines the optimal macrostate probabilities when data from all of
these runs is patched together and reweighted to another condition. The composite
probability, ℘(N,U ;µ, β), of observing N particles and potential energy U , if one
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takes into account all runs and assumes that they have the same statistical efficiency,
is

℘̃∗(N,U ;µ, β) =

R∑
i=1

fi(N,U) exp[−βU + βµN ]

R∑
i=1

Ki exp[−βiU + βiµiN − Ci]

(10.17)

where ℘̃∗ is the un-normalized probability prediction, f is the histogram of counts,
and Ki is the total number of observations (Ki =

∑
N,U fi(N,U)) for run i. The

constants Ci (also known as ‘weights’) are obtained by iteration from the relationship

exp(Ci) =
∑
N

∑
U

℘̃∗(N,U ;µi, βi). (10.18)

Given an initial guess for the set of weights Ci, (10.17) and (10.18) can be iterated
until convergence. When many histograms are to be combined, this convergence of
the Ferrenberg–Swendsen weights can take a long time. Once this has been achieved,
however, all thermodynamic quantities for the system over the range of densities
and energies covered by the histograms can be obtained. For example, the mean
configurational energy is

〈U〉 (µ, β) =
∑
N

∑
U

℘̃(N,U ;µ, β)U, (10.19)

and the mean density ρ(µ, β) is

〈ρ〉 (µ, β) =
1
V

∑
N

∑
U

℘̃(N,U ;µ, β)N. (10.20)

In both of these equations, we have used a summation rather than an integral over
the potential energy for both clarity and the connection with the actual, discretized
measurements in a simulation.

In the canonical example, we could estimate the free energy difference between
two runs by examining the overlap in their probability distributions. Similarly, in the
grand canonical ensemble, we can estimate the pressure difference between the two
runs. If the conditions for run 1 are (µ1, V, β1) and for run 2 (µ2, V, β2), then

C2 − C1 = ln
Ξ(µ2, V, β2)
Ξ(µ1, V, β1)

= β2P2V − β1P1V, (10.21)

where P is the pressure, since ln Ξ = βPV . We can use (10.21) to obtain the
absolute value of the pressure for one of the two runs, provided that the absolute
pressure can be estimated for the other run. Typically, this is done by perform-
ing simulations for low-density states for which the system follows the ideal-gas
equation of state, PV = NkBT .

Up to this point, we assumed that a system exists in a one-phase region over the
range of densities and energies sampled. If a phase transition exists then in principle,
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states on either side of the phase transition should be sampled, resulting in histograms
with multiple peaks. This is illustrated in Fig. 10.4, in which actual simulation data
(from a single run) are plotted for a simple cubic lattice homopolymer system [48]
at a slightly subcritical temperature. There are two states sampled by the run, one at
low and one at high particle numbers, corresponding to the gas and liquid states. The
conditions for phase coexistence are equality of temperature, chemical potential and
pressure; the first two are satisfied by construction in the grand canonical ensemble.
From (10.21), the integral under the un-normalized probability distribution function
with respect to N and U is proportional to the pressure. In the case of two distinct
phases, the integrals should be calculated separately under the liquid and gas peaks.
The condition of equality of pressures can be satisfied by reweighing the data until
this condition is met, i.e., until the integrated ‘volumes’ under the two peaks are
equal. In Sect. 10.3.4, we discuss how near-critical histogram data can be used to
obtain precise estimates of the critical parameters for a transition.

In the absence of phase transitions or at temperatures near a critical point,
the values of all observable quantities (such as the histograms of energy and den-
sity) are independent of initial conditions, since free energy barriers for transitions
between states are small or nonexistent and the system readily progresses through
its configuration space. However, at lower temperatures, free energy barriers for
nucleation of new phases become increasingly larger. At these conditions, we will
find that the states sampled at a given temperature and chemical potential depend
on the initial conditions, a phenomenon known as hysteresis. This is illustrated
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Fig. 10.4. Frequency of observation of states versus energy, E, and number of particles, N ,
for a homopolymer of chain length r = 8 and coordination number z = 6 on a 10 × 10 × 10
simple cubic lattice. Conditions, following the notation of [48] are T ∗ = 11.5, µ∗ = −60.4.
In order to reduce clutter, data are plotted only for every third particle. Reprinted by permission
from [6]. c©2000 IOP Publishing Ltd
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schematically in Fig. 10.5. For a supercritical isotherm, T > Tc, the mean value of
the density is a continuous function of the chemical potential, and the same value is
obtained for given conditions, irrespective of the starting configuration. By contrast
for a subcritical isotherm, when we start runs at low-density state, we will observe
a discontinuous ‘jump’ to a state of higher density at some value of the chemical
potential. The exact location of the jump depends on the initial state and the specific
mix of MC moves used to change the configurations of the system. When simu-
lations are started in a high-density state, the system remains on the high-density
branch of the isotherm until some value of the chemical potential that is lower than
the chemical potential of the jump from low- to high-density states.

The histogram reweighting method can be applied to systems with large free-
energy barriers for transitions between states, provided that care is taken to link
all states of interest via reversible paths. One possibility is to utilize umbrella or
multicanonical sampling techniques [49, 50] to artificially enhance the frequency
with which the intermediate density region is sampled in a simulation [51]. These
methods are discussed in detail in Chap. 3. Essentially, multicanonical and umbrella
sampling require as input an estimate of the free energy in the intermediate density
region, which has to be obtained by trial and error. In addition, a significant frac-
tion of simulation time is spent sampling nonphysical configurations of intermediate
density. An alternative approach is to link states by providing connections through
a supercritical path, in a process analogous to thermodynamic integration [1]. This
approach is illustrated schematically in Fig. 10.6. The filled square represents the
critical point for a transition, and open squares linked by dashed lines represent
tie lines. Ellipses represent the range of particle numbers and energies sampled
by a single simulation. A near-critical simulation samples states on both sides
of the coexistence curve, while subcritical simulations are likely to be trapped in

<
N

 >

T < Tc

T > Tc

m

Fig. 10.5. Schematic diagram of the mean number of particles, 〈N〉, versus chemical poten-
tial, µ for a subcritical and a supercritical isotherm of a one-component fluid. The curve for
the supercritical isotherm has been shifted up for clarity. Reprinted by permission from [6].
c©2000 IOP Publishing Ltd
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N

E

Fig. 10.6. Schematic diagram of the energy, E, versus the number of particles, N , for a one-
component fluid with a phase transition. Squares linked by dashed lines are coexisting phases
joined by tie lines and the filled square indicates the critical point of the transition. Ellipses
represent the range of particle numbers and energies sampled during different GCMC runs.
Reprinted by permission from [6]. c©2000 IOP Publishing Ltd

(possibly metastable) states on either side. However, as long as there is a continuous
path linking all states of interest, the free energies and pressures can be calculated
correctly, and an accurate phase envelope can be obtained.

An example of the application of histogram reweighting for determining the
phase behavior of a homopolymer model on the simple cubic lattice is illustrated
in Fig. 10.7. The phase behavior and critical properties of the model for a range of
chain lengths have been studied in [48]. The system in this example is for chain
length r = 8 and coordination number z = 6. In this example, we first performed a
simulation at reduced temperature T ∗ = 11.5 and chemical potential µ∗ = −60.4,
for which the raw histogram data are shown in Fig. 10.4. The resulting average vol-
ume fraction for the run is indicated in Fig. 10.7 by the filled circle at T ∗ = 11.5.
The range of volume fractions sampled during the simulation is indicated in Fig. 10.7
by the arrows originating at the run point. Because this run is near the critical point,
a very broad range of particle numbers and thus volume fractions is sampled during
this single run. The histogram from this run was then reweighted to lower temper-
atures and a preliminary phase diagram was obtained. The estimated coexistence
chemical potential at T ∗ = 9 was used as the input to a new simulation, which sam-
pled states near the saturated liquid line. The same procedure was repeated, now with
combined histograms from the first two runs, to obtain an estimate of the coexistence
chemical potential at T ∗ = 7. A new simulation was performed to sample the pro-
perties of the liquid at that temperature. The final result of these three calculations
was the phase coexistence lines shown by the thick continuous lines on Fig. 10.7.



368 M.S. Shell and A.Z. Panagiotopoulos

0.0 0.2 0.4 0.6 0.8 1.0
6

7

8

9

10

11

12

13

T
*

Fig. 10.7. Phase diagram for a homopolymer of chain length r = 8 on a 10×10×10 simple cu-
bic lattice of coordination number z = 6. Filled circles give the reduced temperature, T ∗ and
mean volume fraction, 〈φ〉 of the three runs performed. Arrows from the run points indicate
the range of densities sampled for each simulation. The thick continuous line is the esti-
mated phase coexistence curve. Reprinted by permission from [6]. c©2000 IOP Publishing Ltd

Two general observations can be made in relation to this example. First, we
should point out that the histogram reweighting method works much faster for
smaller system sizes. As system size increases, relative fluctuations in the number
of particles and energy for a single run at specified conditions decrease as the 1/2
power of the system volume V . This implies that more simulations are required to
obtain overlapping histograms that cover the range of energies and densities of in-
terest. Moreover, the number of MC moves required to sample properties increases
approximately linearly with system size in order to keep the number of moves per
particle constant. The computational cost of each MC move is proportional to sys-
tem size for pairwise additive long-range interactions and independent of system
size for short-range interactions. The net effect is that total computational effort re-
quired to obtain a phase diagram at a given accuracy scales as the 1.5–2.5 power
of system volume, respectively for short- and long-range interactions. Fortunately,
away from critical points, the effect of system size on the location of the coexis-
tence curves for first-order transitions is typically small. In this example, calculations
on a 153 system result in phase coexistence lines practically indistinguishable from
the ones shown in Fig. 10.7. The mean absolute relative differences for the coexis-
tence densities between the small and large systems are 0.1% for the liquid and 1%
for the (much lower density) gas, well within the width of the coexistence lines in
Fig. 10.7.

A second observation relates to calculations near critical points. The coexistence
lines in Fig. 10.7 do not extend above a temperature of T ∗ = 11.6 because above that
temperature significant overlap exists between the liquid and vapor peaks of the his-
tograms. This overlap renders calculations of the liquid and gas densities imprecise.
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Larger system sizes suffer less from this effect and can be used to obtain coexistence
densities near critical points.

10.3.4 Advanced Approaches

The histogram reweighting methodology for multicomponent systems [52–54] closely
follows the one-component version described above. The probability distribution
function for observing N1 particles of component 1 and N2 particles of compo-
nent 2 with configurational energy in the vicinity of E for a GCMC simulation at
imposed chemical potentials µ1 and µ2, respectively, at inverse temperature β in a
box of volume V is

℘(N1, N2, U) =
Λ−3N1

1 Λ−3N2
2 Ω(N1, N2, V, U)exp(−βU + βµ1N1 + βµ2N2)

Ξ(µ1, µ2, V, β)
.

(10.22)
Equations (10.14–10.21) can be similarly extended to multicomponent systems.

The main complication in the case of multicomponent systems relative to the
one-component case is that the dimensionality of the histograms is one plus the num-
ber of components, thus making their machine storage and manipulation somewhat
more challenging. For example, in the case of one-component systems, it is possible
to store the histograms directly as two-dimensional arrays. The memory require-
ments for storing three-dimensional arrays for a two-component system makes it
impractical to do so. Instead, lists of observations of particle numbers and energies
are periodically stored on disk. It is important to select the frequency of sampling of
the histogram information so that only independent configurations are sampled. This
implies that sampling is less frequently at high densities for which the acceptance
ratio of the insertion and removal steps is lower. Sampling essentially independent
configurations also enforces the condition of equal statistical efficiency underlying
the Ferrenberg–Swendsen histogram combination (10.17) and (10.18).

Recent advances in the determination of critical parameters for fluids lacking
special symmetries have been based on the concept of mixed-field finite-size scaling
and have been reviewed in detail by Wilding [55]. As a critical point is approached,
the correlation length ξ grows without bound and eventually exceeds the linear sys-
tem size L of the simulation box. Singularities and discontinuities that characterize
critical behavior in the thermodynamic limit are smeared out and shifted in finite
systems. The infinite-volume critical point of a system can, however, be extracted
by examining the size dependence of thermodynamic observables, through finite-
size scaling theory [56–58]. The finite-size scaling approach proposed by Bruce and
Wilding [59, 60] accounts for the lack of symmetry between coexisting phases in
most continuous-space fluids. For one component systems, the ordering operator,
M , is proportional to a linear combination of the number of particles N and total
configurational energy U

M ∝ N − sU, (10.23)

where s is the field mixing parameter. For multicomponent systems, an extra field
mixing parameter appears for each added component – for example binary systems
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M ∝ N1 − sU − qN2, (10.24)

where q is the field mixing parameter for the number of particles of component 2.
General finite-size scaling arguments predict that the normalized probability dis-

tribution for the ordering operator M at criticality, ℘(M), has a universal form.
The order parameter distribution for the three-dimensional Ising universality class
is shown in Fig. 10.8 as a continuous line. Also shown in Fig. 10.8 are data for a
homopolymer of chain length r = 200 on a 50 × 50 × 50 simple cubic lattice of
coordination number z = 26 [48]. The data were obtained by histogram reweighting
methods, by adjusting the chemical potential, temperature and field mixing parame-
ter s so as to obtain the best possible fit to the universal distribution. The nonuniver-
sal constant A and the critical value of the ordering operator Mc were chosen so that
the data have zero mean and unit variance. Due to finite-size corrections to scaling,
the apparent critical temperature, Tc(L), and density, ρc(L), deviate from their
infinite-system values, Tc(∞) and ρc(∞). They are expected to follow the scaling
relationships with respect to the simulated system size, L

Tc(L) − Tc(∞) ∝ L−(θ+1)/ν

ρc(L) − ρc(∞) ∝ L−(1−α)/ν ,
(10.25)
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Fig. 10.8. The ordering operator distribution for the three-dimensional Ising universality class
(continuous line – data are courtesy of N.B. Wilding). Points are for a homopolymer of chain
length r = 200 on a 50 × 50 × 50 simple cubic lattice of coordination number z = 26 [48].
The nonuniversal constant A and the critical value of the ordering operator Mc were chosen
so that the data have zero mean and unit variance. Reprinted by permission from [6]. c©2000
IOP Publishing Ltd
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where θ, ν and α are, respectively, the correction-to-scaling exponent, the correlation
length exponent and the exponent associated with the heat capacity divergence. For
the three-dimensional Ising universality class, the approximate values of these ex-
ponents are [62, 63] (θ, ν, α) ≈ (0.54, 0.629, 0.11). Figure 10.9 demonstrates these
scaling relationships for the critical temperature and density of the square-well fluid
of range λ = 3 [61].

Finally in this section, we would like to mention briefly two methods that are
related to histogram reweighting. Thermodynamic scaling techniques proposed by
Valleau [64] are based on calculations in the NPT , rather than the grand canonical
(µV T ) ensemble and provide information about the free energy over a range of vol-
umes, rather than a range of particle numbers. Thermodynamic scaling techniques
can also be designed to cover a range of Hamiltonians (potential models) in the
Gibbs [65] or grand canonical [66] ensembles. In their Hamiltonian scaling form,
the methods are particularly useful for optimizing parameters in intermolecular
potential models to reproduce experimental data such as the coexisting densities and
vapor pressures. Thermodynamic and Hamiltonian scaling methods require estimates
for the free energy of the system as a function of conditions, so that the system can
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Fig. 10.9. Critical temperature (a) and density (b) scaling with linear system size for the
square-fluid of range λ = 3. Solid lines represent a least-squares fit to the points. Reprinted
by permission from [61]. c©1999 American Institute of Physics
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be forced to sample the range of states of interest with roughly uniform probability,
as for umbrella sampling MC [49].

10.4 Selected Applications of Flat Histogram Methods

The flat-histogram algorithms described in Chap. 3 [67–73] provide a straightforward
basis for performing phase equilibrium calculations. Many of these methods are de-
signed to determine an underlying thermodynamic potential, such as an entropy or
free energy, over a very wide range of macrostates. Once such a simulation is com-
plete, the calculated potential can be used directly to determine state probabilities
and ensemble averages through a reweighing-like procedure. For phase equilibrium
calculations, one then seeks to find conditions at which the calculated macrostate
probability distribution function is bimodal – for instance, the temperature at a given
pressure where the probability distribution of densities exhibits two peaks.

In the sections below, we describe several studies in which flat-histogram meth-
ods were used to examine phase equilibria in model systems. The discussion assumes
the reader is familiar with this general family of techniques and the theory behind
them, so it may be useful to consult the material in Chap. 3 for background refer-
ence. Although the examples provided here entail specific studies, their general form
and the principles behind them serve as useful templates for using flat-histogram
methods in novel phase equilibria calculations.

10.4.1 Liquid–Vapor Equilibria using the Wang–Landau Algorithm

Liquid–vapor phase behavior is important to numerous technologies, and fortunately
the phase envelope of model systems is readily studied using flat-histogram meth-
ods. By performing a single density of states simulation to measure the energy and
density dependence of S , a subsequent reweighing procedure can be used to iden-
tify state conditions which result in a bimodal macroscopic probability distribution –
the signature feature of first-order phase transitions. The Wang–Landau algorithm is
well-suited for this task, and was first applied by Yan et al. [74] and Shell et al. [75]
to the frequently studied Lennard-Jones system.

In order to map the thermodynamic properties of this system, the Gibbs phase
rule implies that two parameters are necessary to specify the thermodynamic state.
Consequently, in setting up the density of states simulation, we desire to achieve
a flat-histogram in both energy and density. The density component is frequently
addressed by allowing the number of particles N to fluctuate via addition and
deletion moves, in which case the subject of calculation is S (N,U). That is, in
the Wang–Landau scheme, a dimensionless entropy whose dependent variables are
the number of particles and potential energy will be dynamically modified, while the
simulation volume remains fixed. Examining the equations of Chap. 3, the micro-
scopic sampling scheme for this simulation is

℘(q, N) ∝ 1
N !

exp[−S (N,U)]. (10.26)
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The acceptance criteria for particle insertion and deletion moves are determined from
the detailed balance condition applied to these probabilities. The final expressions are

Pacc(N → N +1) = min
{
1, exp[S (N,Uo)−S (N +1, Un)+lnV −ln(N +1)]

}
(10.27a)

Pacc(N → N − 1) = min
{
1, exp[S (N,Uo) − S (N − 1, Un) + lnN − ln V ]

}
,

(10.27b)
where the subscripts on U indicate their correspondence with the original and new
states. The corresponding acceptance criterion for particle displacement moves,
which leads to fluctuations in the potential energy at fixed density is

Pacc(o → n) = min
{
1, exp[S (N,Uo) − S (N,Un)]

}
. (10.28)

Recognizing that S = Sex + N ln V − ln N ! from Chap. 1, all three acceptance
criteria can be expressed as

Pacc(o → n) = min {1, exp[Sex(No, Uo) − Sex(Nn, Un)]} . (10.29)

We can, therefore, let Sex be the subject of our calculations (which we approximate
via an array in the computer). Post-simulation, we desire to examine the joint prob-
ability distribution ℘(N,U) at normal thermodynamic conditions. The reweighting
ensemble which is appropriate to fluctuations in N and U is the grand-canonical
ensemble; consequently, we must specify a chemical potential and temperature to
determine ℘. Assuming Sex has converged upon the true function ln Ωex, the state
probabilities are given by

℘(N,U ;µ, T ) = c × Λ−3N exp[S (N,U) − βU + βµN ]
℘(N,U ;µ, T ) = c × exp[S (N,U) − βU + βµ′N ], (10.30)

where c is a normalization constant, calculated so that the probabilities sum to unity.
In the second line, we have absorbed the de Broglie wavelength into the chemi-
cal potential, notated by µ′, which simply serves to shift its zero. Phase coexis-
tence is determined by a procedure identical to that described in Sect. 10.3.3. For
a given subcritical T , µ is adjusted until ℘ exhibits two peaks of equal volume (inte-
grated over N and U ). The corresponding equilibrium densities and energies are then
given by

〈a〉liq =

∑
U

∑
N>Nmid

a(N,U)℘(N,U ;µ, T )

∑
U

∑
N>Nmid

℘(V,U ;µ, T )

〈a〉gas =

∑
U

∑
N<Nmid

a(N,U)℘(N,U ;µ, T )

∑
U

∑
N<Nmid

℘(V,U ;µ, T )
(10.31)

where Nmid is the particle number at the valley between the two peaks and a is either
N or U .
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The density dependence of the entropy can also be studied by introducing
fluctuations in volume rather than particle number. Typically the particle number
approach is favored; the computational demands of volume scaling moves scale
faster with system size than do addition and deletion moves. Nevertheless, the
Wang–Landau approach provides a means for studying volume fluctuations as well.
In this case, the excess entropy is determined as a function of volume and poten-
tial energy for fixed particle number; one, therefore, calculates S (V,U). Here the
microstate probabilities follow:

℘(q, V ) ∝ exp[−S (V,U)]. (10.32)

The acceptance criterion for increasing or decreasing the volume by a random, linear
amount follows as

Pacc(Vo → Vn) = min {1, exp[S (Vo, Uo) − S (Vn, Un) + N ln(Vn/Vo)]} ,
(10.33)

which also conforms to (10.29) when expressed using the excess entropy and substi-
tuting volume for particle number. In the case where changes are made to the loga-
rithm of the volume, rather than the volume itself, the N in this expression becomes
N +1. Finally, the appropriate reweighting probabilities are those of the isothermal–
isobaric ensemble:

℘(V,U ;µ, T ) = c × exp[S (V,U) − βU − βPV ]. (10.34)

To determine phase equilibria in this case, P is adjusted at fixed T to achieve a
bimodal distribution, in exactly the same manner as before.

The results from the Wang–Landau study of the Lennard-Jones fluid in [75] are
shown in Figs. 10.10 and 10.11, in which the ‘Gibbs surface’ for the excess entropy
as a function of U and either N or V are plotted. In these simulations, the entropy
was determined using the usual Wang–Landau approach, in conjunction with ran-
dom particle displacements and changes in density through either isotropic volume
dilations or particle additions and deletions. Therefore, the relevant flat-histogram
and results are functions of two variables. In each case, the modification factor was
initialized at g = 1 and decreased by a factor of two at each subsequent stage.
A stage was deemed complete once each (N,U) or (N,V ) pair was visited at least
20 times, and the simulation was terminated for g < 10−5. In order to determine the
accessible energy range at each density, a lower-bound potential energy border was
first determined from short NV T runs at the lowest temperature of interest; states
beyond this border did not count towards the flat-histogram requirement for stage
completion, and proposed moves to this region were rejected.

Figures 10.10 and 10.11 contain the complete phase behavior of the Lennard-
Jones system over the range of energies and densities indicated, but do not imme-
diately reveal any important features. More revealingly, using the reweighting
procedures just described, the authors generated the liquid–vapor phase envelope.
Figure 10.12 contains these results, which are in good agreement with both literature
values and those results generated from the grand canonical histogram reweighing
techniques. Although the authors did not observe any speed advantage over the latter
approach, the results of the Wang–Landau method contain, in principle, all relevant
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Fig. 10.10. Calculated Sex(N, U) from a Wang–Landau simulation for the Lennard-Jones
fluid at V = 125. The potential energy has been discretized into 1,000 bins and is expressed
in Lennard-Jones units. Reprinted figure with permission from [75]. c©2002 by the American
Physical Society
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Fig. 10.11. Calculated Sex(V, U) from a Wang–Landau simulation for the Lennard-Jones
fluid at N = 128. The potential energy and volume have been discretized into 500 and 200
bins, respectively, and are expressed in Lennard-Jones units. Reprinted figure with permission
from [75]. c©2002 by the American Physical Society
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Fig. 10.12. Vapor–liquid phase behavior for the Lennard-Jones fluid. Solid triangles and hol-
low squares indicate the results of the particle addition/deletion and volume scaling variants
of the flat-histogram simulation using the Wang–Landau algorithm. Crosses are from a his-
togram reweighting study based on grand-canonical measurements at seven state points. The
solid line is from Lotfi, et al. [76]. Reprinted figure with permission from [75]. c©2002 by the
American Physical Society

phase transitions within the state space studied and therefore are potentially very
useful for mapping out the complete phase behavior of new systems. This contrasts
with the GCMC histogram reweighting technique, in which a good estimate of the
state conditions for equilibrium must be determined beforehand.

10.4.2 Prewetting Transitions in Confined Fluids using Transition Matrix
Methods

Fluids confined to extremely small regions and in the presence of surfaces often
exhibit a wealth of interesting phase transitions. Understanding the origins and be-
havior of these transitions, especially relative to the bulk fluid, is vital to technologies
which operate at the nanoscale. A model system, that of argon confined between a
solid carbon dioxide surface and a hard wall, has been studied by Errington using an
efficient transition matrix approach [77]. In the model, argon–argon interactions are
modeled by the Lennard-Jones interaction and the argon-surface energies are given
by a 9–3 potential [78]. Periodic boundary conditions are applied in the directions
parallel to the adsorbing and hard surfaces.
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Errington used the grand-canonical ensemble with a transition matrix to estimate
the weights η(N) needed to achieve a flat-histogram in particle number at a given
temperature. This is identical to the example discussed in Chap. 3, where the grand-
canonical equations are given for microstate probabilities and acceptance criteria for
particle addition and deletion. For a selected temperature, a starting chemical poten-
tial is chosen and the initial weights are set to zero. The simulation is run for some
time before the weights are updated. The relevant transition probability equation for
this initial purely grand-canonical scenario is

℘(N1)T (N1 → N2) = ℘(N2)T (N2 → N1) (10.35)

where all quantities are implicitly a function of the temperature, chemical potential,
and zero weights. In order to achieve a flat-histogram in N , the weights must be
such that η(N) ∼ ln ℘(N). Using (10.35), this estimate can be determined directly
from the transition probabilities. One first sets η(Nmin) = 0, and then evaluates each
neighbor in series through

η(N + 1) = η(N) + lnT (N + 1 → N) − ln T (N → N + 1). (10.36)

Estimates of the transition probabilities are constructed from values of Pacc collected
during the simulation. The C(N1, N2) matrix is updated at each particle addition or
deletion during the run: Pacc and (1−Pacc) are added to the appropriate off-diagonal
and diagonal entries, respectively. Due to the nature of these moves, the C matrix
always remains tridiagonal. Estimates for the transition probabilities then follow di-
rectly. In his simulations, Errington periodically updated the weighting function with
these estimates, in long intervals similar to multicanonical updating. One important
distinction, however, is that he did not re-zero transition matrix in between these up-
dates. Instead, the matrix continued to be updated as if the weights were zero. That
is, he calculated two Pacc: one for the actual acceptance criterion which included the
weights and one for the transition matrix data which did not. In this manner, all of
the data in the transition matrix were consistent and able to be retained. See Chap. 3
for a graphical schematic of this procedure.

Errington performed individual transition matrix simulations for temperatures in
the range T = 0.6− 0.9. Each simulation was run for several hundred million steps,
with weight updates every million. For the lowest temperatures, the transition matrix
algorithm was implemented in a parallel scheme, with each processor assigned to a
window of particle numbers and occasional configuration swaps between adjacent
windows. The final weights were calculated to very high accuracy, and were used
directly to reweigh state probabilities to alternate chemical potentials at the simula-
tion temperatures. The relevant equation is

℘(U ;µ, T ) ∝ exp [β(µ − µ0)N + η(N)] . (10.37)

By tuning µ to obtain a bimodal particle number distribution, it was possible
to locate the point of coexistence between saturated thin and thick films on the
adsorbing surface. The prewetting coexistence curve was then obtained through the
application of this procedure at each simulation temperature.
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A significant prediction of this study was the estimated wetting temperature,
essentially the low-temperature bound for the prewetting phase coexistence. The
wetting temperature is defined as the point at which the saturated bulk liquid–vapor
(µb) and prewetting (µpw) chemical potentials become equal. Both chemical poten-
tials were determined by reweighting η to obtain a bimodal distribution in ℘(N) in
the relevant density range. Through a modest extrapolation in temperature, Errington
predicted that µb = µpw occurred at T = 0.598(5). The use of transition matrix es-
timators in this study was essential to the precise determination of this temperature.
The high accuracy of the transition matrix predictions enabled simulations at lower
temperatures than previous work, which yielded results much closer to the actual
wetting temperature.

10.4.3 Isomerization Transition in (NaF)4 using the Wang–Landau
Algorithm

One of the most familiar scenarios for studying the free energy along predetermined
coordinates is that of chemical reactions. Calvo has used the Wang–Landau algo-
rithm to elicit the entropy along the reaction path of (NaF)4 isomerization between
cubic and octagonal ring conformations [79]. He employed a system of eight Na+

and F− ions interacting via Coulombic and Born–Mayer repulsive forces whose
parameters are derived from ab initio calculations. Through trial and error, Calvo
selected the principal moment of inertia as the appropriate reaction coordinate,
given by

λ(q) =
∑

i

|qi − qG|2, (10.38)

where qG is the coordinate of the center of mass of the system. The system was
studied in the microcanonical ensemble and a bias was introduced to create a
flat-histogram in the order parameter λ. Following the equations of Chaps. 1 and
3, the overall partition function Ωtot can be written as

Ωtot(N,V,E) ∝
∫

V N

[E − U(q)]3N/2−1
θ [E − U(q)] dq

=
∫

λ

{∫
V N

[E − U(q)]3N/2−1
θ [E − U(q)] δ[λ̂(q) − λ]dq

}
dλ

=
∫

Ωtot,λ(N,V,E, λ)dλ, (10.39)

where the N - and V -dependent factor in the first line has been omitted for clar-
ity and the ‘coordinate’ density of states defined in the last line, Ωtot,λ, includes
the kinetic contribution from the microcanonical ensemble. The entropic analog of
the coordinate microcanonical partition function is denoted by Sλ = lnΩtot,λ. The
final line in (10.39) indicates that the probability of a particular value of λ for a
given E is proportional to exp[S (N,V,E, λ)]. In order to enforce a flat histogram,
therefore, the inverse factor must be inserted in the microstate sampling scheme.
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The microscopic probabilities are microcanonical (see Chap. 1) with an additional
biasing factor

℘(q;E) ∝ [E − U(q)]3N/2−1
θ [E − U(q)] exp[−Sλ(λ)], (10.40)

where the dependence of Sλ on N,V and E has been made implicit. Since the
correspondence is with the microcanonical ensemble, the total energy E must be
specified in the simulation, rather than the temperature. The acceptance criterion for
single particle displacement moves based on (10.40) is

Pacc(o → n) = min

[
1,

(
E − Un

E − Uo

)3N/2−1

θ(E − Un) exp[Sλ(λo) − Sλ(λn)]

]
.

(10.41)

Employing this sampling scheme, Calvo used the Wang–Landau technique to deter-
mine Sλ over a range spanning values which correspond to octagonal and cubic con-
figurations. He then repeated the calculations for several values of the total energy.
The entropy was discretized into 1,000 bins, and the calculations required approxi-
mately 24 million steps for each run. Once determined, the entropy gave directly the
microcanonical probabilities for λ

℘(λ;E) ∝ exp[Sλ(λ)], (10.42)

where Sλ implicitly corresponds to the Wang–Landau results from the run at
energy E. Calvo showed that the favored isomer changed with total energy, and
that fluctuations in λ were greater in the cubic configuration than in the octagonal
one. It was also noted that the converged Sλ could be used in principal to deter-
mine transition rates. This is analogous to examining the free energy profile along a
reaction coordinate, and using its value at the transition state to predict kinetic rate
coefficients.

10.4.4 Other Applications

Numerous other off-lattice flat-histogram studies exist, and for the reader’s refer-
ence, we briefly mention a handful of examples here. The multicanonical algorithm
has often been used to study phase coexistence; Wilding has used the technique to
investigate model fluids [80] and provides an instructive overview [81]. First-order
transitions in confined mixtures [82] and polymer chains [83–87] have also been
examined. Other applications have included performance characterization for the
equilibration of glasses [88], ab initio study of water dimers [89], and the entropy of
hard-sphere crystals [90]. Faller et al. [91] have also developed a replica-exchange
multicanonical algorithm for the study of fluid phase transitions. The multicanonical
algorithm also has a substantial history in the simulation of proteins, and has been
reviewed in [92–94]. For example, the folding pathway of the beta-hairpin struc-
ture has been examined by Dinner et al. [95]. Higo et al. [96] used multicanonical
sampling along various order parameters to enhance configurational sampling, and
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Sayano et al. [97] generated the potential of mean force for interactions between
amino acids and base pairs. Okamoto and coworkers [98, 99] have also developed
replica-exchange multicanonical methods for proteins. Numerous additional biolog-
ical examples can be found among the references within [94].

The WL algorithm has also been applied to a wealth of problems. It has been
used to determine the bead-size dependence of the entropy in freely jointed hard-
sphere chains [100], to measure the chemical potential in dense or low-temperature
fluids [101], to evaluate the potential of mean force of a confined particle in a liquid
crystal [102], and to study a binary Lennard-Jones glass at low temperatures [103].
The method has also been used to determine surface tension in fluids [104] and,
somewhat related, the condensation behavior of a supersaturated vapor into liquid
droplets [105]. The Wang–Landau approach has even been used to solve general con-
strained optimization problems [106]. In biology, the Wang–Landau algorithm has
been applied to several continuum protein models. Rathore et al. [107, 108] studied
the folding behavior of short united-atom peptide sequences, and estimated a fold-
ing temperature through subsequent reweighing of the calculated entropy. They have
also adapted the method to study mechanically induced unfolding of proteins, in
which the free energy along a ‘stretching’ coordinate is determined [109]. Similarly,
Liang has used a derivative of the WL method to locate the ground states of two- and
three-dimensional ‘AB’ models of proteins [110].

Transition matrix estimators have received less attention than the multicanonical
and Wang–Landau methods, but have been applied to a small collection of infor-
mative examples. Smith and Bruce [111, 112] applied the transition probability
approach to the determination of solid–solid phase coexistence in a square-well
model of colloids. Errington and coworkers [113, 114] have also used the method
to determine liquid–vapor and solid–liquid [115] equilibria in the Lennard-Jones
system. Transition matrices have also been used to generate high-quality data for the
evaluation of surface tension [114, 116] and for the estimation of order parameter
weights in ‘phase-switch’ simulations [117].

10.5 Summary: Comparison of Methods

A natural question that arises at this point is that of selection among the many pos-
sible methods that are available to obtain the free energy and phase behavior of a
system of interest. In most cases there are tradeoffs between accuracy and preci-
sion on one hand and programming and computational effort required. In order
to facilitate the selection a method appropriate to a given problem, we present a
brief summary of capabilities and limitations below for each of the approaches
we have described in this chapter. In reviewing the differences between the algo-
rithms, we find it beneficial to evaluate each along five principal characteristics:
generality (ability to determine various free energies and applicability to a wide
class of systems), calculation type (whether yields free energy values directly or
indirectly, e.g., via phase behavior), extent of implementation (programming effort
required and whether the method is standalone or can serve as a supplementary
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measurement), computational efficiency (overhead required), and accuracy (the
extent to which desired quantities can be determined to high precision for a given
simulation time):

– Widom test-particle method. Provides the chemical potential in various en-
sembles. Relatively easy to implement and can be used as an additional mea-
surement in standard MC ensembles (and also MD). Computational overhead
is small. Yields good accuracy in simple systems, although less reliable in very
dense or complex systems (i.e., chain molecules).

– Gibbs ensemble. Good for obtaining a few points for subcritical phase co-
existence between phases of moderate densities; does not provide free ener-
gies directly. Primarily used to study fluid (disordered) phases. Is a standalone
approach, and requires modest programming and computational effort to set up
and equilibrate the multiple simulation boxes. Provides accurate coexistence
points at intermediate temperatures below the critical point but with sufficient
thermal mobility to equilibrate.

– Gibbs–Duhem integration. Provides a way to trace a coexistence curve using
results from a series of individual MC simulations; does not provide free energies
directly. Is the only method widely used to determine solid–fluid coexistence,
and is also good for parametric studies of the effect of variation in potential pa-
rameters. Implementation is straightforward, relying directly on conventional en-
semble algorithms; several variants exist to accommodate different MC moves.
Can yield reasonable accuracy if: (a) an initial point on the coexistence curve is
known, and (b) enough simulations are performed to reduce propagation of error.

– Histogram-reweighting methods. Used to extract and combine underlying
thermodynamic estimates from multiple conventional simulations, which can
then be reweighted to arbitrary state conditions. Requires small programming
and computational effort in the tabulation of histograms; somewhat more effort
is necessary for post-run data processing. Number of simulations required de-
pends on the calculation; for liquid–vapor coexistence, a small number is usually
sufficient, although some effort is required in selecting their conditions. More
accurate, especially near critical points.

– Multicanonical approach. Allows recursive estimation of thermodynamic
potentials based on histograms, simultaneously facilitating flat-histogram-type
sampling of the system. Very general standalone simulation method, but imple-
mentation requires the introduction of weights into the sampling scheme, as well
as a schedule for their update based on measured histograms. Single runs can
require significant computational time to refine the weights and collect final
data. Mostly useful for aiding equilibration where conventional ensembles have
difficulty; can also be implemented in parallel. Values for entropies or free ene-
rgies themselves are typically not highly accurate, although calculated weights
and final histogram data can be accurately reweighted.

– Wang–Landau algorithm. Permits direct determination of entropies and free
energies using a flat-histogram ensemble outright and performing dynamic up-
date of the state weights. Useful for mapping out broad regions of thermo-
dynamic space (as opposed to specific loci) and for extended ensemble or
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reaction-coordinate studies. Highly general approach but implementation is
more intricate, requiring the introduction of weights, their monitoring, and an
update scheme. Computational expense can be significant if large ranges of
thermodynamic conditions are to be explored; can be implemented in parallel
to improve real-time convergence. Also requires the determination of several
parameters affecting the rate of calculation and its final accuracy. For common
implementations, yields modest to high accuracy and can be useful for rapidly
generating rough estimates of free energies.

– Transition matrix estimators. Provide a method for calculating arbitrary ther-
modynamic potentials based on the statistics of transitions between macrostates.
Can be used as an additional free energy measurement in conventional simula-
tions, or as a method for updating weights in a multicanonical or Wang–Landau
type approach. Implementation requires additional bookkeeping of move tran-
sitions, which can become memory-intensive for some applications. Can be
parallelized easily. Generally speaking, are an extremely efficient use of simu-
lation data (do not discard information) and provide highly accurate free energy
estimates.
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Quantum Contributions to Free Energy Changes
in Fluids

Thomas L. Beck

11.1 Introduction

For the majority of problems in molecular solutions, a classical description is suffi-
cient. In nearly all of the applications discussed so far in this book, that classical limit
was assumed in computer simulation calculations of free energy changes. A principal
focus is on biological macromolecules such as proteins, and, neglecting any solvent
effects for now, those large molecules do not display appreciable quantum effects on
their conformational states. Of course internal modes such as vibrations are highly
quantized, but those modes can typically be treated with rigid constraints or simple
classical models due to their small amplitudes of motion. Whatever small quantum
effects are present are likely incorporated during empirical fitting of the classical po-
tentials. When should we worry about quantum effects in free energy calculations?

Addressing this question is the subject of this chapter. The emphasis of the chap-
ter is on physical arguments and relatively simple derivations to give a start to some-
body interested in checking whether quantum effects should be considered and to
provide a set of tools to compute those effects if initial modeling suggests that they
are important. For two reasons, the approach taken is that of the path integral formu-
lation of quantum mechanics [1, 2]. First, this method gives an intuitive physical pic-
ture that adapts naturally to the classical limit: variational approaches and resulting
approximate theories emerge quite easily. Second, the path integral formulation of
equilibrium statistical mechanics is well suited for simulation. The analogy to clas-
sical polymer simulations is direct [3], meaning that the quantum simulation merely
requires extending the number of degrees of freedom and employing either Monte
Carlo or molecular dynamics procedures to generate the equilibrium distributions.
For this reason, the majority of finite-temperature condensed-phase quantum simula-
tions of large systems have utilized path integral methods due to the favorable scaling
compared with other quantum methods.

Let us first consider physical systems, in which quantum effects might be im-
portant, in order of decreasing effect. The prototype quantum liquid is liquid
helium with its well-known exotic properties. This liquid requires a full quantum
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treatment and has been examined using path integral simulation [4]. At very low
temperatures, particle exchange effects are important in addition to quantum effects
due to wave packet spreading.1 A second highly quantum example is the solvated
electron, which has received a lot of attention from the simulation community [5–7].
Aside from the interaction of the single electron with atomic cores in the solution
modeled with a pseudopotential, exchange effects are not important. Liquid hydro-
gen is another example with significant quantum effects [8–10]. Liquids which ex-
hibit quantum effects of smaller magnitude are methane [11, 12], neon [9, 12–16],
and even nitrogen [17]. These moderately quantum systems have been treated suc-
cessfully with path integral methods and approximations which will be derived in
this chapter. Path integral methods have also been applied to compute numerically
exact gas-phase partition functions for small molecules [18, 19], to predict cluster
free energies of formation [20], and to examine quantum effects on melting temper-
atures of small clusters [20]. So there has been some work on quantum free energy
calculations [21–24], but much less than for the classical counterpart.

Most of the above systems are prototype ‘simple’ liquids which require handling
of quantum effects. They are foundational in establishing computational methods and
approximations, yet they are not of great interest to biological modelers. But liquid
water exhibits several interesting quantum effects which are likely to be of some im-
portance for biological molecules in solution. The temperature of maximum density
of H2O is 4◦C, while for D2O it is 7◦C higher. The heat of vaporization is 9% larger
for D2O under normal conditions [25]. The solubilities of simple solutes [26] and
biomolecules [27] are measurably different in the two liquids, and changes from one
solvent to the other can affect protein stability [28]. The triple temperature of H2O is
4 K lower than that for D2O, but the critical temperature for H2O is 3 K higher.
And the static dielectric constant for H2O is higher than that for D2O by about
∆ε ≈ 0.35 [29]. Most of these effects are consistent with a picture of H2O as a
slightly more disordered liquid, which at first glance could be rationalized as a small-
mass quantum effect [29]. Since protein conformational states can be quite sensitive
to the solvent environment, these effects are large enough to stimulate investigation.
Quantum effects can also be expected to contribute significantly to acid–base reac-
tions in water; the structure and dynamics of the proton in water is a subject of inten-
sive current research [30]. In addition, quantum effects on reaction rates in enzymes
have received some attention [31–33]; those models typically employ transition state
theory (TST) which requires the activation free energy as input. An added compli-
cation in studies of enzyme proton transfer reactions is the chemical rearrangements
which occur during proton motion. The redistribution of the electron density makes
treatment with empirical force fields questionable. To address the electronic structure
issues in these large systems, a great deal of work has been directed at treating the lo-
cal environment of the active site with quantum mechanical methods, while the more
distant regions are modeled with molecular mechanics (QM/MM methods) [33].
Thus these systems are doubly challenging: quantum mechanics is required both for

1 Indicated by a thermal de Broglie wavelength which is a substantial fraction of the average
intermolecular separation.
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the local electronic structure changes and for the zero-point/tunneling effects on
the proton nuclear dynamics.

It is interesting that quantum effects in water are not fully understood, and are
the topic of current research. This is due to a subtle interplay between several factors
influencing water structure and thermodynamics. Classical force fields have been
empirically fit to reproduce a range of structural and thermodynamic experimental
data [34]. So these force fields implicitly incorporate whatever quantum effects might
be present. Also, some force fields do not include intramolecular flexibility or polar-
izability factors which may have some importance for the complicated condensed-
phase water behavior. Yet when these ‘improvements’ are incorporated, they often
lead to worse agreement with experiment. All of these factors lead to a morass of
effects which are hard to disentangle. As a first step in water simulations, if the
interest is in quantum effects computed using a realistic empirical potential, the force
field fitting should be based on a quantum simulation [34].

An even more challenging step has been taken, namely to employ path integral
methods for the nuclear degrees of freedom on top of an ab initio simulation [35].2

As long as a density functional approximation capable of accurately describing water
is used for the simulations [36–39], this approach should yield a good description of
the liquid. The calculations are enormously time consuming though; the referenced
simulation included 64 water molecules with a total simulation ‘time’ on the order
of 15 ps. An issue with this approach is that the path integral description is asked
to represent simultaneously both the large intramolecular and small intermolecular3

quantum effects on the same footing, creating statistical sampling and perhaps con-
vergence problems [39].

In this chapter, it will be argued that the relatively minor intermolecular quantum
effects in a liquid like water are amenable to approximation, and the more quantized
intramolecular degrees of freedom can be handled simply say with a normal-mode,
harmonic-oscillator picture or even a rigid-molecule representation [39, 40]. Then
calculations of free energy changes require only a classical simulation on a modified
potential surface.4 The focus will be on free energies, which provide stringent phys-
ical tests of force fields or ab initio methods. The excess chemical potential is the
natural variable to study these free energy calculations since it reflects the local envi-
ronment of a molecule in the solution. The theoretical description of the excess chem-
ical potential stems from the potential distribution theorem (PDT) [29, 41, 42]. The
PDT is discussed in detail in Chap. 9 of this book. We will see that this description
provides a nice route to present the exact quantum results with path integral methods,
and variational approximations fall out in a few easy steps. The Gibbs free energy is
easy to construct once the chemical potentials are obtained: G =

∑
α µαnα, where

2 In an ab initio simulation, the electronic structure problem is solved for each nuclear con-
figuration, and forces are computed using the Hellmann–Feynman theorem.

3 All degrees of freedom except the intramolecular vibrations.
4 That classical calculation may be a density functional theory (DFT) ab initio simulation.

An ab initio treatment may be important to handle charge redistribution effects in the
condensed phase.
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α labels the chemical species in the solution, µα is the chemical potential for the
species α, and nα is the total number of α molecules.

11.2 Historical Backdrop

A first step toward quantum mechanical approximations for free energy calculations
was made by Wigner and Kirkwood. A clear derivation of their method is given
by Landau and Lifshitz [43]. They employ a plane-wave expansion to compute ap-
proximate canonical partition functions which then generate free energy models. The
method produces an expansion of the free energy in powers of �. Here we just quote
several of the results of their derivation.

To second order in � the Helmholtz free energy is

A ≈ Acl +
β2

�
2

24

∑
i

1
mi

〈
(∇iU)2

〉
cl

, (11.1)

where Acl is the classical free energy, mi is the mass of particle i, ∇i specifies
differentiation with respect to the Cartesian coordinates of one of the particles, U is
the total system potential energy, and the averaging utilizes classical mechanics. We
will see below that several approximation steps are necessary to get to this point, but
it follows from the formula that the quantum correction to the classical free energy
is positive and related to the average squared forces on the particles. Landau and
Lifshitz argue that, under conditions to which the above expansion applies, particle
exchange effects appear at third order in �.

By integrating out the coordinate dependence, they also obtain an approximate
quantum-corrected formula for the momentum distribution which leads to the defini-
tion of an effective temperature. That is, the approximate distribution is still Gaussian
in the momenta, but with an increased temperature for each particle

Ti,eff ≈ T +
β2

�
2

12kBmi

〈
(∇iU)2

〉
cl

, (11.2)

which may differ for particles with different masses. This effective temperature sug-
gests that quantum effects can possibly be modeled by simply increasing the temper-
ature in a way related to each particle’s mass and the mean square forces on it during
its classical motion.

Alternatively, if the momenta are integrated out, an effective distribution of the
coordinates is obtained. In this distribution the Boltzmann factor is sampled with the
classical potential energy replaced by a quantum effective potential

Ueff ≈ U − β2
�

2
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mi
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mi
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i U . (11.3)
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This potential is similar to one derived by Stratt [44] using different techniques. It
is problematic though for simulations of molecular fluids due to the middle term
on the right side [12]. The square of the repulsive component of the force leads to
nonphysical behavior in the effective potential for small separations.

11.3 The Potential Distribution Theorem

A statistical mechanical expression for the chemical potential was derived by Widom
in 1963 [41]. His formula is called the potential distribution theorem. He employed
the canonical ensemble, but the PDT can also be derived using a grand canoni-
cal approach [29] (see also Chap. 9). The latter derivation leads to a building up
picture, in which the molecule of interest is successively solvated by increasing
numbers of surrounding solvent molecules. The resulting expression for the excess
chemical potential has the appearance of a partition function formula, but the infor-
mation required for its evaluation involves only the local neighborhood of the solute.
The locality feature distinguishes this picture from the traditional partition function
developments. The standard tools of statistical mechanics can be utilized, and often
derivations take a particulary simple form when cast in the language of the PDT.

The PDT expression for the chemical potential of a classical molecular
species is

βµα = ln
[
ραΛ3

α

qint
α

]
− ln

〈〈
e−β∆Uα

〉〉
0

. (11.4)

The chemical potential µα on the left is the full chemical potential including ideal
and excess parts. In this chapter we will scale the chemical potentials by β and often
refer to this unitless quantity as the chemical potential. βµα yields the absolute ac-
tivity. The first term on the right is the ideal-gas chemical potential, where ρα is the
number density, Λα is the de Broglie wavelength, and qint

α is the internal (neglecting
translations) partition function for a single molecule without interactions with any
other molecules.

The second term on the right is the excess chemical potential resulting from
interactions of the distinguished molecule with the surrounding solution. The double
brackets indicate averaging over two separate thermal motions, one for the molecule
of interest and one for the rest of the system, but with no interactions between the
two. Then we take the average of the Boltzmann factor of the interaction energy with
the molecule superposed on the solution. This is an exact expression for the excess
chemical potential assuming a classical description is valid.

At equilibrium, the chemical potential for a given molecular species is constant
throughout the system. The two terms on the right-hand side of (11.4) can vary in
space, however, so as to add up to a constant. In an inhomogeneous system, the num-
ber density and excess chemical potential adjust so as to yield the same constant
chemical potential. Due to the local nature of the excess chemical potential, it is rea-
sonable to define an excess chemical potential at a single point in space and/or for a
single molecular conformation [29]. That excess chemical potential then determines
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the local density of the chemical species of interest, once the total chemical potential
is specified. This key feature of the PDT permits examination of free energy changes
along a specified pathway. An example would be examining free energy profiles
along a reaction path in an enzyme [31, 32].

For book-keeping purposes, it is often easiest to perform the averages in the
canonical ensemble. Then the double average for the excess chemical potential
can be viewed as follows. The overall distribution to be sampled consists of the
Boltzmann factors which contain the potential energies for the N -molecule solution
and the internal potential energy for the distinguished molecule. The normalizing
factor in the denominator is an integral of this distribution over all coordinates of
the solution and the molecule, neglecting the translational degrees of freedom of the
molecule.

A useful view of averages can be expressed via the PDT. The configurational
average of the quantity F is

〈F 〉 =

〈〈
e−β∆UαF

〉〉
0

〈〈e−β∆Uα〉〉0
. (11.5)

The normalization integrals for the averages in the numerator and denominator can-
cel each other, leaving the traditional expression for the thermal average of F with
the distinguished molecule present in the solution. This expression for the average
will prove helpful several times below. The PDT is discussed extensively in Chap. 9,
and in [29].

11.4 Fourier Path Integrals

Feynman, building on earlier ideas of Dirac, developed a formulation of quantum
mechanics alternative to the older Heisenberg and Schrödinger pictures [1]. This
view expresses the transition amplitude to go from points x to x′ in a time t as the
superposition of exp(iS/�) phase factors for an infinite number of paths linking the
two points, where S is the action evaluated along the path. When this formulation for
real-time evolution is carried over to equilibrium statistical mechanics, the physical
time t is replaced by the imaginary time iτ , where τ ranges from 0 to β�. This
converts the action S to an energy function in a space with an increased number of
degrees of freedom specifying the path coordinates for each particle [2]. For all of
the systems of interest here, particle exchange effects are negligible. Then, the paths
are cyclic, starting and ending at the same place. This means that we are assuming
Boltzmann statistics. The assumption of Boltzmann statistics is the only approxi-
mation required to derive the quantum PDT. Then, the configuration of the whole
system consists of the location of the path origin for each particle and an added set
of variables to describe the cyclic paths.

Path integrals can be expressed directly in Cartesian coordinates [1, 2] or can be
transformed to Fourier variables [1, 2, 20, 45]. A Fourier path integral method will be
used here [20]. The major reason for doing this is that length scales are directly built
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into the representation. The Cartesian and Fourier path integrals generate the same
physical information, and their mathematical relationship and equivalence have been
studied by Coalson [46]. As we will see below, going to a Fourier representation
does not involve a Fourier transform operation, but is simply a coordinate change;
all of the calculations are still carried out in real space (not k-space).5 At first ap-
pearance, the mathematics appears daunting in path integral calculations. But after
some exposure to the expressions and practice using them to derive useful results,
things begin to look very similar to the more usual classical Boltzmann statisti-
cal mechanics. The main purposes in introducing path integrals here are to permit
the derivation of a quantum version of the PDT and then to obtain useful approxi-
mations based on the exact expressions. Those approximations are discussed in the
beginning of Sect. 11.7. After all the path integral gyrations, the Feynman–Hibbs ef-
fective potential to model quantum effects turns out to be remarkably simple, namely
a Gaussian smear of the potential where the width depends on the temperature and
mass.

In what follows, a one-dimensional picture will mainly be employed to avoid a
notational proliferation. We will also consider a single atomic solute. The methods
discussed are easily generalized to three dimensions and many particles; the x, y,
and z coordinates of the cyclic path for each atom are represented by a set of Fourier
coefficients.

In equilibrium statistical mechanics involving quantum effects, we need to know
the density matrix in order to calculate averages of the quantities of interest. This den-
sity matrix is the quantum analog of the classical Boltzmann factor. It can be obtained
by solving a differential equation very similar to the time-dependent Schrödinger
equation

∂ρ

∂β
= −H ρ, (11.6)

where ρ is the density matrix and H is the system’s Hamiltonian operator. Notice
that, when you insert the Hamiltonian operator on the right, the equation appears
quite similar to a diffusion equation. There are many possibilities for solving (11.6)
for ρ; here we present the path integral representation of the solution.

In coordinate space, the diagonal elements of the canonical density matrix in the
Fourier path integral representation are given by [20]

ρ(x, x;β) =
1

N !
J(β)

∫ ∏
k

dak exp

(
−
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2σ2
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)
exp
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−β
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U [x(τ)]dτ

)
,

(11.7)
where the ak variables are the Fourier coefficients, and, for one particle in one
dimension

J(β) =
(

m

2πβ�2

)1/2∏
k

1√
2πσ2

k

, (11.8)

5 This coordinate change is analogous to changing integration variables x, y, z to spherical
polar coordinates r, θ, φ.
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and

σ2
k =

2β�
2

m(πk)2
. (11.9)

J(β) is the Jacobian for the transformation from Cartesian to Fourier variables; the
Fourier coefficients {ak} used to specify a given path (see below) have the same
units as the positional coordinates in the Cartesian path integral. The spreads σk in
the Gaussian factors in the kinetic-energy piece are inversely related to the square
roots of the temperature and mass; also, the spreads decrease with increasing Fourier
index k. After choosing a position x which is the origin of a given path, we integrate
over all the Fourier variables {ak} to obtain the density matrix element ρ(x, x;β).
The integral of the potential appearing in the last term involves the fictitious scaled
‘time’ variable τ which ranges from 0 to 1 and expresses the motion along the path.
The integrand in (11.7) is called a functional; instead of connecting one variable to
another as in a regular function, we need to specify the entire path to return a value
for the integrand. We will discuss in more detail the two terms of the integrand below.
The integral of (11.7) over the coordinate x yields the canonical partition function Q.

A path is specified by a set of Fourier coefficients {ak}

x(τ) = x +
∑

k

ak sin kπτ. (11.10)

The location x is the origin of the path, and the Fourier coefficients generate devia-
tions away from that origin. In practical calculations the expansion is truncated at a
finite value of k = kmax, and the integral of the potential along the path is performed
at a discrete set of points chosen fine enough to capture the physical features. It is
clear that the high-k modes describe short-wavelength oscillations about the path
structure determined by the longer-wavelength, low-k modes. If there are many par-
ticles moving in three dimensions, the Jacobian in (11.8) contains a product over all
the masses (with the exponent 1/2 replaced by 3/2) and over all the Fourier coeffi-
cients specifying the paths.

A good example problem is the one-dimensional harmonic oscillator, where
U(x) = mω2x2/2. This case can be solved analytically, and the calculation is fairly
lengthy. Here we just quote the results, and encourage the reader to give the deriva-
tion a try. To outline the steps, first compute the τ integral of the potential, and then
do all of the Gaussian integrals involving the kinetic energy. The result is

ρ(x, x;β) = C exp[−S(x, x;β)], (11.11)

where

S(x, x;β) =
1
2
mω2βx2 − mx2

β�2

∑
k

(
β�ω

kπ

)2 [1 − (−1)k]2

[1 + (kπ/β�ω)2]
. (11.12)

Several of the system parameters have been collected in C, which is independent of
x. Notice that this result depends on kmax. The analytical result in the kmax → ∞
limit, obtained by other means in Feynman’s book [2], is
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ρ(x, x;β) = C ′ exp
(
−mω

�
x2 tanh f

)
, (11.13)

where C ′ is another constant and f = β�ω/2. We can analyze (11.13) in the high-
and low-temperature limits. At high temperature, f → 0 and we can expand the
exponentials appearing in the tanh f term. The result is just the classical distribution
for the harmonic oscillator at a given temperature

ρ(x, x;β) = C ′ exp
(
−1

2
mω2x2

)
. (11.14)

At the other extreme of low temperature, tanh → 1 and ρ(x, x;β) just becomes the
square of the ground-state wave function

ρ(x, x;β) = C ′ exp
(
−mω

�
x2
)

. (11.15)

What does this example illustrate? First, at high temperatures we know that the paths
shrink due to the decrease in the σk values with increasing temperature. Eventually,
the paths shrink to points, and that is the classical limit 11.14. At the other extreme
of low temperature, the paths are more extended since the σk values become large,
but the potential confines the paths to be distributed in a way that reflects the ground-
state wave function. The approximation methods discussed in this chapter are valid
at temperatures where the paths have shrunk to small, but not point-like, sizes.

Given the density matrix, the average of a coordinate-dependent function F (x)
is then

< F >=

∫
dxρ(x, x;β)F (x)
∫

dxρ(x, x;β)
. (11.16)

This shows that the probability density for the averaging involves a Boltzmann fac-
tor which contains a kinetic-energy part

(∑
k a2

k/2σ2
k

)
and the average interaction

potential along the path x(τ). The kinetic-energy piece creates an energetic cost
when the paths become too extended and/or ‘kinked,’ indicated by large values of the
Fourier coefficients. The interaction potential is computed only between points with a
given τ value and then integrated over τ to get the average; a clear discussion of these
points is given in [13]. This discussion shows that obtaining a quantum average using
path integrals is virtually the same as a classical average, except we have to sample
in an enlarged space of ak variables besides the usual positional coordinates x.

Imagine that we are using the Metropolis Monte Carlo method to calculate an
average. For each trial x and set of Fourier coefficients {ak} during the sampling,
we first generate a path and then calculate the kinetic and potential energetic pieces
appearing in (11.7). If this energy in our enlarged space decreases, we accept the trial
move; if it increases, we accept it with a probability proportional to the exponential
of the difference of the energy factor between the current and trial configurations in
the usual Metropolis way.

If we are interested in the off-diagonal elements of the density matrix, that is
ρ(x, x′;β), the paths are no longer cyclic but begin at x and terminate at x′. Then the
Fourier representation of the path is
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x(τ) = x + (x − x′)τ +
∑

k

ak sin kπτ. (11.17)

This picture suggests a trajectory passing from one point to another in a total time
τ = 1. For fixed x and x′, we can then imagine sampling those trajectories with a
Boltzmann-like weight from an integrand similar to that in (11.7).6 Although the de-
tails differ, the transition path sampling method for locating transition states in high-
dimensional problems is close in spirit to the path integrals discussed above: both
model a diffusion-like process with fixed endpoints by sampling over a distribution
of paths or ‘trajectories.’ This provides an alternative view of boundary conditions
for dynamical processes. Instead of producing an ensemble of trajectories with initial
positions and momenta, we generate paths which link two points in space in a given
time interval. See Chap. 7 and the early pioneering work by Pratt [47].

11.5 The Quantum Potential Distribution Theorem

As mentioned above, there are multiple ways to derive the PDT for the chemical
potential. Here we utilize the older method in the canonical ensemble which says
that βµα is just minus the logarithm of the ratio of two partition functions, one for
the system with the distinguished atom or molecule present, and the other for the
system with no solute. Using (11.7) we obtain [9, 48, 49]

βµα = ln ραΛ3
α − ln

〈〈
e−β
∫ 1

0
∆Uα[x(τ)]dτ

〉
ak

〉

0

. (11.18)

First notice the close similarity to the classical formula for a molecular solute (11.4).
The ideal part of the chemical potential does not contain the internal partition func-
tion qint

α since we are considering an atomic solute here. The inner Gaussian average
in (11.18) comes from the normalizing factors for the Fourier coefficients in (11.7).
That average pertains to an average over the Boltzmann weight containing the kinetic
energy factor alone

〈. . .〉ak
=

∫ ∏
k

dak (. . .) e
−
∑

k

a2
k

2σ2
k

∫ ∏
k

dake
−
∑

k

a2
k

2σ2
k

, (11.19)

that is, a Gaussian average with no interactions between the solute and surrounding
solvent. The outer average is over the thermal motions of the solvent decoupled from
the solute. In place of the interaction energy ∆Uα in (11.4), we have the average
interaction energy along the instantaneous solute path configuration generated during
the inner-Gaussian sampling; (11.18) has been used directly to obtain the excess
chemical potential for hydrogen [9] and neon [9, 16] liquids.
6 The energetic factors are slightly more complicated with differing endpoints x and x′.
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We now use a trick to partition this exact expression for the chemical potential
into classical and quantum correction parts [29]. To do this we multiply and divide
inside the logarithm of the excess term by the classical average

βµα = ln ραΛ3
α − ln

〈
e−β∆Uα(x̄)

〉
0
− ln

〈〈
e−β
∫ 1

0
∆Uα[x(τ)]dτ

〉
ak

〉

0〈〈
e−β∆Uα(x̄)

〉
ak

〉
0

. (11.20)

The Fourier coefficient average in the denominator of the last term is added to make
the numerator and denominator symmetrical. It has no effect on the classical average.
The classical factor ∆Uα(x̄) signifies that the potential is evaluated at the centroid
of the path

x̄ =
∫ 1

0

x(τ)dτ = x +
1
π

∑
k

ak

k

[
1 − (−1)k

]
. (11.21)

This is helpful in deriving approximations later. Intuitively it makes sense since we
would like to evaluate fluctuations about the ‘center of mass’ of the path.

In the numerator of the last term, we then multiply and divide by
exp(−β∆Uα(x̄)), which means adding and subtracting −β∆Uα(x̄) inside the expo-
nent. This puts the term in the form of (11.5), where F is everything left over besides
the exp(−β∆Uα(x̄)) factor. We can finally write the quantum PDT as

βµα = ln ραΛ3
α − ln

〈
e−β∆Uα(x̄)

〉
0

− ln

〈〈
e−β
∫ 1

0
[∆Uα[x(τ)]−∆Uα(x̄)]dτ

〉
ak

〉

cl

. (11.22)

The first two terms on the right are the classical chemical potential and the last term
is an exact quantum correction. The averaging in that last term is over the Gaussian
kinetic energy piece and the “cl” subscript on the outer average now says that the
classical solute is included during the calculation; the average is over the classi-
cal reference system. This partitioning is fruitful in deriving approximations for the
quantum correction to the excess chemical potential. The inclusion of the classical
solute during the averaging process makes the calculation less noisy than the brute-
force approach suggested by (11.18). In the case of (11.18), the entire cyclic path is
randomly ‘inserted’ into the liquid, which can lead to frequent substantial overlaps
with the solvent atoms; this results in a noisy averaging process with most terms
close to zero and rare favorable insertions into available cavities. Equation (11.22)
reorganizes the calculation into a classical part and a correction term in which the
classical solute already exists in the fluid. The averaging in the last term of (11.22)
focuses on differences between the interaction energy of the classical point particle
and the quantum particle along the cyclic path. Thus, the sampling is expected to be
less noisy.
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11.6 The Variational Approach to Approximations

The calculation of the quantum correction to the excess chemical potential is of
the form

− ln〈e−βf 〉ak
. (11.23)

We will consider expression (11.23) as a schematic for the inner ak averaging in
(11.22). Let us now explore an approximation for this expression. First, expand the
exponential and take the averages of the terms in increasing powers of β. We will
consider terms here up to second order in β. Then, expand the logarithm and we get

− ln〈e−βf 〉ak
≈ β〈f〉ak

− β2

2
[
〈f2〉ak

− 〈f〉2ak

]
+ · · · (11.24)

These are the first two terms in a cumulant expansion [50]. We note here that the
convergence of cumulant expansions is a subtle issue. Generally, if the statistics are
nearly Gaussian, the cumulant expansion yields a good approximation. If the statis-
tical distribution is not Gaussian, however, the cumulant expansion diverges with the
inclusion of higher-order terms. See [29] and references therein for more discussion
of this point.

An inequality then proves useful [2]
〈
e−βf

〉
ak

≥ e−β〈f〉ak . (11.25)

This inequality is called the Gibbs–Bogoliubov–Feynman bound [51], and it can be
obtained as the instantaneous-switching limit of Jarzynski’s identity relating non-
equilibrium trajectories to free energy changes.7 It says that if we just retain the first-
order term in β, the approximated quantum correction lies above the exact quantum
result. The second-order term is always negative, which also gives an indication that
the exact result lies below the approximate one. In addition, the classical free energy
lies below the exact quantum result [45, 52, 53]. Thus, the exact quantum free energy
is bounded above and below by values that can be obtained using classical mechan-
ics for the sampling. This useful point does not seem to have been exploited much in
computations of free energies.

11.7 The Feynman–Hibbs Variational Method

The physical principle underlying the following approximations is that relatively
weak quantum effects are reflected in narrow Gaussian distributions in (11.19). The
small widths are due to the large mass and high temperature. This means that the
potential does not vary much over the length scales sampled by the kinetic en-
ergy distribution. Additionally, the higher-k Fourier modes become successively nar-
rower. This length-scale argument was invoked in the development of the partial
averaging method by Doll and coworkers [20]. In this method, the equality in (11.25)
7 See discussion of Jarzynski’s identity in Chap. 5.
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is employed to obtain an effective potential along the path specified by the long-
wavelength modes. That effective potential involves a Gaussian smear of the poten-
tial with a width determined by the largest chosen k = kmax. The effective potential
allows a much smaller required kmax in many-body simulations. When the averag-
ing process in the partial averaging method is continued through all of the Fourier
variables, the Feynman–Hibbs effective potential [2] is obtained.

We just summarize the steps of the derivation here and refer the reader to [29]
where the procedure is outlined in an exercise. We first make approximation (11.25)
for the inner average over the ak variables in (11.22). We are then interested in the
average of the difference between the interaction energy of the solute along the path
and that evaluated at the centroid. But we note that no point along the path is special,
and we choose the point x for our sampling point; x̄ remains fixed. Since the variable
x is generated by a linear combination of the ak variables, the multidimensional
Gaussian can be collapsed into a single-Gaussian integral after some algebra [50]

∆∆U eff
α (x̄) =

∫
dy [∆Uα(x̄ − y) − ∆Uα(x̄)] e−

6my2

β�2

∫
dy e−

6my2

β�2

. (11.26)

Here, ∆∆U eff
α (x̄) is an effective potential representing the quantum deviations from

the classical interaction potential. This effective potential is variational since the only
approximation made so far is from the inequality (11.25).

Now if we assume that the deviations are small, and expand ∆Uα(x̄ − y) about
the point x̄ to second order, we get

∆∆U eff
α (x̄) ≈ β�

2

24m
∆U ′′

α(x̄) , (11.27)

where ∆U ′′
α(x̄) is the second derivative of the potential evaluated at x̄. We will call

this the quadratic Feynman–Hibbs (QFH) correction. Kleinert [45] shows that this
quadratic expansion is also variational; all approximations derived beyond this one
may remove this property. For a pairwise interaction, the QFH correction reads

∆∆U eff
α (x̄) ≈ β�

2

24µ

[
∆U ′′

α(r) + 2
∆U ′

α(r)
r

]
, (11.28)

where µ is the reduced mass, and the second (∆U ′′) and first (∆U ′) derivatives are
taken with respect to the scalar distance between the atoms.

The QFH potential approximately captures two key quantum effects. When an
atom is near a potential minimum, the curvature is positive and thus so is the
QFH correction; this models the zero-point effect. On the other hand, near potential
maxima the curvature is negative, and the QFH potential models tunneling.

The Feynman–Hibbs and QFH potentials have been used extensively in simula-
tions examining quantum effects in atomic and molecular fluids [12, 15, 25]. We note
here that the centroid molecular dynamics method [54, 55] is related and is interme-
diate between a full path integral simulation and the Feynman–Hibbs approximation;
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the averaged forces during the classical propagation are determined using a path inte-
gral simulation. It has been shown that the QFH potential and the centroid approach
yield similar results in water simulations [25].

We can view obtaining the QFH correction to the excess chemical potential in
two ways. If we simply insert (11.27) back into (11.22), this suggests that we first
compute the classical excess chemical potential and then insert the classical solute
into the system and evaluate

− ln
〈

e−
β2

�
2

24m ∆U ′′
α (x̄)

〉
cl

(11.29)

for the quantum correction. Alternatively, we can recombine the classical and quan-
tum correction terms in (11.22) and calculate the excess chemical potential as

βµex,QFH
α = − ln

〈
e−β[∆Uα(x̄)+ β�

2

24m ∆U ′′
α (x̄)]

〉
0

. (11.30)

If we are interested in the excess chemical potential change for mutating mass mA

into mass mB, we obtain

β∆µex,QFH
α (mA → mB) = − ln

〈
e−β[∆Uα(x̄)+ β�

2

24mB
∆U ′′

α (x̄)]

〉
0〈

e−β[∆Uα(x̄)+ β�2
24mA

∆U ′′
α (x̄)]

〉
0

= − ln
〈

e−
β2

�
2

24 ∆( 1
m )∆U ′′

α (x̄)

〉
mA

, (11.31)

where ∆(1/m) = 1/mB − 1/mA and again we have used (11.5). The calculation is
performed with the mass mA particle included, interacting with the rest of the system
with the QFH potential.

Feynman and Kleinert derived a method which is a significant improvement over
the Feynman–Hibbs variational approach. A detailed discussion of this method is
given in [45]. The method focuses on a local harmonic oscillator reference system
rather than on performing the Gaussian integrals directly as done above. The derived
effective potential goes to the classical potential at high temperatures, but in addition
gives a remarkably good estimate of the ground-state energy at low temperatures.
The approximated free energy is an upper bound, just like in the Feynman–Hibbs
method, but a better approximation is obtained at lower temperatures. It does involve
increased complexity in obtaining an optimal local harmonic frequency. Moreover,
the applications considered here are mainly in the higher-temperature regime dis-
cussed in [45].

Another issue to mention concerns the sampling of the solvent degrees of free-
dom. The cl subscript on the outside average of the last term of (11.22) refers to
treating the solute classically. If the solvent is expected to display minor
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quantum effects, then it too can be modeled with a QFH potential; the solute should
be treated classically in the cl-labeled averaging though. If the interaction potential
happens to be a pairwise potential, then a very simple form for the QFH potential
results [12, 15, 25], as shown in (11.28).

11.8 A Worked Example

We have covered a lot of ground starting from an exact quantum PDT and deriving
a physically based Feynman–Hibbs effective potential designed to approximately
include quantum effects during a classical calculation. The path integral methods
used to derive the Feynman–Hibbs potential are involved, but the result (11.26) is
simple: take a Gaussian smear of the potential centered at the classical point x̄. Here
we stop and consider an example, the harmonic oscillator, which illustrates some of
the results discussed above. The harmonic oscillator partition function, and thus the
Helmholtz free energy, is easy to obtain analytically. The exact free energy is:

AQM =
1
β

ln
[
sinh

(
�ωβ

2

)]
, (11.32)

where ω is the harmonic frequency. The high-temperature or classical limit of this
expression is

ACM =
1
β

ln(�ωβ). (11.33)
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Fig. 11.1. The Helmholtz free energy as a function of β for the three free energy models of
the harmonic oscillator. Here we have set � = ω = 1. The exact result is the solid line, the
Feynman–Hibbs free energy is the upper dashed line, and the classical free energy is the lower
dashed line. The classical and Feynman–Hibbs potentials bound the exact free energy, and the
Feynman–Hibbs free energy becomes inaccurate as the quantum system drops into the ground
state at low temperature
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Using path integral methods, Feynman [2] showed that the Feynman–Hibbs form for
the harmonic oscillator free energy is

AFH =
1
β

[
ln(�ωβ) +

�
2β2ω2

24

]
. (11.34)

This approximation can also be easily obtained from the expression (11.29). Based
on our discussion above, we expect ACM < AQM < AFH. Figure 11.1 illustrates
these bounds. The Feynman–Hibbs free energy provides a very good representation
at moderate temperatures, at which some excited states are populated. See Kleinert’s
book [45] for applications to anharmonic systems.

We will finish the example with a couple of points which will prove useful later
in the chapter. If we insert the harmonic oscillator potential into the temperature
correction formula (11.2), we get

∆T = Ti,eff − T ≈ 1
12

(β�ω)2T (11.35)

for the correction. At room temperature, β−1 ≈ 208 cm−1 in typical units for
vibrational frequencies, so the correction is 25(ν̃/208)2. If we assume a frequency
of 294 cm−1, we get a temperature correction of 50 K. By examining the density of
states for liquid water [56], the choice of a few hundred cm−1 as a characteristic
frequency is not unreasonable. The high density of states in that frequency range is
due to the hindered rotations of the water molecules in the liquid. As we will see
below, the quantum effects on the structural properties of liquid water are roughly
equivalent to a 50 K temperature rise in the classical liquid.

Second, there has been a discussion of whether it is better to treat the water
molecule as rigid or flexible during simulations of the fluid [40]. One argument has
been that, since the molecules are largely in their ground vibrational states at room
temperature, it might be better to treat them as rigid. But this assumption seems
somewhat questionable when the root-mean-square proton fluctuations (

√
< x2 >)

are calculated in the classical and quantum (ground-state) limits. Let us assume a
harmonic oscillator with a vibrational frequency of roughly 1,500 cm−1, a mass of 2
proton masses, and a temperature of 300 K. These parameters lead to classical and
quantum predictions of the rms fluctuations of 0.04 and 0.075 Å, respectively. So the
notion that the molecule is effectively more rigid in the quantum system may not be
physically correct.

11.9 Wigner–Kirkwood Approximations

Wigner–Kirkwood related expansions follow by taking the approximations further.
We assume (11.30) as a starting point and linearize the exponential of the correction
term for the potential
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− ln

〈
e
−β

[
∆Uα(x̄)+ β�

2

24m ∆U ′′
α (x̄)

]〉

0

≈ − ln

∫
dxN e−βUN e−β∆Uα(x̄)

(
1 − β2

�
2

24m
∆U ′′

α(x̄)
)

∫
dxN e−βUN e−β∆Uα(x̄)

− ln

∫
dxN e−βUN e−β∆Uα(x̄)

∫
dxN e−βUN

, (11.36)

assuming the total potential for the solvent UN is a classical potential for now.
The second term on the right of (11.36) is just the classical excess chemical

potential. The first term is

− ln
[
1 − β2

�
2

24m
〈∆U ′′

α(x̄)〉cl
]

, (11.37)

which can also be obtained by expanding the exponential in (11.29). An effective
potential closely related to (11.37) was derived by Stratt [44] and has been examined
in molecular simulations [12]. Assuming the second term inside the logarithm in
(11.37) is small and expanding the logarithm, we get

βµex,WK
α ≈ βµex,cl

α +
β2

�
2

24m
〈∆U ′′

α(x̄)〉cl. (11.38)

Now consider the classical average of the second derivative appearing in (11.38).
This average can be integrated by parts if we assume a very large system where
boundary effects are negligible [43]

βµex,WK
α ≈ βµex,cl

α +
β3

�
2

24m
〈(∆U ′

α(x̄))2〉cl . (11.39)

This is of the form of the correction to the free energy in (11.1). Extensions for rigid
molecules are given in [57].

By performing the integration by parts on only a portion of the correction, we
can also say

βµex,WK
α ≈ βµex,cl

α − β3
�

2

24m
〈(∆U ′

α(x̄))2〉cl +
β2

�
2

12m
〈∆U ′′

α(x̄)〉cl . (11.40)

If we now re-express (11.40) as the expansion of a logarithm, and then re-exponentiate
the terms inside the classical average, we obtain (11.3) as an effective potential. Even
though we have retained the dependence on the coordinate x̄ to make the connec-
tion to an effective potential for a given system configuration, the averaging process
implied by the integration by parts means that the solute particle is free to move
throughout the system volume. In this sense, the Wigner–Kirkwood effective po-
tential is an averaged potential which is designed to reproduce system properties
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globally. The Feynman–Hibbs potential, on the other hand, results from averaging
only over the quantum degrees of freedom, and retains the well-defined local nature
inherent in the PDT; this is a distinct advantage of the Feynman–Hibbs approach
when modeling inhomogeneous systems.

At this point it might be helpful to summarize what has been done so far in
terms of effective potentials. To obtain the QFH correction, we started with an exact
path integral expression and obtained the effective potential by making a first-order
cumulant expansion of the Boltzmann factor and analytically performing all of the
Gaussian kinetic energy integrals. Once the first-order cumulant approximation is
made, the rest of the derivation is exact up to (11.26). A second-order expansion of
the potential then leads to the QFH approximation.

Once the QFH formula for the excess chemical potential is linearized in (11.37),
the logarithmic expression can be expanded to first order and all or part of the
classical-average term can be integrated by parts to yield the Wigner–Kirkwood cor-
rection to the free energy. Then if (11.40) is reorganized, computation of the chemical
potential can be viewed as a classical average with a modified interaction potential
of the same form as (11.3).

How do the two effective potentials compare? In [12], the effective potentials
corresponding to (11.27), (11.37), and (11.40) are plotted for neon at its triple-point
temperature. All three effective potentials mimic zero-point motion by raising the
potential near the minimum relative to the classical Lennard-Jones form. The poten-
tials differ widely at small separations, however. The QFH approximation is more
repulsive than the classical potential at small r values, while the logarithmic form
of the Wigner–Kirkwood effective potential equation (11.37) is less repulsive than
the classical potential. Also, this logarithmic form of the Wigner–Kirkwood poten-
tial matches up quite well at small r with path integral calculations for the atomic
pair [13]. The effective potential equation (11.3) derived from (11.40) exhibits a non-
physical negative divergence at small r due to the negative sign in front of the square
of the gradient of the interaction potential.

At first glance, it would appear that the QFH approximation is a better one since
it is only a few steps removed from the exact path integral results, and the Wigner–
Kirkwood formulas are obtained only after several subsequent approximations.
However, the Wigner–Kirkwood pair potential is closer to a path-integral-derived
effective potential at small distances. There does not appear to be a conclusive
comparison of the two effective potentials for all of the thermodynamic and struc-
tural properties of fluids, although there has been significant work in this direc-
tion [11, 15]. Sese concludes that the QFH approximation performs better (than the
Wigner–Kirkwood form) in computing thermodynamic properties. He does note that
QFH-derived pressures deviate from the exact results at low temperatures and/or high
densities. This is probably due to the enhanced repulsive character of the potential.
Also, he showed that a Gaussian deconvolution of the center-of-mass QFH radial
distribution function leads to much better agreement with experiment [15]. Pre-
viously he had found that Wigner–Kirkwood models gave better agreement with
experimental structural data [17]. The reader is referred to more-extensive discus-
sion of the relative merits of the effective potentials in these original papers.
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11.10 The PDT and Thermodynamic Integration for Exact
Quantum Free Energy Changes

Say you have performed a classical calculation to determine the excess chemical
potential from the first two terms on the right side of (11.22) followed by another
classical calculation to obtain an estimate of the quantum correction from the ex-
pression (11.29), and the estimated correction is large. This suggests that a full quan-
tum treatment is necessary. In this section, we derive the appropriate formulas for
changes in the excess chemical potential due to mutating masses. If the original mass
is very large, which corresponds to the classical limit, the derived expressions yield
the quantum correction.

Consider a problem, in which we are interested in the mass-dependent partition-
ing of a solute between an ideal gas phase and a condensed phase. The ratio of the
densities in the two phases or the partition coefficient for species α is then

K = e−βµex
α , (11.41)

where µex
α is the excess chemical potential in the condensed phase. Thus to calculate

the ratio of the partition coefficients for two isotopes, we need only consider the
difference in the excess chemical potentials, and that will be our focus here.

Let us first examine changes in the quantum correction of (11.22) due to a change
in mass. For that change we obtain

− ln

〈〈
e−β
∫ 1

0
[∆Uα[x(τ)]−∆Uα(x̄)]dτ

〉
ak,B

〉

cl〈〈
e−β
∫ 1

0
[∆Uα[x(τ)]−∆Uα(x̄)]dτ

〉
ak,A

〉

cl

. (11.42)

We will use (11.5) yet again, but we should be careful to note that the normalization
integrals for the numerator and denominator are slightly different. Taking care of
those terms, we get

β∆µex
α (mA → mB) = −3kmax

2
ln

mB

mA
− ln

〈
e−

π2∆m
4β�2

∑
k

a2
kk2
〉

mA

, (11.43)

where ∆m = mB − mA, and the 3 in the first term on the right-hand side comes
from assuming the particle moves in three dimensions. In that case, the sum in the
exponent of the second term should be over all the solute Fourier variables for the
three dimensions. In the averaging of the second term it is assumed that the mass mA

particle is included in the system. If the mass change is not too large, this expression
should suffice. But if there is a significant mass change and the quantum effects are
large, the statistical averaging will be noisy. In fact, this is a somewhat disturbing
limit since, as we let the initial mass mA approach infinity, we get the difference of
two infinite terms, which should in the end yield a well-defined and finite result. We
will see later that calculating the excess chemical potential in this limit is not so bad
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as it first appears. For practical purposes, we can break up the mutation process into
a sequence of smaller mass changes, using (11.43) for each step. See Chap. 2 for a
discussion of perturbation theory.

Alternatively, the mass change can be enacted by thermodynamic integration. It is
shown in [29] that thermodynamic integration possesses excellent scaling properties
as long as the free energy changes smoothly with the scaling parameter. This provides
a good reason for its workhorse status in free energy calculations. We will assume
that the mass mB is smaller than the mass mA with an eye toward the transition from
classical to quantum limits. Take the second term on the right-hand side of (11.43)
and replace ∆m with (1 − λ)mB. We will consider the transition from λ = 1 to
λ = λf , where mA = λfmB. This creates the λ-dependent function F (λ):

F (λ) = − ln
〈

e−
π2(1−λ)mB

4β�2

∑
k

a2
kk2
〉

mA

. (11.44)

Then we can integrate the derivative of this function to get our desired result

F (λf ) − F (1) =
∫ λf

1

∂F

∂λ
dλ, (11.45)

since F (λf ) is what we seek and F (1) = 0. Once we calculate the derivative and
assemble the averages, we get for the quantum correction

β∆µex
α (mA → mB) = −3kmax

2
ln

mB

mA
− π2mB
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(11.46)
The λ-dependent averaging inside the integral involves a path integral simulation
with the particle of interest involved but with a mass of mA + (1 − λ)mB. This
formula has been used to estimate isotope effects on solubilities of hydrogen and
deuterium in model anharmonic solids in [48]. A similar expression was derived for
Cartesian path integrals by Runge and Chester [21]. We are considering the tran-
sition from a large mass to a small mass, so λf > 1 and the second term is thus
always negative due to the minus sign in front. But the net result for the quantum
correction is positive [53], so the first term must exceed the second in magnitude.
That first term is always positive for mA � mB. Equation (11.46) appears similar
to the T method of kinetic energy estimation [20]. It has been noted that the stan-
dard deviation of the kinetic energy in the T method increases as the square root of
kmax [20]. The growth of the standard deviation is not surprising due to the k2 fac-
tor. Predescu and Doll [58], building on fundamental ideas from Brownian motion
theory, have proposed a reweighting scheme for the Fourier method which yields
better-convergent estimators, and Mielke and Truhlar [59] have compared various
Fourier-based estimators in free energy calculations.

Physically, as we go to larger masses during the λ integration, the widths of the
Gaussians in the kinetic-energy piece of the sampling function become very narrow.
This means that the distributions of the ak are essentially Gaussian due to no in-
fluence from the potential; on the scale of the very small particle fluctuations, the
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potential does not vary. If we assume that the kinetic and potential pieces have de-
coupled in this way, then we can perform the Gaussian integrals in the 〈. . .〉λ aver-
ages analytically, and indeed we get exactly the opposite of the first term in (11.46).
This suggests that we perform the λ integration as given in (11.46), successively
increasing mA until the process converges to a stable value; we have then reached
the classical limit.

We can view the classical→quantum transition another way, namely through
the potential rather than the kinetic energy. If we substitute (1 − λ)∆Uα(x̄) +
λ∆Uα[x(τ)] for ∆Uα[x(τ)] in the quantum correction term of (11.22), and then
follow through with a thermodynamic integration procedure, we obtain

β[µex,QM
α − µex,CM

α ] = β

∫ 1

0

〈∫ 1

0

[∆Uα[x(τ)] − ∆Uα(x̄)]dτ

〉
λ

dλ , (11.47)

where now the path integral λ-dependent averaging uses the mixed potential given
above. The λ = 0 limit is the classical limit, and λ = 1 generates the full quantum
correction. This method presumably does not suffer from the kmax-dependent statis-
tical sampling issue in (11.46), but we are not aware of a direct comparison of the
two views of the classical→quantum transition. The approach of (11.47) was used
by Morales and Singer [14] in calculations of free energies for liquid neon.

11.11 Assessment and Applications

As we have seen, the PDT gives a compact means to derive quantum corrections
to the classical chemical potential for an atomic or molecular solute. By making a
variational approximation, the Feynman–Hibbs effective potential emerges directly
from the exact path integral expression. If we expand the potential about the centroid
to second order, the QFH approximation results, and the Wigner–Kirkwood approx-
imations are obtained from further approximations. The classical excess chemical
potential and the QFH quantum approximation give lower and upper bounds, respec-
tively, to the exact quantum result. Thus, using purely classical simulation, we can
begin to get a handle on the importance of quantum effects for free energies of a fluid.
We will see below that, if the estimated quantum correction to the chemical potential
is roughly 15% of the classical value or larger, then we should probably consider us-
ing a full path integral treatment. It is recommended to use the QFH potential (11.27)
for the estimate of the quantum correction of thermodynamic properties since it is
easy to incorporate during a classical simulation and is closest to the exact quantum
result as we proceed down the ‘approximation chain’ – see Sect. 11.9. For most of
the problems of interest to molecular modelers, the quantum effects are expected to
be relatively weak, so these approximate methods are likely to give good estimates.

In this section, we will discuss some examples from the literature, in which the
approximation methods derived in this chapter have been used. In several cases, the
approximations have been compared with more-accurate path integral simulations to
assess their validity. This is not meant as a full review; rather, several case studies
have been chosen to illustrate the tools we have developed. We will first look at
simpler examples and then discuss water models and applications in enzyme kinetics.
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11.11.1 Foundational Examples

As noted above, Wang et al. [9] utilized the exact form of the quantum PDT in studies
of liquid para-hydrogen and neon. For para-hydrogen, they found large differences
between the free energies with classical or quantum models at low temperatures;
at 30 K, the quantum result is roughly −250 kJ kg−1, while the classical prediction
is −750 kJ kg−1. The quantum and classical results do not converge until roughly
120 K. The deviations for liquid neon are much less, on the order of 15 kJ kg−1 at
30 K, and the classical and quantum calculations converge around 50 K. The quan-
tum results for both cases agree well with experimental data. These simulations
confirm that hydrogen is a highly quantum liquid, while neon exhibits small but
non-negligible quantum effects at low temperatures. Ortiz and Lopez [16] calculated
adsorption isotherms for a neon monolayer using the quantum PDT, and observed
an appreciable shift of the isotherms due to quantum effects at low temperatures.
Morales and Singer [14] computed quantum corrections to the classical Helmholtz
free energy for liquid neon at the triple point and observed a 5% change with inclu-
sion of quantum effects. The Gibbs free energy, on the other hand, changes by 15%
due to large changes in the ratio of the pressure to the density. They also tested a
Wigner–Kirkwood model and found a 10% overestimation of the quantum correc-
tion obtained from an expansion to second order in �. By adding a fourth-order term,
the Wigner–Kirkwood error is reduced to about 5%. The free energy computed with
path integral simulations agrees with experiment to within 3% of the measured value.

Sese [15] presented a more thorough examination of approximate quantum mod-
els for neon, namely the Feynman–Hibbs and QFH models. Free energies were cal-
culated using the PDT. The Gibbs free energy from the models is always higher
than the value computed using path integral methods, and the classical free energy
is below the path integral result. This is expected considering the variational bounds
discussed above. Four state points were examined. For state point 2, with a reduced
temperature of 0.9517 and reduced density of 0.7246, the calculated Gibbs free en-
ergy differs from the path integral results by 2% and 3% for the Feynman–Hibbs
and QFH models, respectively. The classical prediction differs from the path inte-
gral value by 8%, and the path integral result is 1% in error relative to experiment.
The agreement between the Feynman–Hibbs models and path integral simulations is
not as good at a lower-temperature and higher-density state point where the classical
and quantum Gibbs free energies differ by 14%. Sese defined a dimensionless pa-
rameter Λ∗ = (h2/2πmkBTσ2)1/2, which gives the ratio of the quantum spread to
the Lennard-Jones size parameter σ. When the reduced density is less than 0.89, the
reduced temperature greater than 0.60, and Λ∗ ≤ 0.28, accurate thermodynamics
can be obtained with the Feynman–Hibbs models.

Tchouar et al. [12] also utilized the QFH potential in simulations of neon,
methane, and gaseous helium at low temperatures. They did not compute free
energies, but obtained excellent agreement between the QFH and path integral cal-
culations for the average total energies of the systems. They found similar conditions
of validity to those given by Sese [15]. They also found much better agreement with
experiment for diffusion constants and shear viscosity coefficients when the classi-
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cal potentials were substituted with the QFH form, thus indicating these effective
potentials may also be useful for dynamical quantities.

Summary

– The Feynman–Hibbs and QFH models perform quite well in free energy calcula-
tions as long as the quantum corrections are modest. The conditions for validity
of the approximations are given above.

11.11.2 Force Field Models of Water

Moving on to quantum effects in water, we will first examine force field models
of water, and then discuss recent ab initio simulation results. Early works utilizing
path integral methods to study quantum effects in water include those by Kuharski
and Rossky [60] and Wallqvist and Berne [61]. Kuharski and Rossky used a rigid
(ST2) model of water, whereas Wallqvist and Berne examined a flexible model.
Both observed a destructuring of the fluid with the inclusion of quantum effects.
Kuharski and Rossky estimated the quantum correction to the free energy with a
Wigner–Kirkwood model, obtaining a value of 0.68 kcal mol−1 for H2O. The major
contributor to this correction is the librational component, not translations, which
comprise less than 10% of the total correction. The excess chemical potential of wa-
ter is −6.1 kcal mol−1 [36], so the estimated quantum correction is roughly 10% of
the total. By differentiating the free energy with respect to temperature, they also esti-
mated the quantum correction to the averaged interaction energy as 1.24 kcal mol−1.
The experimental total binding energy is −9.92 kcal mol−1 [56]. The larger magni-
tude for the energetic portion of the quantum correction implies a positive entropic
contribution. Using path integral methods, their estimate of the energetic change was
0.82 kcal mol−1. Reduced quantum corrections were observed for D2O.

In more-recent path integral studies, Stern and Berne [56] examined a force field
for flexible water obtained from ab initio calculations. Their classical simulation pro-
duced a total binding energy of −11.34 kcal mol−1, while their path integral result
was −9.8 kcal mol−1, very close to the experimental value. The estimate of the quan-
tum correction to the binding energy of 1.5 kcal mol−1 is slightly larger than previous
estimates. A simple harmonic model predicts a correction of 1.7 kcal mol−1. In their
flexible model, convergence of the energy of an isolated monomer is not obtained
until more than 30 beads are included in the Cartesian path integral simulations.

Mahoney and Jorgensen [34] studied quantum, flexibility, and polarizability
effects on water. They also developed a modified TIP5P(PIMC) rigid water po-
tential, where the parametrization was based on path integral rather than classical
simulations. Serious attention was paid to reproducing the temperature of maxi-
mum density. A Cartesian discretization with five beads was found sufficient to
obtain converged results for rigid water models. For the TIP5P(PIMC) model, the
authors observed an average intermolecular energy of −9.94 kcal mol−1, close to
the −9.92 kcal mol−1 experimental value. Also, the predicted heat of vaporization is
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10.53 kcal mol−1 versus the experimental value of 10.51 kcal mol−1. The quantum
correction to the interaction energy for the TIP5P model is 1.6 kcal mol−1, consis-
tent with the results of Stern and Berne [56]. Mahoney and Jorgensen argue that real
water is better approximated by rigid water models than by classical flexible models.
We note here that there has also been significant recent effort devoted to developing
classical force field models which accurately reproduce spectroscopic data for water
clusters [62].

These path integral simulations serve as benchmarks for approximate models.
Guillot and Guissani [25] employed the QFH approximation in extensive simula-
tions of structure and dynamics in water and D2O. A modified flexible force field
was used. The QFH model predicts a heat of vaporization of 9.42 kcal mol−1 (cor-
rected for zero-point differences) for water compared with path integral predictions
of 9.79 kcal mol−1 (ST2 model) and 10.84 kcal mol−1 (SPC/E model), and an exper-
imental value of 9.66 kcal mol−1. The quantum correction to the heat of vaporization
predicted with the QFH model is 1.23 kcal mol−1 versus the path integral predictions
of 1.18 and 1.27 kcal mol−1. Therefore, it appears the QFH model gives an excel-
lent estimate of this thermodynamic quantity. The quantum contribution to the heat
of vaporization is roughly 12% for water, a significant value. Guillot and Guissani
noted an interesting discrepancy between the simulations and experimental results:
the partial molar volume of D2O is greater than that for water, and the QFH model
does not reproduce this property. As for atomic fluids [15], for a given volume the
pressure increases with inclusion of quantum effects, and a higher pressure is thus
observed for water compared with D2O in the QFH simulation. This may be related
to the enhanced repulsive character of the QFH effective potential discussed above
in Sect. 11.9. The temperature of maximum density shift is reproduced reasonably
well with the QFH model. The authors also examined extensively the structural and
dynamical properties of water. Consistent with many other simulations, the radial
distribution functions soften with the inclusion of quantum effects, and diffusion is
enhanced. The ratio of diffusion constants for water and D2O increases markedly
as the temperature is decreased; this quantity is also accurately reproduced by the
QFH model. This study suggests that the QFH approximate model can accurately
predict thermodynamic properties of water. The authors also compared their results
with those from a more costly centroid molecular dynamics simulation of water [54],
and found excellent agreement between the two methods.

Summary

– Inclusion of quantum effects leads to a destructuring of water.
– The quantum contribution to the excess chemical potential is roughly 10% of the

total.
– The librational component is the major contributor to the quantum correction.
– The interaction-energy contribution to the quantum correction is larger in mag-

nitude than the free energy contribution, suggesting the entropic part is positive.
– Modified force field models based on path integral simulations yield excellent

agreement with experiment for thermodynamic properties.
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– Flexible force field models require 30 or more beads in Cartesian path integral
descriptions to obtain converged intramolecular energies. Rigid water models
require only about five beads due to the weaker intermolecular quantum effects.

– Rigid water models appear to represent real water better than flexible classical
models.

– The QFH effective potential gives good agreement with path integral results for
the thermodynamic properties of water.

– Diffusion constants are enhanced with the approximate inclusion of quantum
effects. Changes in the ratio of diffusion constants for water and D2O with
decreasing temperature are accurately reproduced with the QFH model. This
ratio computed with the QFH model agrees well with the centroid molecular
dynamics result at room temperature. Fully quantum path integral dynamical
simulations of diffusion in liquid water are not presently possible.

11.11.3 Ab Initio Water

Finally, we mention recent ab initio simulations of liquid water. This promising area
for fundamental studies of water thermodynamics, structure, reactivity, and dynamics
is in active development. Calculations using different DFT functionals and different
computational methods have resulted in quite different properties for water [36], and
we make no attempt to assess these differences here. Generally, if the nuclei are prop-
agated with classical mechanics, an overstructured liquid is observed, and the diffu-
sion constant is much smaller than the experimental value. These differences could
be due to the neglect of quantum effects on the proton motions, deficiencies in the
DFT functionals, or lack of convergence in the calculations. Proton quantum effects
during ab initio simulation have been included in the recent study of Chen et al. [35],
but there is some question as to convergence of the simulation with the path inte-
gral discretization number P [39]. Schwegler et al. [39] found that the experimental
radial distribution functions could be accurately reproduced by increasing the tem-
perature in classical simulations by roughly 50 K for simulations using a rigid water
structure and 100 K for a flexible water model.8 They suggested that this tempera-
ture increase is consistent with path integral results using the TIP5P(PIMC) model
discussed above, and thus quantum effects on proton motion are significant. The
correspondence of quantum effects with a 50 K temperature rise seems quite large,
but if one estimates the change in excess chemical potential from ∆µex = −si∆T ,
where si is the partial molar entropy of classical water, a 50 K temperature rise yields
a chemical potential change of roughly 1 kcal mol−1, consistent with previous esti-
mates from path integral studies [60]. And, as discussed in Sect. 11.8, a reasonable
estimate of the temperature correction for liquid water using (11.2) is also 50 K. This
finding is further supported by recent centroid molecular dynamics simulations [64].

Allesch et al. [40] also carried out ab initio simulations of rigid water molecules
and observed a decrease in water structure relative to a flexible water simulation.

8 A recent ab initio study [63] has also shown that the melting point with neglect of quantum
effects is elevated to nearly 400 K.
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It was argued that, since the water is predominantly in the ground vibrational state
at room temperature, it is not surprising that rigid models seem to more accurately
mimic water properties. Calculations of the rms fluctuations in classical or quan-
tum ground-state harmonic models call this argument into question, however; see
Sect. 11.8. It is also possible that the underlying DFT functionals contain deficien-
cies which are difficult to disentangle from other contributions to the structure and
thermodynamics [36, 37, 62]. Two of the most commonly used DFT functionals
(PBE and BLYP) lead to very similar and over-structured radial distribution func-
tions [65], while a modification of the PBE functional (rPBE) produces a less-
structured fluid [36, 37].

The only estimate of the free energy of water determined from ab initio sim-
ulation is [36]. This ground-breaking work utilized data from ab initio simulation
in conjunction with quasichemical theory to estimate the excess chemical potential
of water in water. The quasichemical treatment partitions the problem into inner-
sphere chemical effects and outer-sphere packing, electrostatic, and van der Waals
effects [29]. Information theory, using occupancy statistics, yields estimates of the
chemical and packing contributions. The theory can also be checked variationally
by altering the inner-sphere radius. One key conclusion from these calculations is
that the inner-sphere chemical effects nearly balance the outer-sphere packing ef-
fects. The estimates of the independent contributions to the chemical potential lead
to helpful insights into the various contributions, and the estimated final value of
−5.1 kcal mol−1 is quite close to the experimental value of −6.1 kcal mol−1. When
a molecular-level simulation result is substituted for a simple dielectric model for
the outer-sphere electrostatics, the prediction changes to −7.5 kcal mol−1. With a
quantum correction of roughly 0.7 kcal mol−1, the final prediction would be about
−6.8 kcal mol−1, within kBT of the experimental result. The DFT functional (rPBE)
used in this study is perhaps not of such a high quality to expect such remarkable
agreement, but it is noteworthy that such a close estimate is possible. Quantum
effects can also be expected for the proton in water, and steps toward modeling those
effects are discussed in [30] and [29]. There is a lot of interest in extending ideas
developed in fundamental studies of the proton in water to examine energetics and
pathways for proton motion through membrane proteins [66–70].

Summary

– Ab initio simulations of water using classical propagation generally lead to an
overstructured liquid compared with experiment.

– Deviations from experiment could be due to the neglect of quantum effects, over-
estimation of the flexibility of water in the liquid, deficiencies in the DFT func-
tionals, or lack of convergence in the computational methods.

– Treating water as a rigid molecule in ab initio simulations leads to a destructuring
of the fluid relative to classical flexible water.

– The radial distribution functions in ab initio simulations agree with experiment
if the temperature is raised by roughly 50 K, consistent with results from the
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TIP5P(PIMC) force field model. This implies that quantum effects are nonneg-
ligible.

– A quasichemical theory, using ab initio simulation (rPBE functional) to generate
data for the computation of the various contributions to the free energy, yields an
estimate for the excess chemical potential of water very close to the experimental
value.

11.11.4 Enzyme Kinetics and Proton Transport

Most of the discussion in this chapter has concerned equilibrium quantities, free
energies in particular. How might the methods discussed here apply to kinetic pheno-
mena? An area with significant current interest is the utilization of quantum methods
to study the kinetics of enzyme reactions [31, 32]. The underlying theory typically
employed is TST. In TST it is assumed that there is a local equilibrium along the
path linking the reactants and the transition state. The central quantities in TST are
the free energy of activation and the transmission coefficient. The methods discussed
in this chapter are directly applicable to computing the free energies of activation in
complex systems. The PDT allows a local definition of the free energy which can
be followed along the progression of the reaction. Thus, in principle the free energy
profile can be calculated from reactants to the transition state, or rather the ensemble
of transition states.

Extensive theoretical work has been directed at understanding nuclear quantum
effects on enzyme kinetics. These quantum effects enter in two ways. First, there can
be a change in the system zero-point energy between the reactants and the transi-
tion state. Second, there can be tunneling effects which show up in the transmission
coefficient and in the activation free energy. The Feynman–Hibbs models at least
approximately account for both of these effects: the effective potential is raised in
regions where the force constant is positive (potential minima) and lowered near
transition states (potential maxima). If the quantum effects are large, then path inte-
gral methods can be implemented to compute more-accurate free energies along the
reaction coordinate.

As an example, consider an early calculation of isotope effects on enzyme kine-
tics by Hwang and Warshel [31]. This study examines isotope effects on the catalytic
reaction of carbonic anhydrase. The expected rate-limiting step is a proton transfer
reaction from a zinc-bound water molecule to a neighboring water. The TST expres-
sion for the rate constant k is

k = F
kBT

h
exp(−β∆g‡) , (11.48)

where F is the transmission factor and ∆g‡ is the free energy of activation. As dis-
cussed above, the free energy of activation is calculated as a difference between the
reactant and transition states, and can be viewed as the difference of local excess
chemical potentials with the particle centroid situated at those two locations. The
major contributor to the quantum effects in proton transfer comes through the Boltz-
mann factor of the free energy change. The next step in the method of Hwang and
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Warshel is to utilize a formula identical to (11.22) in this chapter to compute the free
energy change. They employed an empirical valence bond (EVB, below) approach
to approximately model electronic effects, and the calculations included the full ex-
perimental structure of carbonic anhydrase. An H/D isotope effect of 3.9 ± 1.0 was
obtained in the calculation, which compared favorably with the experimental value
of 3.8. This benchmark calculation gives optimism that quantum effects on free en-
ergies can be realistically modeled for complex biochemical systems.

Finally, enzyme reactions involve the making and breaking of chemical bonds.
Another important physical problem involving chemical changes is proton transport
in water or through membrane proteins. Classical force fields are questionable for
these systems;9 a second level of quantum treatment is then suggested in treating
the electron density changes accompanying chemical transformations. Several
approaches have been taken in modeling bond making and breaking: (1) empiri-
cal valence bond (EVB), (2) quantum mechanics/molecular mechanics (QM/MM),
and (3) ab initio simulation methods. These three strategies are listed in order of ex-
pected increasing chemical accuracy (and thus computational cost). Calculating free
energies requires substantial statistical averaging. The QM/MM and ab initio meth-
ods, especially the latter, are quite computationally costly even considering modern
parallel architectures. For example, a typical ab initio molecular dynamics study at
the present time simulates tens of molecules for tens of ps [71]. Thus, the ab initio
simulation methods are not a practical option for modeling proton transport across a
membrane channel.

In the EVB method pioneered by Warshel et al. [31] and extended by others [67],
an empirical Hamiltonian is diagonalized in a basis of N states, which typically
correspond to particular molecular structures in the condensed phase. The potential
energy is given by the lowest eigenvalue of the Hamiltonian matrix. It is common in
simulations of the proton in water to use around 10 basis states. The off-diagonal
terms are parameterized to agree with higher-level calculations on structures for
which classical force fields fail. The instantaneous force is computed using the
Hellmann–Feynman theorem. Since each state corresponds to a distinct structure,
the relative free energies for various isomers (such as the Eigen and Zundel struc-
tures) can be obtained from their relative populations during the simulation [67].
These techniques have been used to study proton transport through model hydropho-
bic channels [67] and more-realistic models of channels [68, 72]. An interesting
observation in [67] is that the proton conduction speeds up considerably as the pore
radius decreases to create a single-file chain of waters.

The basic idea of the QM/MM methods [32, 33] is to partition the system into an
inner quantum zone, in which the interesting chemistry happens, and an outer classi-
cal force field region. While this division is physically sensible, it can be quite tricky
to handle the boundary between the two domains. If there is no covalent bond link-
ing the QM and MM regions, the partitioning is simpler. If the boundary cuts through
chemical bonds, however, the partitioning is more difficult. Several approaches have

9 Classical force fields [69] have been used to model proton transport, but their accuracy has
been questioned [68].
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been explored to handle the boundary. These have included link-atom and frozen-
orbital approaches. It is important to allow the two subsystems to respond to each
other via coupling terms in the Hamiltonian. The computational overhead can be
only on the order of a factor of two greater than the cost for the electronic structure
calculation on the QM region itself; typically that region may contain tens of atoms,
so it is quite feasible to expect simulation studies using the QM/MM approach to
begin to address problems such as proton motion through proteins in the near future.
The field is rapidly developing and cannot be properly reviewed here, but the reader
is referred to the above-referenced articles for technical details.

The QM/MM and ab initio methodologies have just begun to be applied to chal-
lenging problems involving ion channels [73] and proton motion through them [74].
Reference [73] utilizes Hartree–Fock and DFT calculations on the KcsA channel to
illustrate that classical force fields can fail to include polarization effects properly
due to the interaction of ions with the protein, and protein residues with each other.
Reference [74] employs a QM/MM technique developed in conjunction with Car–
Parrinello ab initio simulations [75] to model proton and hydroxide ion motion in
aquaporins. Due to the large system size, the time scale for these simulations was
relatively short (10 ps), but the influences of key residues and macrodipoles on the
short time motions of the ions could be examined.

We can expect to see future research directed at QM/MM and ab initio simula-
tion methods to handle these electronic structure effects coupled with path integral
or approximate quantum free energy methods to treat nuclear quantum effects.
These topics are broadly reviewed in [32]. Nuclear quantum effects for the proton
in water have already received some attention [30, 76, 77]. Utilizing the vari-
ous methods briefly described above (and other related approaches), free energy
calculations have been performed for a wide range of problems involving proton
motion [30, 67–69, 71, 72, 78–80].

Summary

– Methods similar to those discussed in this chapter have been applied to de-
termine free energies of activation in enzyme kinetics and quantum effects on
proton transport. They hold promise to be coupled with QM/MM and ab initio
simulations to compute accurate estimates of nulcear quantum effects on rate
constants in TST and proton transport rates through membranes.

11.12 Summary

The list of fluids which exhibit important quantum effects is not large. Getting back
to the original question of this chapter, it is clear that for liquids like helium and
hydrogen, a full quantum treatment is necessary. Liquids such as neon and water,
however, show modest quantum effects which can be modeled with approximate free
energy methods. The quantum correction to the free energy of water is roughly 10%
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– this magnitude is large enough to warrant inclusion in calculations of free energies.
As discussed in Sect. 11.1, there are experimentally observed isotope effects on the
solubilities of small nonpolar molecules and biomolecules, and protein stability.

The quasichemical calculations discussed above are a first major step toward
determining the relative magnitudes of the various factors contributing to the excess
chemical potential of water. The factors include packing effects, chemical contri-
butions from local interactions, electrostatics, van der Waals interactions, molec-
ular flexibility, electronic polarization, and quantum effects. Ab initio simulation
methods, although computationally challenging, remove many of the uncertainties
inherent in empirical force fields. It appears that rigid water models better repro-
duce experimental structural properties than flexible models, but the origin of this
observation is not entirely clear [40]. An alternative to the rigid model would be to
compute an intramolecular potential of mean force from the ground-state vibrational
wave function of water and include this potential during classical propagation; this
approach is consistent with the fact that it is easy to generate the exact intramolecular
partition function qint

α . Adding quantum effects for flexible water with path integral
calculations requires handling two very different energy-scale quantum effects on the
same footing. But the intermolecular quantum effects are modest, and in this chapter
we have discussed evidence that the QFH approach can handle those effects quite
well. Thus, it would be interesting to see free energy computations performed using
a combination of ab initio simulation along with the approximate quantum models.
Establishing quantitative conclusions concerning the factors contributing to the ex-
cess chemical potential of water is a major challenge for molecular fluid free energy
calculations. An even bigger challenge is extending the quantum mechanical meth-
ods discussed here to problems as complex as biomolecule solvation and enzyme
kinetics.

At a practical level, what is the current status of methods for studying quantum
effects on condensed-phase free energies? If the quantum effects are relatively large,
path integral methods are required. These techniques are mature, and the conver-
gence of the calculations with increasing numbers of quantum degrees of freedom
can easily be monitored. As long as an underlying classical interaction potential is
employed, the additional computational cost is directly proportional to the number
of variables needed to describe the paths. Thus, systems with hundreds of atoms can
be handled on single workstations. The combination of path integral simulation with
ab initio DFT methods is extremely challenging, however, so systems with only tens
of water molecules can be modeled for tens of ps. This is a frontier methods devel-
opment problem for the computer simulation of liquids. Progress will involve both
the further development of linear scaling algorithms for ab initio DFT and increased
computer power. Improvements in DFT potentials should proceed in parallel with
the development of more-efficient numerical methods.

The effective potentials described in this chapter, on the other hand, are suited to
relatively weak intermolecular quantum effects and require only a slight additional
computational overhead – more terms in the potential – relative to routine classical
simulations. Therefore, systems with tens of thousands of atoms can readily be mod-
eled. This makes possible the large-scale simulation of biomolecule solvation with
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the inclusion of quantum effects. If the intermolecular effective potentials ride atop
a classical10 ab initio DFT simulation the overall cost should be comparable to the
purely classical DFT modeling, but that approach has not been worked out yet.

To reiterate, a main obstacle to overcome is a useful partitioning of quantum
effects into intra- and intermolecular contributions during the ab initio simulation of
molecular fluids with minor quantum effects. Ab initio simulation of a liquid like
water is necessary to treat the complex charge redistribution effects and perhaps
chemical reactions which may occur in the condensed phase. And quantum effects
cannot be entirely neglected since they have a significant magnitude. Therefore,
development of new computational methods for this partitioning should open the
door to the quantitative modeling of aqueous solutions and their interactions with
biomolecules.
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Free Energy Calculations: Approximate Methods
for Biological Macromolecules

Thomas Simonson

12.1 Introduction

In this chapter we present the most important simplified free energy methods in use
today and the main biological problems that have motivated their development. The
area in which these methods are perhaps the most valuable is the study of molec-
ular recognition between biological molecules, such as an enzyme and a substrate
or inhibitor. Noncovalent association between biomolecules is a key element of
the biochemistry and information flow in living systems. Many competing effects
can contribute to receptor–ligand binding [1]: changes in rotational, translational,
conformational, and vibrational entropy of the partners, entropy changes associated
with solvent ordering around hydrophobic or charged groups, solute conformational
strain, changes in electrostatic and van der Waals interactions within and between the
partners and the solvent, counterion reorganization. Experimental studies often com-
bine structure determination methods with point mutagenesis and thermodynamic
measurements to obtain information on the binding [2]. However, there are consid-
erable difficulties in the experimental analysis of longer-range electrostatic contri-
butions, the cooperativity between amino acid residues of a protein, or disordered
solvent, for example. Such effects can be determined using rigorous free energy sim-
ulations, described in the earlier chapters of this book. They can also be incorporated,
at different levels of accuracy, into simplified free energy methods.

The basic principle of a receptor–ligand binding analysis by free energy simu-
lations is explained in Fig. 12.1 [3]. Most applications focus on binding free energy
differences between a series of ligands or protein mutants. For a review of the rele-
vant statistical thermodynamics see [1]. Like experiments, the rigorous free energy
simulation method requires a reversible (or near-reversible [4, 5]) path between the
initial and final states. The Helmholtz free energy change along the horizontal legs
in Fig. 12.1 can be obtained, for example, by a thermodynamic integration [6] (see
also Chap. 4)

∆A(0 → 1) =
∫ 1

0

dA

dλ
dλ =

∫ 1

0

〈
∂U

∂λ

〉
λ

dλ. (12.1)
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Fig. 12.1. Thermodynamic cycle for ligand binding. Solutes L and L’ in solution (below) and
bound to the receptor P (above). Vertical legs correspond to the binding reactions. Horizon-
tal legs correspond to the alchemical transformation of L into L’. The binding free energy
difference can be obtained from either route: ∆∆A = ∆A4 − ∆A3 = ∆A1 − ∆A2

U represents the energy function, which depends on λ, and the brackets represent an
average over the ensemble corresponding to U(λ). At either endpoint, λ = 0 or 1, the
energy function is that of the native or mutant state; intermediate values correspond
to ‘alchemical’ states (see Chap. 2). λ is referred to as a coupling parameter. The
double free energy difference ∆∆A (Fig. 12.1) can also be obtained from the vertical
legs of the cycle, which correspond to ‘chemical,’ i.e., binding reactions, but the
simulations are usually more difficult and costly [7–9]. For either choice of pathway,
molecular dynamics simulations are usually employed. We refer to this approach as
the MDFE (molecular dynamics free energy) method, bearing in mind that Monte
Carlo is sometimes used in place of MD.

The rigorous MDFE approach has two main drawbacks. First, it is a complex
technique (as illustrated by this book), so that significant expertise is needed, espe-
cially for applications to proteins. Second, the need to simulate intermediate points
along a complete pathway between any two systems of interest makes the method
computer-intensive. This is especially serious when one is interested in a large set of
ligands binding to a particular receptor, as is the case in a typical drug design project.
Therefore, a great deal of effort has been put into the development of more-efficient
techniques that can be more approximate, as long as they give enough accuracy to
allow the selection of a subset of ligands for further study, perhaps with a high-level
MDFE protocol. An extreme example of this strategy is the use of high-throughput
virtual screening, where thousands or millions of potential ligands are considered,
using a very fast and approximate ‘scoring’ function to evaluate receptor binding
[10]. Here, we focus on an intermediate area, closer to MDFE than to high-throughput
screening. The free energy difference between two systems is computed from one or
two simulations, such as simulations of a protein–ligand complex and of a ligand or
protein alone in solution (the two ends of the vertical legs in Fig. 12.1).
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We present and analyze the most important simplified free energy methods,
emphasizing their connection to more-rigorous methods and the underlying theo-
retical framework. The simplified methods can all be superficially defined by their
use of just one or two simulations to compare two systems, as opposed to many sim-
ulations along a complete connecting pathway. More importantly, the use of just one
or two simulations implies a common approximation of a near-linear response of the
system to a perturbation. Another important theme for simplified methods is the use,
in many cases, of an implicit description of solvent: usually a continuum dielectric
model, often supplemented by a simple description of hydrophobic effects [11].

To illustrate these methods, we consider the main biological problems that have
motivated their development. The problems that have received the most attention are
the receptor–ligand binding problem [12–16] and the calculation of proton binding
affinities (pKa shifts) [17–20]. The methods described can also be applied to many
related problems, such as redox protein behavior, protein–protein association, protein
folding, or membrane insertion.

We begin by recalling briefly the basic equations of free energy perturbation the-
ory, including approximate perturbation formulae and equations for ligand binding.
As an application, we describe several ‘single-step’ perturbation methods for ligand
binding. Next, we give a short review of linear response theory and its application
to proton binding. We discuss the physical basis of widely used implicit solvent
models, including models to describe hydrophobic effects and continuum electro-
static models. Then, as a first class of applications, we describe ‘linear interaction
methods,’ which have become popular for the receptor–ligand binding problem, and
which can be performed with either an explicit or an implicit solvent treatment. As
a second class of applications, we consider receptor–ligand binding studies with the
‘MM/PBSA’ method, which usually uses a dielectric continuum solvent. We describe
some recent protein–ligand binding studies. We analyze the calculation of pKa shifts
in some detail, as an important and illuminating example of the possibilities and
limitations of continuum electrostatic models.

12.2 Thermodynamic Perturbation Theory and Ligand Binding

12.2.1 Obtaining Thermodynamic Perturbation Formulas

Free energy calculations rely on a well-known thermodynamic perturbation theory
[6, 21, 22], which is recalled in Chap. 2. We consider a molecular system, described
by the potential energy function U(rN ), which depends on the coordinates of the
N atoms: rN = (r1, r2, . . . , rN ). The system could be a biomolecule in solution,
for example. We limit ourselves to a classical mechanical description, for simplicity.
Practical calculations always consider differences between two or more similar sys-
tems, such as a protein complexed with two different ligands. Therefore, we consider
a change in the system, such that the potential energy function becomes:

U ′ = U + V, (12.2)
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where V is a new, ‘perturbing,’ potential energy term. The corresponding Helmholtz
free energy change can be arranged to read [23, 24]

A′ − A = −kBT ln
〈

exp
(
− V

kBT

)〉
(12.3)

= 〈V 〉 − kBT ln
〈

exp
(
− ∆V

kBT

)〉
. (12.4)

The brackets on the right indicate an average over the ensemble of the starting sys-
tem, i.e., with Boltzmann weights exp(− U

kBT ), and ∆V = V − 〈V 〉. Expanding
in powers of δV/kBT gives free energy perturbation formulas. While higher-order
terms are difficult to calculate because of sampling problems, expansions to low
orders (one to four) are often more robust numerically than the original formula
(12.3), and are especially useful for treating many small perturbations of a single
reference system [25]. Since 〈e−δV/kBT 〉 has the form of a moment-generating func-
tion [26], the coefficients of the expansion involve the cumulants Cn of δV :

A′ − A = 〈V 〉 − kBT

∞∑
i=2

Cn

n!

(
−1
kBT

)n

. (12.5)

The cumulants [26] are simple functions of the moments of the probability distribu-
tion of δV : C2 = 〈(V −〈V 〉)2〉, C3 = 〈(V −〈V 〉)3〉, C4 = 〈(V −〈V 〉)4〉−3C2

2 , etc.
Truncation of the expansion at order two corresponds to a linear-response approxi-
mation (see later), and is equivalent to assuming V is Gaussian (with zero moments
and cumulants beyond order two). To this order, the mean and width of the distribu-
tion determine the free energy; to higher orders, the detailed shape of the distribution
contributes.

12.2.2 Ligand Binding: General Framework

The study of receptor–ligand binding is one of the most important applications of free
energy simulations [1]. To approach this problem theoretically, one must first parti-
tion the conformational space into bound and unbound states. There is no unique way
to do this, but in practical situations there is often a natural choice. The equilibrium
binding constant is

Kb =
cRL

cRcL
, (12.6)

where cR, cL, and cRL are the concentrations (or number densities) of receptor,
ligand, and complex, and Kb has units of volume. The chemical potential of each
species in solution is [1, 23]

µS = kBT ln
cS

co
− kBT ln

ZS

Z0V co
, (12.7)
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where S = RL, R, or L; co is the standard state concentration, V the volume of the
system, ZS the partition function of S in solution, and Z0 the partition function of
the solution without S. The condition for equilibrium is

−kBT ln Kbρ
o = ∆So

b , (12.8)

where ∆Ao
b = µo

RL − µo
R − µo

L is the standard binding free energy – the free energy
to bring two single molecules R and L together to form a complex RL when the
concentrations of all species are fixed at co.

To relate the standard binding free energy to free energies that can be obtained
from simulations, we use

∆Ao
b = −kBT ln

ZRLZ0V ρo

ZRZL
= −kBT ln

QRLQ0V ρo

QRQL

= −kBT ln
QRLρo

QRQL0/V
+ kBT ln

QL

QL0Q0
, (12.9)

where the second equality takes into account a cancelation of the velocity partition
functions and QL0 is the configuration integral of the ligand alone (i.e., in the gas
phase). The second term in (12.9) is the free energy to ‘annihilate’ L in solution,
i.e., the free energy to reversibly turn off its interactions with the surrounding
solution, effectively transferring it to the gas phase. The first term is the free energy to
‘annihilate’ the ligand in the binding site, with its center of mass fixed [27, 28]. The
standard concentration ρo appears explicitly here. This free energy takes the form of
an average over all positions in the active site (see [28]).

Many applications are only concerned with binding free energy differences.
Comparing the binding of two ligands, L and L’, to the receptor R, we have

∆∆Ao
b(L,L′) = ∆Ao

b(RL′)−∆Ao
b(RL) = −kBT ln

ZRL′

ZRL
+kBT ln

ZL′

ZL
. (12.10)

Thus, the standard state concentration cancels from the double free energy difference.
The calculation can be done by mutating L to L’ both in the complex and in solution
(the horizontal legs of Fig. 12.1).

12.2.3 Applications of Thermodynamic Perturbation Formulas

Ligand Binding

In the early days of protein free energy calculations, computational efficiency was
extremely important. Thermodynamic perturbation formulas were viewed as a prom-
ising route toward time-saving schemes, because free energy differences could be
obtained (in principle) from a single simulation of a reference system (12.3). For
example, one of the earliest ligand binding free energy studies considered two small
molecule inhibitors binding to trypsin: benzamidine and parafluorobenzamidine [29].
The difference in binding free energies was obtained by transforming one ligand
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into the other, in solution and in complex with the protein. Only simulations of
the reference systems, benzamidine and the benzamidine:trypsin complex, were per-
formed. The perturbation corresponds to changing the parahydrogen in the benzami-
dine ring into a fluorine. This is accomplished by specific changes in a few force-field
parameters, reflected in a perturbing term V in the energy function. The Zwanzig per-
turbation formula (12.3) was applied, giving a result in reasonable agreement with
experiment for this small chemical change.

Systematic Sensitivity Analysis

This idea can be expanded on, using a single simulation of the reference molecule
to explore many perturbations at once. For example, one could explore many small
modifications of a lead molecule in a drug design project. The information obtained
can then be used to guide further simulations. One implementation of this idea is a
standard engineering technique known as ‘systematic sensitivity analysis’ [15, 30].
A protein–ligand complex is simulated, and the derivatives of the free energy are
computed with respect to parameters of interest, such as individual atomic charges
or van der Waals radii. The key parameters that determine the binding free energy
are thus identified, and used to guide the design of improved ligands. The coupling
between system parameters is also of interest. For example, for protein–ligand in-
teractions, one would like to identify groups on the protein and ligand that interact
favorably. These can be characterized by appropriate second derivatives of the free
energy, ∂2A/∂λiλj , where λi and λj are force field parameters (charges, radii)
corresponding to two atoms i and j. The derivatives are easily calculated

∂A

∂λ
=
〈

∂U

∂λ

〉
λ

(12.11)

∂2A

∂λi∂λj
(λ1, λ2, ...) =

〈
∂2U(rN ; λ1, λ2, . . . )

∂λi∂λj

〉
λ1,λ2,...

(12.12)

− 1

kBT

[〈
∂U

∂λi

∂U

∂λj

〉
λ1,λ2,...

−
〈

∂U

∂λi

〉
λ1,λ2,...

〈
∂U

∂λj

〉
λ1,λ2,...

]
.

In these equations, the λi play the role of coupling parameters.

Single-Step Perturbations to Multiple Ligands

The same technique can be used in some cases to obtain accurate estimates of bind-
ing free energy differences for a set of ligands of interest [25, 31–34]. The molecule
taken as the reference need not be a real molecule. Indeed, the reference molecule
could be ‘intermediate’ between a large set of molecules of interest, so that confor-
mations that are sufficiently representative of them all are sampled in the reference
simulation. The justification for this approach is discussed in detail in Chap. 6. To
achieve this for a variety of substituted phenols, Liu et al. [25] added dummy atoms
to the ring at the sites they wished to substitute. Such dummy atoms can be ‘softer’
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than the real substituents one wants to consider, as if the substituents were ‘half
present.’ Indeed, the free energy to introduce a new particle or delete an existing
one is a sharply varying function, and it is difficult to do an ‘all-to-nothing’ extra-
polation. Suppose the substituent is removed by applying a coupling parameter λ

to a substituent–solvent van der Waals interaction energy: u(r) = λε(σ12

r12 − σ6

r6 ),
and letting λ go to zero. Using diagram techniques from liquid theory, one can show
that the free energy derivative scales as λ−3/4 when λ → 0, while the free energy
scales as λ1/4 [35, 36]. To avoid the resulting singularity and facilitate the introduc-
tion/removal of a large variety of substituents, Liu et al. used soft-core van der Waals
potentials for selected atoms

U(rij) = εij

(
σ12

ij

(r6
ij + ασ6

ij)2
−

σ6
ij

r6
ij + ασ6

ij

)
. (12.13)

Here, rij is the distance between a softened atom i on the reference molecule and
another atom j; εij and σij are the van der Waals interaction parameters for this pair,
and α is a parameter that softens the potential and prevents it from going to infinity at
very short distances. Recently, the method was applied to polychlorinated biphenyls
(PCBs) binding to the estrogen receptor [33, 34], and to protein-kinase inhibitors
[37]. The method can yield reasonable qualitative results when functional groups
up to about three atoms are deleted [38]. For larger transformations, the sampling
problems associated with creating or annihilating atoms become too large.

λ-Dynamics

A further extension is to allow the reference molecule to wander freely within a pre-
defined chemical space, and change spontaneously in whichever direction it prefers.
This idea has been implemented by simulating many potential ligands simultane-
ously. Each ligand i is associated with its own coupling parameter or weight, λi, and
with a term λiUi in the energy function. The coupling parameters are included in
the simulation as coordinates participating in the molecular dynamics, with artificial
masses, akin to ‘pseudoparticles’ [39, 40]. Because of this, the method has been
referred to as λ-dynamics. The different weights obey

∑
i λi = 1. As the sys-

tem evolves, the weights tend to adjust spontaneously in such a way that the most
favorable ligand has the largest weight. Alternatively, the ligands can be made equi-
probable by incorporating their free energies Ai into the energy function: each term
λiUi is replaced by λi(Ui − Ai). Ai is not known ahead of time, but can be deter-
mined iteratively [39]. This provides a new route to determine the relative solvation
or binding free energies of two or more ligands, which was found to be more effi-
cient than traditional thermodynamic perturbation or integration approaches in appli-
cations to simple systems. The variation of the λi with time implies that the system
is never truly at equilibrium; to limit this effect, sufficient pseudomasses are needed
for the λi.

As an example, consider a solution mixture of two molecules, 1 and 2. The
system is described by the hybrid potential energy function:
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U = U0 + λU1 + (1 − λ)U2, (12.14)
where λ is a coupling parameter (treated as a coordinate with an associated
pseudo mass). U1 (respectively, U2) describes the interactions of molecule 1 (respec-
tively, 2) with the solvent; U0 describes solvent–solvent interactions. At equilibrium,
the mean weights of 1 and 2 can be interpreted as relative concentrations, which obey
the law of mass action [39, 40]

1 − 〈λ〉
〈λ〉 = exp(−A12/kBT ). (12.15)

A12 is the free energy to transform 1 into 2 in solution. If we replace the Ui by
(Ui − Ai), we effectively change the nature of the solutes so that the transformation
free energy A12 is now zero. The equilibrium value of 〈λ〉 is then seen to be 1/2: the
two solutes have the same average population.

Electrostatic Perturbations

Single-step perturbation methods have also been applied to electrostatic processes.
One study probed the dielectric properties of several proteins at a microscopic level
[41, 42]. Test charges were inserted at many different positions within or around each
protein, and a dielectric relaxation free energy was computed, which is related to a
microscopic dielectric susceptibility (see Sect. 12.3).

Other electrostatic processes studied include proton binding [43] and changing
the molecular charge distribution [44]. The free energy expansion formula (12.5) was
used, including terms up to second order

∆A = 〈V 〉 − 1
2kBT

〈(V − 〈V 〉)2〉. (12.16)

This second-order, linear response approximation gave good accuracy for comparing
the ground state and two excited states of tryptophan in solution [45]. The problem
of proton binding to proteins [43] is more difficult. Recent studies of several proteins
have shown that, for proton binding or electron binding, a second-order expansion
of the free energy can be fairly accurate, but the sampling in a typical simulation
is not sufficient to determine accurately the mean and especially the variance of V ,
which determine the expansion coefficients [46–48]. This makes it impossible to
extrapolate the free energy accurately. For quantitative estimates of proton binding
free energies, it is probably necessary in most cases to use simulations of two states,
at least; preferably the initial and final states for the transformation of interest. This
two-state, linear response approach is an important practical tool that is presented in
the next section.

12.3 Linear Response Theory and Free Energy Calculations

12.3.1 Linear Response Theory: The General Framework

The dielectric response of a solvated protein to a perturbing charge, such as a redox
electron or a titrating proton, is related to the equilibrium fluctuations of the unper-
turbed system through linear response theory [49, 50]. In the spirit of free energy
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simulations, let us gradually introduce a perturbing charge density ρp, with the help
of a coupling parameter λ that we vary gradually from zero to one. For a given value
of λ, the perturbing charge density is λρp. It contributes a term

∆U = λ

∫
ρ(r)ρp(r′)
|r − r′| drdr′ (12.17)

to the Hamiltonian, where ρ represents the charge density of the protein and solvent
(everything except the perturbing charge). In practice, the charge density will usually
be located on atoms, so that r and r′ will be atomic positions. This term can actu-
ally be rearranged into a more compact, vector form, which is better suited to our
discussion

∆U = −λ fp · P. (12.18)

Here, fp is the field due to ρp; P is a polarization density, which is related to the
electric field E produced by the remaining charge density ρ: E = −4πP. Finally,
a dot represents the dot product between functions,

∫
fp(r) · P(r) dr, where the

integration is over all space. We also introduce:

δP = P − 〈P〉0, (12.19)

where the brackets 〈〉0 indicate a Boltzmann average over the unperturbed system
(without ρp). This quantity is important, and justifies the effort to derive (12.18),
because its Boltzmann average 〈δP〉λ over the perturbed system represents the mean,
microscopic, density of polarization charge induced by the perturbing field λfp. This
is precisely the ‘response’ to the perturbation. From (12.18), (12.19) and the defi-
nition of the Boltzmann average, we can derive the relation between the response
and the perturbation. For example, consider the mean x component of δP at a given
position r in space. We have

〈δPx〉λ =
1

Qλ

∫
δPx exp(−βU0) exp(βλfp · P) drN . (12.20)

Here, Qλ is the configuration integral when the coupling parameter equals λ; rN

represents all the conformational degrees of freedom. To simplify the notations, we
have not made explicit the dependency of P and δPx, either on the position r or
on the instantaneous value of rN . (Remember that the dot product in the right-hand
exponential represents an integral over all space; see earlier.) Following the usual
linear response method [49, 50], we compute the right-hand expression to the first-
order with respect to δP. To this order, Qλ can be replaced by Q0 and P can be
replaced by δP (because 〈δPx〉0 is zero)

〈δPx〉λ ≈ 1
Q0

∫
δPx exp(−βU0)(1 + βλfp · δP) drN . (12.21)

The constant of unity in the parentheses on the right can be dropped. Expanding the
dot product on the right, we have



432 T. Simonson

〈δPx〉λ ≈ λβ
1

Q0

∫
drN exp(−βU0)δPx

∫
r′

(δPxfx + δPyfy + δPzfz)dr′

≈ λβ

∫
r

[〈δPx(r)δPx(r′)〉0fx(r′) + 〈δPx(r)δPy(r′)〉0fy(r′)

+〈δPx(r)δPz(r′)〉0fz(r′)] dr′. (12.22)

The spatial dependencies have been made explicit in the last equation. Finally, we
see that:

〈δP〉λ = λα f (1 + O(β∆U)) (12.23)

α(ri, r′j) = β〈δP (r)iδP (r′)j〉0 (12.24)

where O(··) represents quantities of first order or more in β∆U and i, j represent
cartesian components x, y, or z. The matrix quantity α is the dielectric susceptibil-
ity [51], which completely characterizes the response of the system to the pertur-
bation. Importantly, it does not depend on λ. We see that to lowest order in β∆U ,
the response scales linearly with the perturbing field. These last equations have the
classic form of linear response theory:

– The response appears as a linear function of the perturbation (12.23)
– The relation involves a susceptibility operator α
– α is determined by the fluctuations of the unperturbed system (12.24). Equation

(12.24) is an example of the fluctuation–dissipation theorem [49, 51].

To the same order in β∆U , the free energy A(λ) is parabolic

∂A

∂λ
=
〈

∂∆U

∂λ

〉
λ

= −f · 〈P〉λ = −f · 〈P〉0 − λf · α f (1 + O(β∆U)) (12.25)

A(λ) − A(0) = −λf · 〈P〉0 −
λ2

2
f · α f (1 + O′(β∆H)) (12.26)

= 〈∆U〉0 −
β

2
(〈∆U2〉0 − 〈∆U〉20)(1 + O′(β∆U)). (12.27)

The last equation is the beginning of the well-known expansion of the free energy
into its cumulants (12.5). Equations (12.17)–(12.27) are exact within classical statis-
tical mechanics. A parabolic free energy (i.e., a negligible O′(β∆U) in (12.26)–
(12.27) implies that cumulants of ∆U of order > 2 sum to zero, i.e., ∆U has
Gaussian fluctuations, and also that 〈δP〉λ in (12.23) is linear. The reverse is
obviously true, so that a parabolic free energy, a Gaussian ∆U , and the linearity
of 〈δP〉λ are seen to be equivalent properties, accurate to the same order in β∆U .

If ∆U(1) has Gaussian fluctuations, this means that the free energy is also a
parabolic function of ∆U(1) itself. ∆U(1) is known as the energy gap [52–54]; we
will denote it by η

η
def= ∆U(1). (12.28)
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The energy gap is the energy difference between the reactant and product states for
a given instantaneous conformation of the system; i.e., it is the energy change (not
the free energy change) associated with introducing a ‘virtual’ charge density ρp.
The free energy curves A0(η) and A1(η), corresponding to the reactant and product
states, respectively, are known in electron transfer theory as the ‘diabatic’ free energy
curves. It is easy to show [52] that they have the same curvature, and that their in-
tersection occurs exactly at the point η = 0. Fig. 12.2 illustrates the linear response
of a protein–solvent medium in the case of a purely electrostatic perturbation. In this
figure are shown recent simulation data for electron transfer to cytochrome c in solu-
tion [47]. The free energy derivative ∂A/∂λ is shown in the top panel. Evidently, this
system responds to the redox electron as a linear medium. The diabatic free energy
curves are shown in the bottom panel as a function of η.

The concept of the energy gap suggests a natural decomposition of the reaction
free energy, introduced by Marcus in the development of electron transfer theory
[54, 55]. We will see later that it leads to a practical method for pKa calculations.
It is illustrated in Fig. 12.2 (bottom panel). The idea is to introduce the perturbation
in two steps, corresponding to two distinct free energy components. The first, static
component ∆Astat corresponds to the vertical arrow in the figure: introducing the
perturbing charge with the system constrained to stay in its unperturbed structure.
For electron transfer, this step corresponds to the electron hopping event, which is so
fast that the environment does not have time to adjust. In a second step, the constraint
is gradually released, yielding a relaxation, or reorganization free energy ∆Arlx. We
have the relations

∆Astat = 〈η〉0 = −f · 〈P〉0, (12.29)

∆Arlx = −1
2
f · 〈δP〉λ = −1

2
f · α f (1 + O′(βη)) (12.30)

= −β

2
Variance(η) (1 + O′(βη)). (12.31)

If the medium is linear, the reactant and product state parabolas have the same cur-
vature. In that case, one can show that the free energies to impose the constraints
at the beginning and to remove them later exactly cancel, and we obtain the useful
relations [56–58] ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∆A = ∆Astat + ∆Arlx

∆A =
〈η〉0 + 〈η〉1

2

∆Arlx =
〈η〉1 − 〈η〉0

2
.

(12.32)

The subscripts ‘0’ and ‘1’ refer to the endpoints of the reaction, where λ = 0 or 1,
respectively. The relaxation 〈η〉1 − 〈η〉0 of the energy gap due to the perturbation
is determined (12.31) by its fluctuations in the absence of the perturbation: another
example of a fluctuation–dissipation relation.
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Fig. 12.2. Free energy data for electron transfer between the protein cytochrome c and
the small acceptor microperoxidase-8 (MP8), from recent simulations [47]. Top: Gibbs free
energy derivative ∂G

∂λ
versus the coupling parameter λ. The data correspond to solvated

cytochrome c; the MP8 contribution is not shown (adapted from [47]) Bottom: the Marcus
diabatic free energy curves. The simulation data correspond to cyt c and MP8, infinitely
separated in aqueous solution. The curves intersect at η = 0, as they should. The reaction
free energy is decomposed into a static and relaxation component, using the two steps shown
by arrows: a static, vertical step, then relaxation into the product state. All free energies in
kcal mol−1. Adapted with permission from reference [88]

12.3.2 Linear Response Theory: Application to Proton Binding and pKa Shifts

We now turn to the problem of proton binding to proteins, an important area for sim-
plified free energy methods. The linear response formalism earlier underlies most of
the methods used today. It leads directly to one of the more useful practical methods,
the so-called ‘LRA,’ or linear response approximation method [59], presented here.
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Proton binding is usually modeled as a purely electrostatic process, where the atomic
charges of a protein side chain are modified to represent the binding proton [60]. We
assume for now that a single perturbing point charge, q = +e, is added to a single
side-chain atom, and we focus on the corresponding free energy change ∆A. Further
on, we will go into the practical details of a more realistic implementation.

The idea is to do simulations of the system before and after the proton binding;
i.e., to simulate the reactant and product states. With the assumption of linear
response, these provide all the information needed to compute ∆A. Indeed, the free
energy to introduce a fractional charge λq into the reactant state (0 ≤ λ ≤ 1) is a
parabolic function of λq, which can be written:

∆Aλ = λq∆Areac
stat + λ2q2∆Areac

rlx . (12.33)

The subscripts have the same meaning as in (12.29), (12.30). Indeed, (12.29), (12.30)
show that in the parabolic free energy function, the static free energy is the linear
term with respect to λq, while the relaxation free energy is the quadratic term. Thus,
∆Areac

stat and ∆Areac
rlx are, respectively, the static and the relaxation free energies to

insert a unit charge into the reactant state.
The charging process can be completed by inserting the charge −(1 − λ)q into

the ‘product state’ at the same site. The corresponding free energy change can be
written, with analogous notations

∆A′
λ = −(1 − λ)q∆Aprod

stat + (1 − λ)2q2∆Aprod
rlx . (12.34)

We have seen that the free energy curves for the reactant and product states have
the same curvature, so that the relaxation free energy is the same in the reactant and
product states: ∆Aprod

rlx = ∆Areac
rlx . This equality reflects the fact that the dielectric

susceptibility α (12.24) does not depend on the perturbing field or charge, and is the
same in the reactant and product states. We then obtain

∆A = ∆Aλ + ∆A′
λ = qλ∆Areac

stat + q(1− λ)∆Aprod
stat + (2λ− 1)∆Areac

rlx . (12.35)

Taking λ = 1/2, for example, gives back (12.32)

∆A =
q

2
(∆Areac

stat + ∆Aprod
stat ) (12.36)

Requiring that ∆A be independent of λ (as it should be) gives back (12.32). From
(12.29) and (12.17), the static free energies can be written

∆Areac
stat = q〈V 〉0 (12.37)

∆Aprod
stat = q〈V 〉1, (12.38)

where V is the electrostatic potential at the charge insertion site and the brackets 〈〉0
(respectively, 〈〉1) represent a Boltzmann average in the absence (presence) of the
perturbation. In practice, these average potentials are obtained from an MD or MC
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simulation of the reactant and product states. An even simpler relation holds for the
midpoint state, where one half of the perturbing charge has been inserted

∆A = ∆Amidpoint
stat . (12.39)

So far, we have considered a single perturbing point charge q. In a more realistic
treatment, the proton that binds is modeled, not as a single perturbing charge but as
a set of incremental charge shifts, {∆qi}, that are inserted onto selected side-chain
atoms. Equation (12.36) is replaced by the more general form

∆A =
1
2

∑
i∈A

∆qi(〈V reac
i 〉0 + 〈V prod

i 〉1). (12.40)

Here, the subscript i refers to a side-chain atom and the sum is over the side chain, A,
of interest. These charge shifts will normally correspond to the differences between
the atomic partial charges for the neutral and ionized forms of the side chain of
interest in a particular force field.

Equations (12.36) and (12.40) are the basis of the LRA method for calculating
pKa shifts [59]. Indeed, to obtain the pKa shift due to the protein environment, we
perform the same calculation for the protein and for a small molecule in solution,
analogous to the side chain of interest. For a histidine side chain, for example, one
would choose imidazole or methylimidazole in solution as a model compound. The
pKa shift due to the protein environment will then have the form:

pKa,prod − pKa,model =
1

2.303kBT
(∆Aprod − ∆Amodel), (12.41)

where the subscripts, prod, model, refer to properties computed for the protein envi-
ronment and the model compound in solution, respectively. If the pKa of the model
compound is known experimentally, we can obtain the pKa in the protein.

12.4 Potential of Mean Force and Simplified Solvent Treatments

12.4.1 The Concept of Potential of Mean Force (PMF)

A key element of many simplified free energy methods is the use of an implicit
description of the solvent. Implicit solvent models are based on the concept of a
PMF, presented briefly in this section; see [11] for a detailed review; see Chap. 4 for
applications of the PMF concept that are not related to implicit solvation.

We consider a biological macromolecule in solution. Let X and Y represent
the degrees of freedom of the solute (biomolecule) and solvent, respectively, and let
U(X,Y) be the potential energy function. The thermal properties of the system are
averages over a Boltzmann distribution P (X,Y) that depends on both X and Y.
To obtain a reduced description in terms of the solute only, the solvent degrees of
freedom must be integrated out. The reduced probability distribution P is
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P (X) =
∫

dY P (X,Y)

= e−U(X,Y)/kBT∫
dXdY e−U(X,Y)/kBT

def= e−W (X)/kBT∫
dX e−W (X)/kBT

.

(12.42)

The function W (X) is called the PMF; it was first introduced by Kirkwood to
describe the structure of liquids [61]. It plays the role of a free energy surface for
the solute. Notice that the dynamics of the solute on the free energy surface W (X)
do not correspond to the true dynamics. Rather, an MD simulation on W (X) should
be viewed as a method to sample conformational space and to obtain equilibrium,
thermally averaged properties.

To construct an approximate PMF, we make the reasonable assumption that the
potential energy has the form

U(X,Y) = UUU (X) + UUV (X,Y) + UV V (Y), (12.43)

where the first term represents solute–solute interactions, the second, solute–solvent
interactions, and the third, solvent–solvent interactions. This form is used in many
molecular mechanics force fields for biomolecular simulations. From (12.42), the
PMF then splits into two terms

W (X) = UUU (X) + ∆W (X) (12.44)

with

e−∆W (X)/kBT =
∫

e−UUV (X,Y)/kBT e−UV V (Y)/kBT dY. (12.45)

Multiplying and dividing on the right by e−UUU (X)/kBT , we see that

e−∆W (X)/kBT = 〈e−UUV (X,Y)/kBT 〉X. (12.46)

This is precisely the Zwanzig perturbation free energy formula (12.4), with UUV as
the perturbation. Thus, ∆W (X) turns out to be the free energy to ‘turn on’ the inter-
actions between the solute (biomolecule) and the solvent (water). Equivalently, it is
the free energy to transfer the solute from the gas phase into solution, i.e., ∆W (X) is
the solvation free energy of the solute, artificially maintained in the conformation X.

We assume, furthermore, that the solute–solvent coupling has a ‘nonpolar’ com-
ponent, Unp

UV , and an electrostatic component, U elec
UV . Indeed, solute–solvent forces

are dominated by short-range, repulsive interactions arising from Pauli’s exclu-
sion principle and long-range electrostatic interactions, arising from the nonuniform
charge distribution. Attractive, dispersion interactions arising from electron corre-
lation are weaker (except for purely nonpolar solutes or solvents, such as saturated
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alkanes). In a molecular mechanics context, the Pauli and dispersion contributions
would be represented by Lennard-Jones interactions and the longer-range electro-
static contributions would be represented by Coulomb interactions between partial
charges on the solute and solvent particles.

The free energy W (X) can then be computed in two steps. In the first, we
reversibly introduce the nonpolar coupling, Unp

UV . In the second, we introduce the
electrostatic coupling. This leads to

W (X) = UUU (X) + ∆W (X) = UUU (X) + ∆W np(X) + ∆W elec(X) (12.47)

with

e−∆Wnp(X)/kBT =

∫
dY e−[UV V (Y)+Unp

UV
(X,Y)]/kBT

∫
dY e−UV V (Y)/kBT

(12.48)

e−∆W elec(X)/kBT =

∫
dY e−[UV V (Y)+Unp

UV
(X,Y)+Uelec

UV (X,Y)]/kBT

∫
dY e−[UV V (Y)++Unp

UV
(X,Y)]/kBT

. (12.49)

The first step corresponds to the formation of a Lennard-Jones cavity with the shape
of the solute; the charges are included in the second step. This free energy decompo-
sition is, of course, path dependent: different (divergent) results would be obtained if
the electrostatic coupling were included first.

To exploit the concept of PMF to represent solvent in free energy calculations,
practical approximations must be constructed. A common approach is to treat the two
components ∆W np(X) and ∆W elec(X) separately. Approximations for the non-
polar term are usually derived from geometric considerations, as in scaled particle
theory, for example [62]. The electrostatic contribution is usually derived from con-
tinuum electrostatics. We consider these two contributions in turn.

12.4.2 The Nonpolar Contribution to the Potential of Mean Force

We begin by considering a spherical particle in water. We introduce the solute–
solvent interactions gradually, through a coupling parameter λ that varies from zero
to one

U(λ) = λUnp
UV (X,Y) + UV V (Y). (12.50)

We assume for simplicity that the solvent is pure water, and that only the water–
oxygen atoms have explicit Lennard-Jones interactions with the solute (this is typical
of several common water models). We have seen that ∆W np can be viewed as the
free energy to change λ from zero to one. Therefore, a well-known thermodynamic
integration formula gives

∂W np

∂λ
(λ) =

〈
Unp

UV

∂λ

〉
λ

=
∫

Unp
UV e−UV V (Y)/kBT dY. (12.51)
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Due to the spherical symmetry of the system around the solute, this can be rewritten
[63]

∂W np

∂λ
(λ) =

∫ ∞

0

4πr2〈ρ(r)〉λunp(r) dr, (12.52)

where 〈ρ(r)〉λ is the mean number density of water oxygen atoms at a distance r from
the solute for a given value of λ and unp represents the interaction energy between
the solute and a single water oxygen. The functions in the integral are plotted in Fig.
12.3 for the case of an argon particle in liquid water. For intermediate values of λ,
0 < λ < 1, the water density falls to zero inside the solute, while unp is dominated
by strong solute–solvent repulsive interactions at short range. The result is a product
that has a peak close to the solute surface (thick lines in Fig. 12.3). This property
is used to obtain approximate forms of the nonpolar contribution to the free energy
solvation in ‘scaled-particle theory’ (SPT) [62, 64, 65] and ‘solvent-exposed surface
area’ models [66], described next.

Scaled Particle Theory

A simple approach was proposed by Reiss et al. [62], Stillinger [64], and others [65]
to describe the free energy of inserting a nonpolar repulsive sphere into a solvent. The
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Fig. 12.3. Mutation of argon into the larger xenon or the smaller neon in aqueous solution. The
mutation consists in changing the van der Waals parameters of the solute from those of argon to
those of xenon or neon. The perturbing energy term is δV = UvdW(xenon)−UvdW(argon),
the difference between the solute–solvent interaction calculated with the argon and xenon van
der Waals parameters; similarly for neon (δV ′). The vertical lines indicate the van der Waals
radius of argon, xenon, and neon (3.29, 3.57, and 3.10 Å). The mean density ρ of water at
a distance r from the solute is shown (black dots; arbitrary units), as well as δV and δV ′.
Integrating the product r2ρδV (respectively, r2ρδV ′) gives the free energy to expand the
solute into xenon (respectively, to shrink it to neon). These functions are shown as thick black
curves. They represent the radial density of free energy for each transformation (expansion,
shrinkage), seen to be concentrated close to the solute surface
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approach is called ‘scaled particle theory’ (SPT) because it is based on arguments
involving the scaling of the repulsive sphere radius. The reversible work W (R) to
produce a spherical cavity of radius R can be calculated exactly for a hard-sphere
liquid of bulk density ρ̄ as long as 2R ≤ a, the hard sphere diameter

W (R) = −kBT ln
(

1 − 4
3
πR3ρ̄

)
. (12.53)

For a nonpolar solute in liquid water, a is assigned a value of 2.75 Å, corresponding
to the distance of closest contact in the oxygen–oxygen radial distribution function
of liquid water [64]. For a soft-sphere solute interacting with the solvent through
u(r) = λAr−n, R is an equivalent hard-sphere radius related to the second virial
coefficient. Generalizations to van der Waals and associated liquids have been made
by introducing experimental densities and virial coefficients.

In the limit of a large cavity or solute particle, thermodynamic considerations [67]
lead to

W (R) =
4
3
πR3p + 4πR2γv

(
1 − 4δ

R

)
+ . . . , (12.54)

where p is the pressure, γv the surface tension of the solvent, and δ is a molecular
length scale. This expression implies that the microscopic surface tension coefficient
depends on the radius of curvature, i.e., γ(R) = γv(1− 4δ/R). For water, Stillinger
estimated that δ is approximately equal to 0.5 Å [64]. In the intermediate R range,
2R ≥ a, W (R) can be expanded in powers of R; the first three expansion coeffi-
cients are obtained by matching the function and its first two derivatives, given at
R = a by (12.53). The third derivative is discontinuous at R = a and cannot be
used in this way. However, from (12.54), the R3 term is likely to be negligible, and
in any case, volume and surface area will often be correlated in practice, so that the
R3 term can be included in the surface term. Thus, the expansion effectively has the
same form as (12.54) to third order, and can be considered an extension of the surface
tension concept to molecular dimensions. In practice, the pV -like term is expected
to be negligible. SPT has been compared with results from molecular dynamics sim-
ulations and free energy perturbation calculations for nonpolar rare gases [68, 69].
More recently, cavity formation in aqueous and nonaqueous solvents has been stud-
ied extensively by molecular dynamics simulations [70], and simulations combined
with information theory [71]; see Pratt and Pohorille [72] for an extensive review.

Solvent-Exposed Area

SPT provides a conceptual basis relating the nonpolar free energy contribution to
the solvent-exposed surface area. An attractive approximation is to ignore curvature
effects and write

∆W (np)(X) = γvAtot(X). (12.55)

This description of the nonpolar contribution to the free energy has been extensively
used in biophysical applications [72–75]. In practice, the surface tension γv is usu-
ally obtained from experimental transfer free energies of small organic molecules
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between different solvents. The limitations of the surface area model are illustrated
by vapor-to-water transfer free energies of saturated alkanes in Fig. 12.4 (from [74]).
Proportionality of the solvation free energy to solute area is good for linear alkanes,
but poor for saturated cyclic alkanes. The proportionality coefficient, or ‘surface ten-
sion,’ for linear alkanes is about 6 cal mol Å−2 for vapor-to-water transfer (Fig. 12.4)
and 25 cal mol Å−2 for cyclohexane-to-water transfer.

Recent work revealed that the poor correlation between alkane surface areas and
solvation free energies (Fig. 12.4) is due to the attractive solute–solvent dispersion
interactions [76]. Indeed, for solutes of the same size that interact with solvent
through a purely repulsive potential, u(r) = A/r12, the solvation free energy is a
nearly linear function of solute area. The solute–solvent dispersion energy, on the
other hand, is much more dependent on the specific compound. Interestingly, intro-
ducing the dispersion interactions after the solute cavity is formed has a small effect
on the solvent structure, and is an almost purely enthalpic process, contributing little
to the solvation entropy. These data suggest [76] that the cavity term can be accu-
rately described by a simple surface area term, whereas the dispersion contribution
requires a term with a more complicated functional form.

12.4.3 Classical Continuum Electrostatics

Continuum electrostatics approximations in which the solvent is represented as a fea-
tureless dielectric medium are an increasingly popular approach for the electrostatic
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Fig. 12.4. Vapor-to-water transfer data for saturated hydrocarbons as a function of
accessible surface area, from [131]. Standard states are 1 M ideal gas and solution
phases. Linear alkanes (small dots) are labeled by the number of carbons. Cyclic com-
pounds (large dots) are: a = cyclooctane, b = cycloheptane, c = cyclopentane, d = cyclohexane,
e = methylcyclopentane, f = methylcyclohexane, g = cis-1,2-dimethylcyclohexane. Branched
compounds (circles) are: h = isobutane, i = neopentane, j = isopentane, k = neohexane,
l = isohexane, m = 3-methylpentane, n = 2,4-dimethylpentane, o = isooctane, p = 2,2,5-tri-
methylhexane. Adapted with permission from [74]. Copyright 1994, American Chemical
Society
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term in the PMF [11, 20, 77]. Lattice models of the solvent provide an alternative
approach, extensively developed by Warshel and coworkers [77]; in practice, they
contain similar, though not identical physics. The history of continuum electrostatic
treatments in chemistry goes back to Born [78], Kirkwood [79], and Onsager [80].
These approaches are surprisingly successful in reproducing the electrostatic contri-
bution to the solvation free energy of small solutes [73, 74, 77, 81, 82]. Continuum
electrostatic approximations are based upon the Poisson equation for macroscopic
media [83, 84]

∇ · [ε(r)∇V(r)] = −4πρu(r), (12.56)

where V (r) is the electrostatic potential at a point r, ρu(r) represents the permanent
charge density of the solute, and ε(r) is the position-dependent dielectric constant.
The Poisson equation (12.56) can be solved numerically by mapping the system
onto a discrete grid and using a finite-difference algorithm [85–88]. In applications
to proteins, it is generally assumed that the dielectric constant is uniform within the
protein and within the solvent, with two distinct values.

The main effect of the permanent charges of the solute is to polarize the solvent.
The induced charge density ρind in the solvent is related to the solvent polarization
density P(r) [83, 84]

〈ρind(r)〉 = −∇ · P(r). (12.57)

At any point r, the polarization P(r) and the total electrostatic field Etot(r) are
assumed to be linearly related,

P(r) =
ε(r) − 1

4π
Etot(r); (12.58)

this relation is usually taken as the definition of the dielectric constant ε [83, 89].
We see that the dielectric constant describes in an approximate, implicit way the
polarization of the medium in response to fields or charges (such as the partial atomic
charges carried by a ligand molecule, or the negative charge carried by a redox elec-
tron; see Sect. 12.3). We also see that a dielectric of one corresponds to a medium
with no implicit polarizability, since ε = 1 implies that P is always zero, even if
electric fields are present. For a protein responding to a redox electron or a new
ligand, choosing a dielectric greater than one is thus one way to model the induced
polarization. Another way is to explicitly simulate the dynamics of the system at a
microscopic level, through MD simulation; see Sect. 12.3. If the polarization is mod-
eled explicitly by simulating the molecular dynamics of the solute, there is no need
to add continuum dielectric polarization [89]. A dielectric constant of one will be
appropriate for the solute in this case. In other cases, a larger value will be needed.

In practical cases, it is the solute charges that are modeled explicitly, and treated
as permanent source charges. In contrast, the whole solvent medium is usually treated
as a continuum, without any explicit, permanent, source charges. (This is reason-
able for a solvent made of small, neutral molecules; ionic liquids would obviously
need a different treatment.) Since there are no permanent charges in the solvent,
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the divergence of the polarization density in the solvent is zero except near the
dielectric boundary [83], and the solvent charge density is a sharply peaked func-
tion localized at the solute–solvent interface. Integrating the solvent charge density
along an axis perpendicular to the surface over an infinitesimal range and making
the width of the boundary go to zero, one recovers an expression for the surface
charge density σ(r), which is the basis of boundary-element formulations of the
problem [90, 91].

The free energy of the system has the form [84]

F =
1
2

∫
ρu(r)V(r) dr, (12.59)

where V (r) is the total electrostatic potential at r and the integration is over all space.
If the permanent charge density ρu is made up of atomic point charges qi, F takes
the discrete form

F =
1
2

∑
i

qiVi, (12.60)

where Vi is the total potential at the site of the atomic charge qi.

12.5 Linear Interaction Energy Approaches

Linear response approximations have also been applied to the protein–ligand bind-
ing problem. Several applications were discussed earlier (Sect. 12.2.3). We turn now
to a more systematic approach that has become popular in recent years, known
as the linear interaction energy (LIE) method [13, 92]. Protein–ligand binding
can be discussed with the thermodynamic cycle in Fig. 12.5. The LIE method is
based on the following approximation for the binding free energy of a ligand L:

∆Abind,L = α
(
〈V vdw

L 〉prot − 〈V vdw
L 〉solv

)
+ β

(
〈V elec

L 〉prot − 〈V elec
L 〉solv

)
+ γ

(12.61)

where 〈· · · 〉prot, 〈· · · 〉solv denote ensemble averages when the ligand is bound to
the protein or free in solution, respectively. The quantity averaged is an interaction
energy between the ligand and its surroundings; “vdw” indicates a van der Waals
energy term; “elec” indicates a Coulombic electrostatic energy term; α, β, and γ are
constants. To justify this approximation, the usual argument focuses on the leftmost,
vertical leg of the cycle in Fig. 12.5, which corresponds to the binding reaction, P +
L → PL. The binding reaction transforms the ligand environment from a pure sol-
vent medium into a mixed solvent/protein medium. This can be accomplished by
gradually changing the energy function, so as to switch off the ligand–environment
interactions in the first medium and switch them on in the second [see (12.9)]. A
corresponding energy gap η can be defined [see (12.29)–(12.32)], which takes the
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form of a difference between the ligand interactions in the initial and final media,
including both Coulombic and van der Waals contributions. If η is assumed to have
a Gaussian probability distribution, the free energy change ∆Abind,L will indeed
have the form given in (12.36), (12.32), which is the LIE form with α = β = 1/2
as the numerical coefficients. The term γ has been dropped, because a constant γ
will cancel out when two ligands are compared. Thus, LIE follows if the system
obeys a linear response throughout the binding process, both for the van der Waals
and the Coulombic energy terms. By taking γ as constant it is assumed that all ef-
fects other than van der Waals and Coulomb interactions are the same for all lig-
ands.

This argument is not very compelling in the above form. The linear response
approximation has been tested for modest charge rearrangements in several proteins
and for small molecules in solution, and shown to give approximate, but reasonable
results; see [88] and references therein. But the ligand binding reaction involves a
much larger perturbation, where the entire environment of the ligand is changed from
pure water to a heterogeneous protein–water mixture. Not only will the polarization
density P reorganize; a protein–solvent interface is created, and the whole structure
of the ligand environment changes. The relevant energy gap, η in (12.29)–(12.32),
now contains both electrostatic and van der Waals contributions. There is no direct
evidence that the van der Waals contribution has Gaussian fluctuations for any known
ligand or protein–ligand complex (with the same variance in the bound and unbound
states). On the contrary, practitioners of free energy simulations know that the energy
gap for insertion of a new van der Waals particle into a condensed medium is usually
distinctly non-Gaussian.

In addition, the constant γ must be inferred from experimental data for one
or more ligands. This term mainly reflects the loss of rotational and translational
entropy upon complex formation, as well as changes in vibrational entropy of the
protein and protein–ligand complex. The rotational and translational entropies vary
with the logarithm of the moments of inertia and the mass of the ligand [63], ac-
cording to well-known formulae. But the vibrational entropy is more complex, and
probably cannot be predicted precisely from first principles. Although normal-mode
methods have been used abundantly for this purpose in the last few years, the ap-
proximations involved (harmonic fluctuations, crude solvent models in most cases,
structures obtained by energy minimization in vacuum in many cases) are so severe
that is not yet possible to decide whether they have any real predictive capability for
the present problem. (Note that normal-mode calculations with an accurate implicit
solvent model will provide a way forward [93].) As long as γ is obtained from
experimental data, any claim to predict absolute binding free energies is unfounded.

Very similar difficulties arise if one considers an alchemical pathway, where a
ligand L is transformed into another ligand L’, both in complex with the protein and
in solution.

It is interesting to consider another approximate derivation, which uses the im-
plicit solvent models discussed earlier (Sect. 12.4). Indeed, we can decompose the
binding reaction into the steps shown in Fig. 12.5 [94]: first, the ligand charges
are switched off in pure solvent, leaving a nonpolar solute; second, the attractive
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L

L

Remove ligand charges

P

Remove dispersion interactions

Restore ligand charges Restore dispersion interactions

Bind

Fig. 12.5. Thermodynamic cycle for ligand binding. In the left-hand vertical leg, the ligand
L simply binds to the protein P. The complicated path to the right has the following steps:
(1) the electrostatic interactions of the ligand and its environment are switched off (this is
schematized by removing its charges, shown as black dots), (2) the attractive dispersion inter-
actions of the ligand are switched off, giving a nonpolar, repulsive cavity (white ellipse), (3)
the cavity is transferred into the protein binding site (vertical leg on the right), (4) the ligand
dispersion interactions are restored, and (5) the electrostatic interactions of the ligand with its
environment are restored

dispersion interactions of the ligand are switched off; then the nonpolar solute is
transferred into the protein binding site, and the ligand dispersion interactions and
charges are switched back on. The contribution of the charging/uncharging steps to
the double free energy difference ∆∆A can be expected to obey linear response,
giving the electrostatic LIE term, with β = 1/2. For the vertical, transfer step on the
right of Fig. 12.5, we can view the starting and final environments as two differ-
ent solvents. We saw earlier that, for saturated alkanes of various sizes, the van der
Waals energy alone is not sufficient to reconstruct an accurate transfer free energy
between different solvents. However, the transfer free energy can be approximated
empirically by a sum of terms, proportional to the solute surface area and the solute–
solvent van der Waals interactions energies, respectively, [76]. Obviously, the simple
correlations of free energy with surface area and van der Waals interactions that were
discussed earlier (Sect. 12.4.2) corresponded to small solutes in a pure solvent; these
correlations may change or break down when pure solvent is replaced by a heteroge-
neous protein–water mixture. If we adopt, nevertheless, this treatment for the hetero-
geneous binding site in the protein, we obtain a modified LIE free energy [95–97],
which includes a new term, proportional to the amount of ligand surface area that
is buried upon binding to the protein [98]. The coefficient for this term is akin to
a molecular ‘surface tension’ (Sect. 12.4.2). This coefficient and the van der Waals
coefficient α are both expected to differ from 1/2.

With this pathway, the separation between the electrostatic and van der Waals
contributions in the LIE equation (12.61) is only approximate. Indeed, the vertical,
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solute transfer step (right of Fig. 12.5) strips water away from the ligand binding
site and substantially alters the protein–solvent electrostatic interactions. The corre-
sponding free energy change may well display correlations with the ligand–solvent
electrostatic interactions. Thus, there can be a ‘mixing’ of free energy contributions,
and the LIE coefficient β can deviate from the ‘theoretical,’ linear response value of
1/2, even if the medium is perfectly linear for purely electrostatic perturbations.

Despite these limitations, the LIE method has given reasonable results in sev-
eral applications [13–16]. The proteins studied include dihydrofolate reductase [99],
thrombin [100], and others [95–97, 101–103]. In practice, the van der Waals coef-
ficient α is usually adjusted empirically to fit the experimental data for a subset of
ligands; β is sometimes adjusted, too. The resulting model is then used to make pre-
dictions for other, similar ligands. By using simulations of both the bound and the
unbound state, induced fit conformational changes are included in the model. Addi-
tional free energy terms have been included in some cases, such as terms counting the
number of solute–solvent hydrogen bonds [102, 103]. As more terms are included
and more coefficients are fit, the method becomes more empirical, effectively like
a Quantitative Structure–Activity Relationship (QSAR) treatment [104], but with
descriptors deduced partly from computer simulations. This may be the most use-
ful way to view the method. As an example, for 60 inhibitors of human factor Xa,
Jorgensen et al. evaluated about 40 possible descriptors and obtained finally an em-
pirical, or ‘extended’ LIE model that reproduced experimental inhibition constants
with an RMS error of less than 1 kcal mol−1. The final model used two descriptors:
the solute–environment van der Waals energy (12.61) and the number of hydrogen
bonds lost by the ligand upon binding [102].

The LIE studies above rely on MD or MC simulations of ligands and pro-
tein:ligand complexes in solution, with a costly, explicit solvent representation. A
logical further step is to replace the explicit solvent by a modern implicit solvent
model [105, 106]. This raises two issues. First, the microscopic information on the
solute–solvent van der Waals interactions is lost, and must be included in the implicit
treatment. We saw earlier that similar assumptions underlie the most convincing
LIE derivation (which uses the complicated pathway in Fig. 12.5), so that this may
not affect the accuracy very much. Second, the Poisson–Boltzmann or Generalized
Born (GB) implicit solvent models commonly used for the electrostatic contribution
are not pairwise additive [107]. Nevertheless, under certain conditions, the elec-
trostatic binding free energy can be subdivided into components corresponding to
subsystems such as the protein or the ligand [108, 109]; see later. In the method of
Zhou et al. [105] it is assumed the ligands occupy a similar space in the binding
pocket, so that they ‘desolvate’ the protein to the same extent. The necessary free
energy contributions can then be obtained easily; details are give in Sect. 12.6.

12.6 Free Energy Methods Using an Implicit Solvent: PBFE,
MM/PBSA, and Other Acronyms

Many competing effects can contribute to ligand–receptor binding free energies:
changes in rotational, translational, conformational, and vibrational entropy of the
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partners, entropy changes associated with solvent ordering around hydrophobic or
charged groups, solute conformational strain, changes in electrostatic and van der
Waals interactions within and between the partners and the solvent, counterion
reorganization. All of these effects can be accounted for automatically in explicit
solvent simulations, as long as sufficient conformational sampling is performed. All
of them have been included in simplified continuum or semimicroscopic models in
the past [110], with different flavors and varying degrees of success.

The simplest case is the calculation of relative binding free energies in systems
dominated by electrostatics. The continuum electrostatic free energies of the bound
and free states are simply subtracted. The key model ingredients are the dielectric
constant(s) used for the solutes and the structures used to model the various states
(e.g., bound, unbound ligand). We begin by discussing this case. We refer to these
calculations as PBFE. Then, we go on to models that include nonelectrostatic effects,
primarily through a nonpolar free energy component. These latter models are usually
referred to as MM/PBSA models.

12.6.1 Thermodynamic Pathways and Electrostatic Free Energy Components:
The PBFE Method

The best starting point to appreciate the approximations of the PBFE method for
ligand binding problems is to decompose the free energy into components. We focus
therefore on electrostatic contributions to the protein–ligand binding free energy.
We start from the continuum electrostatic expression for Apl, the free energy of the
protein:ligand complex in solution. It can be written

Apl =
1
2

∑
i

qiV
pl
i =

1
2

∑
i∈lig

qiV
pl
i +

1
2

∑
i∈prot

qiV
pl
i , (12.62)

where the first sum is over all protein and ligand atoms; qi is the partial charge of
atom i; V pl

i is the total electrostatic potential on atom i in the complex, and the sums
on the right are over ligand and protein atoms, respectively. From the linearity of
continuum electrostatics, the potential on atom i can be expressed as a sum over all
ligand and protein atoms

V pl
i =

∑
j

V pl
j→i =

∑
j∈lig

V pl
j→i +

∑
j∈prot

V pl
j→i, (12.63)

where V pl
j→i is the potential at atom i when only the partial charge qj is present in the

protein. V pl
j→i is known as a Green’s function [83]. Using the very general reciprocity

relation qiV
pl
j→i = qjV

pl
i→j [84], we have

Apl =
1
2

∑
i∈lig,j∈lig

qiV
pl
j→i +

∑
i∈prot,j∈lig

qiV
pl
j→i +

1
2

∑
i∈prot,j∈prot

qiV
pl
j→i. (12.64)

The first and third sums on the right each include terms of the form 1
2qiVi→i, rep-

resenting the Born ‘self-energy’ of each charge qi [107]. To obtain the binding free



448 T. Simonson

energy ∆Abind, we subtract the analogous expressions for the separated protein and
ligand

∆Abind = Apl − Ap − Al

=
∑

i∈prot,j∈lig

qiV
pl
j→i +

1
2

∑
i∈lig,j∈lig

qi[V
pl
j→i − V l

j→i]

+
1
2

∑
i∈prot,j∈prot

qi[V
pl
j→i − V p

j→i].

(12.65)

The first term on the right of (12.65) represents direct interactions between the ligand
and the protein residues in the complex, screened by solvent. It will be referred to as
the ‘direct interaction term.’ The second term (‘the ligand desolvation term’) includes
the change in intraligand interactions upon binding, due to changes in the ligand
geometry or charge distribution, as well as changes in the interaction of the ligand
with polarization charge in the surrounding dielectric media. The polarization charge
is spread over the solute–solvent interface [83]. If the ligand is assumed to have the
same geometry and partial charges in the bound and free state, then the intraligand
interactions do not contribute, and this term arises entirely from ligand interactions
with the polarization charge. It corresponds therefore to decreased ligand–solvent
interactions. The third term on the right of (12.65) has an identical interpretation.
If the protein is assumed to have the same structure in the bound and free state,
then this term represents the effect of displacing solvent from the binding site by
inserting the ligand, decreasing the protein–solvent interactions. It will be referred to
as the ‘protein desolvation term.’ Each term corresponds to one step in the binding
pathway shown in Fig. 12.5. Similar, multistep pathways to analyze binding were
proposed as early as 20 years ago [94].

Solvent contributions are present implicitly in all three terms. Furthermore, each
protein or ligand group contributes to ∆Abind through all three terms in (12.65).
Thus, the protein contributes to the ligand desolvation term: even though the protein
charges do not appear explicitly in this term, each protein residue occupies space
around the ligand and contributes to its desolvation [107]. Similarly, the ligand
contributes to the protein desolvation term, even though its charges do not appear
explicitly. If one compares two ligands that occupy exactly the same space in the
active site, the protein desolvation terms will be identical for the two ligands.

The contribution ∆ADI
R of residue R to the direct interaction term has the form

∆ADI
R =

∑
i∈R,j∈lig

qiV
pl
j→i. (12.66)

The quantity on the right can be obtained from a calculation of the electrostatic
potential arising from the partial charges of the ligand at the positions of the partial
charges qi of the protein:ligand complex. Subtracting the results for the PL and PL’
complexes, we obtain the contribution of residue R to the direct interaction term in
the binding free energy difference.
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An atom-by-atom decomposition is not possible for the desolvation terms.
Indeed, these are the terms that make the continuum electrostatic free energy a many-
body function [107]. This can be understood by considering an interacting pair of
protein side chains. The strength of their interaction depends mainly on the extent of
dielectric shielding by high-dielectric solvent. This, in turn, depends on the presence
or absence of other nearby protein groups, since these can occupy nearby space, ex-
clude solvent, and limit dielectric shielding. Fortunately, the decomposition of most
interest is not an atomic decomposition, but the separation of protein and ligand de-
solvation, already evident in (12.65). The protein charges do not appear explicitly in
the ligand desolvation term; rather, the protein atoms contribute by occupying space
around the ligand in the protein:ligand complex, replacing high-dielectric solvent
by the lower-dielectric protein medium. For two ligands that bind in similar posi-
tions, but have different charge distributions, this term can contribute significantly to
∆∆A.

In the context of LIE with a GB solvent, Zhou et al. assumed that the ligands
occupied similar positions in the protein binding pocket, desolvating the protein to
the same extent [105]. The two other contributions to ∆Abind can then be calculated
easily. The direct interaction term is given by the GB screened interaction energy
term. The ligand desolvation term corresponds to the GB self-energy of the ligand.
Each term is a sum over the pairs i, j, i ∈ lig, j ∈ prot. Thus, the decomposition in
(12.65) is sufficient to construct LIE methods with a continuum solvent.

12.6.2 Other Free Energy Components: MM/PBSA Methods

Ligand binding also involves nonelectrostatic contributions. Combined approaches
have been developed for at least 30 years [111–113]. In Sect. 12.4, we discussed
at length the path dependency of free energy components, and the need to for-
mulate approximate free energy methods using a specific pathway for the binding
reaction. Like LIE, MM/PBSA can be formulated using the pathway in Fig. 12.5.
The main difference between LIE and MM/PBSA is that with the latter, electrosta-
tic components will be obtained from a dielectric continuum model. Recent flavors
of MM/PBSA combine continuum electrostatic solvation with a ligand–receptor van
der Waals energy, intramolecular, stereochemical energy terms, a nonpolar solvation
term proportional to buried surface area, and sometimes an estimate of vibrational
entropies [14, 15, 75, 114, 115]. The free energy of each state (ligand, receptor, com-
plex) has the form

A = 〈Eintra〉 + 〈Evdw〉 + 〈Eelec〉 + 〈ESA〉 − T 〈Svib〉, (12.67)

where the successive terms represent energies of intramolecular interactions (intra),
van der Waals interactions between ligand and receptor (vdw), electrostatic inter-
actions (elec; including the effect of continuum solvent), the nonpolar surface area
term (SA), and a vibrational entropy term (vib). The continuum solvent and non-
polar terms have been abundantly tested and discussed. The van der Waals term is
expected to be correlated with the surface that is buried upon binding and ESA, as
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discussed [76]; therefore it is partly redundant. The vibrational entropy calculations
have often been done with normal-mode calculations with a crude solvent model,
which are of questionable accuracy and precision.

There is still no clear statistical demonstration of the predictive value of all the
terms in MM/PBSA. In some cases, the overall free energy function may be more
accurate than the individual terms. One indication of this is the good accuracy of
PBFE, in several cases, for the binding free energy difference between different
ligands, despite a very poor accuracy for binding enthalpy and entropy, taken sep-
arately. Binding enthalpy and entropy are quite difficult to compute accurately in
aqueous solvent, largely because of the particular properties of liquid water at room
temperature. One often observes experimentally [116] that a small chemical change
in a solute can have a large effect on its aqueous solvation enthalpy and entropy,
but a small one on its solvation free energy. The robustness of the free energy can be
seen as the result of entropy/enthalpy cancelation in aqueous solvent. This robustness
makes the free energy an easier target for simple models, compared to the individual
enthalpy and entropy. Indeed, for a number of systems, PBFE and MM/PBSA have
yielded free energy differences in good agreement with experiment and/or higher-
level computations (MDFE with explicit solvent). Some examples are reviewed in
Sect. 12.6.3.

12.6.3 Some Applications of PBFE and MM/PBSA

Continuum models are being increasingly used to study protein–ligand recogni-
tion [115]. Most studies have considered series of similar ligands or protein mutants
and focussed on binding free energy differences. This leads to partial cancelation of
some troublesome contributions, especially rotational/translation/vibrational entropy
of the solutes.

In one study, detailed molecular dynamics free energy simulations (MDFE) were
done to determine the microscopic basis for the substrate specificity of an aminoacyl-
tRNA synthetase enzyme. A Poisson–Boltzmann free energy approach (PBFE) was
then used to study several point mutants of the enzyme. Specifically, aspartate and
asparagine binding to aspartyl–tRNA synthetase (AspRS) were compared through
MDFE. Several point mutations in the amino acid binding pocket were then consid-
ered. For each mutant, an MD simulation with explicit solvent was performed to gen-
erate structural models. For each ligand (Asp, Asn), free energies of the bound and
separated states were calculated by the finite-difference Poisson–Boltzmann method
and subtracted. The difference between Asp and Asn gives the electrostatic contri-
bution to the binding free energy difference ∆∆A.

A crucial parameter in these calculations is the dielectric constant ε of the solutes,
assumed to be the same for all solutes and all states. It is difficult [117], though not
impossible [58, 115, 118] to evaluate the dielectric ‘constant’ of a protein; in fact
it does not have to be spatially constant [118], and its effective value may depend
strongly on the set of atomic charges used (the force field) and the process considered
[58]. Therefore, an empirical approach is usually preferred. The strategy used by
Archontis et al. [109] was to adjust ε to reproduce with PBFE the ∆∆A obtained
from MDFE for Asp/Asn binding to native AspRS (15 kcal mol−1). This led to ε ≈ 4,
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a reasonable value which has been used in many, though not all [114, 119] other
studies. With the same value for ε, good agreement was also found for the Lys198Leu
mutant of AspRS.

Another key ingredient is the set of structural models used in the calculations. It
is important to use, for each state, structures corresponding to that state. If the native
structure was used to calculate properties of the Lys198Leu mutant AspRS, say, large
errors were obtained; specifically, the Asp binding decreased by 10 kcal mol−1. It
was also important to average results for each state over several structures, taken
from a simulation of that state. Indeed, the PBFE results are very sensitive to the
details of the structure, so that free energies from instantaneous structures (or the
X-ray structure) can deviate by 4–5 kcal mol−1 from the ensemble average [109].

Hünenberger et al. obtained good agreement with experimental dissociation
constants using a single solute dielectric of two for inhibitors binding to cAMP-
dependent protein kinase [120]; crystal structures of the various protein:inhibitor
complexes were used. Chong et al. used a solute dielectric of one and MD structures
of the bound states to study hapten binding to a mature and germ-line antibody [119];
good agreement with the experimental binding free energy difference was obtained.
A related, ‘alanine-scanning’ approach was applied to a fragment of p53 binding to
deletion mutants of the oncoprotein Mdm2 [121]. The idea is to study a large num-
ber of mutations using the structure of only one variant, e.g., the native protein. A
correlation between calculated binding free energies and an experimental mutational
tolerance was observed.

Component analyses of Poisson–Boltzmann binding free energies (PBFE) have
been proposed by many authors, but a fully systematic treatment [summarized ear-
lier; (12.65)–(12.66)] was developed only recently [108], and applied to GCN4
leucine zipper formation and to amino acid binding by aspartyl–tRNA synthetase
[109]. It distinguishes two main effects: partial desolvation of each molecule due
to its association with the other, and direct interactions between the charges on the
two ligands, screened by the surrounding dielectric media. The direct interaction
term is readily decomposed into residue or group contributions. For the desolva-
tion contributions, several approximate decompositions are possible. In the GCN4
dimer [108], electrostatic effects were found to disfavor dimerization by as much
as 15 kcal mol−1, due to desolvation of charged and polar groups, insufficiently
compensated by direct interactions between monomers in the bound state. Desol-
vation always reinforces interactions within each ligand, a net favorable effect in
this system, but still insufficient to compensate loss of interactions with solvent.
In aspartyl–tRNA synthetase [109], the component analysis was used to identify
groups that discriminate between binding of the substrate Asp and the analog Asn to
the native and mutant proteins. This was especially useful because the most impor-
tant interactions were not all evident from visual inspection of the structures. Sims
et al. [122] analyzed protein kinase–inhibitor binding, and underlined the impor-
tance of solvent-mediated intramolecular interactions. Roux and McKinnon [123]
analyzed the selectivity of the KcsA potassium channel in terms of particular free
energy components, including desolvation components and direct interactions of the
ion with the channel helices. The partial ion desolvation that occurs in the channel
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favors monovalent over multivalent ions; the field of the pore helices, enhanced
by the low-dielectric membrane environment, favors cations over anions. Thus, the
channel appears to confer selectivity for monovalent cations by simple electrostatic
principles.

12.6.4 The Choice of Dielectric Constant: Proton Binding as a Paradigm

The most important model parameter in PBFE and MM/PBSA is the dielectric con-
stant used for the solutes. Most studies have taken an empirical approach, viewing
the dielectric constant as an adjustable parameter. While this seems plausible, it is
prudent to analyze the physical problem in more detail, because, in some cases, the
experimental data can be fit by models that are distinctly unphysical, despite some
plausible features. We therefore come back to the simplest possible PBFE calcula-
tion: the important problem of proton binding, or pKa shifts. We discuss a ‘nonem-
pirical’ model that attempts to avoid parameter fitting and that gives insights into the
limitations of simplified continuum electrostatic free energy methods.

The PB/LRA Method for pKa Shifts

We saw in Sect. 12.3 that linear response theory leads to a practical method for pKa

calculation. The basic equation, (12.40), relates the proton binding free energy to the
electrostatic potentials in the endpoint states (unprotonated and protonated). These
can be obtained from MD simulations with explicit solvent, giving the so-called LRA
method [59]. An alternative is to do MD simulations with explicit solvent, then dis-
card the solvent molecules and calculate the electrostatic potentials from a contin-
uum model. This is the so-called PB/LRA method [124, 125]. The advantage is that,
while a continuum model will usually lead to somewhat poorer protein structures,
it can actually give a superior estimate of the electrostatic potentials, partly due to
the difficulty in adequately sampling the solvent polarization with explicit solvent
methods. Since the protein structures before and after proton binding are sampled by
MD, most of the dielectric relaxation of the protein is accounted for explicitly. With
fixed-charge force fields, the protein’s electronic polarizability is not represented ex-
plicitly, so the electronic relaxation is still accounted for implicitly. Therefore, the
PB calculations should be performed with a low dielectric constant, presumably be-
tween one (if electronic relaxation is not important) and two (if electronic relaxation
plays a role). Larger values amount to double counting of the protein’s dielectric
relaxation.

Using atomic charges borrowed from the force field used in the MD, in com-
bination with a protein dielectric of one or two, the PB/LRA approach gave good
agreement with experiment for two highly shifted pKas, and a larger error of 3
pKa units for an unshifted carboxylate in thioredoxin [125]. Although no parameter
adjustment was done, the results were of the same quality as explicit solvent MDFE
results [48]. The level of agreement is thus qualitatively good, and this may be the
best that can be expected for a macroscopic continuum model at the molecular scale.
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A larger protein dielectric constant of four was used by Eberini et al. [124] to
fit the experimental pKa, in a case where the protein structural relaxation upon pro-
tonation was especially large. The need for a larger protein dielectric suggests a
breakdown of the linear response assumption for this system. It may be preferable in
such a case to simulate an additional point along the reaction pathway, such as the
midpoint, rather than shifting to what is effectively a parameter-fitting approach.

Relaxation Free Energy and Internal Consistency of the Model

In the current literature, a different route is usually used to calculate pKa shifts with
continuum models [18–20]. Structures from only one endpoint of the proton bind-
ing reaction are used. For an aspartate side chain, for example, a crystal structure
with the ionized Asp is typically available. The free energy is not decomposed into a
static and a relaxation term; the total binding free energy ∆A is calculated directly.
Nevertheless, a component analysis of the method is very instructive, and provides a
powerful test of the internal consistency or inconsistency of the model. Indeed, the
static and relaxation free energies can always be computed separately, then added to
give ∆A (12.32). The static free energy has already been considered in detail (12.29),
(12.37), (12.38). Despite its rather abstract form (12.30), (12.31), the relaxation free
energy is just as easy to compute. In fact, the relaxation free energy is equal to the
Born self-energy of the charge increments that are used to model the proton [58].
Thus, ∆Astat and ∆Arlx are readily obtained from the structure of the reactant state
(with ionized Asp in our example). The relaxation free energy computed in this way
has an essential dependency on the protein dielectric constant. It has no dependency
whatsoever on the set of atomic charges used in the model, other than the charge in-
crements that represent the inserted proton. Exactly the same results will be obtained
with two different force fields. In contrast, the static free energy depends strongly on
the choice of atomic charges for the whole protein.

Importantly, another expression also exists for ∆Arlx, (12.32). This expression
makes explicit use of both the reactant and product structures, and so contains an
explicit representation of the structural relaxation. The implicit (12.31) and explicit
(12.32) representations of the relaxation are equivalent

∆Arlx = −β

2
Variance(η) =

〈η〉1 − 〈η〉0
2

. (12.68)

As mentioned, this equivalence is a consequence of the fluctuation–dissipation the-
orem (the general basis of linear response theory [51]). In (12.68), we have dropped
nonlinear terms and we have not indicated for which state Variance(η) is computed
(because the reactant and product state results only differ by nonlinear terms). We see
that ∆A, ∆Astat, and ∆Arlx are all linked and are all sensitive to the model para-
meters, with different computational routes giving a different sensitivity for ∆Arlx.

In most pKa calculations with the ‘standard’ method, a moderate to high (εp =
4–20) protein dielectric is used. Often, a molecular mechanics charge set is used. In
cases where protonation induces a large protein conformational relaxation, this com-
bination is likely to give a poor consistency between the two underlying free energy
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components. That is, if ∆Astat and ∆Arlx are computed separately, using the same
model parameters and the same structure, then the consistency relation (12.68) will
be violated [58, 125]. For ionization of Aspartate26 in thioredoxin, the relaxation
free energy from MDFE was about −56 kcal mol−1, corresponding to a large protein
reorganization upon ionization. To reproduce this value with a continuum model,
a protein dielectric of three is needed. This dielectric value is typical for a protein
interior [88, 117, 118]. In contrast, for the same ionization reaction, a dielectric of
1–2 was optimal to reproduce the equilibrium potentials and the static free energy
obtained by MDFE. A dielectric of three gives an error of over 10 kcal mol−1 for
∆Astat. This apparent discrepancy is not surprising, since the molecular mechanics
charge set used for MDFE was optimized with a dielectric of one. For cases such as
this, where protein reorganization is large, the ‘standard’ method combines a charge
set and a dielectric constant that are mutually inconsistent.

In contrast, for cases where the protein is more rigid, the standard continuum
approach can give excellent results. A striking example is the case of photosystems
and redox proteins, where a low reorganization is needed to maintain fast charge-
transfer kinetics. For these systems, carefully parameterized continumm models can
give an accurate picture of redox potentials and their coupling to acid/base reactions
[126–128].

12.7 Conclusions

When MDFE methods were first developed for proteins, they raised great hopes as a
potential new tool for improving lead molecules in drug design [129]. Unfortunately,
MDFE methods are costly and complex, and these particular hopes have never been
fulfilled. Rather, computational studies for drug design are always based on simpli-
fied methods [10]. Nevertheless, MDFE has begun to play an indirect role in drug de-
sign, fulfilling its early promise in two ways. On the one hand, it has largely inspired
the simplified free energy methods discussed in this chapter. On the other hand, it
has provided an essential benchmark for the simplified methods, complementary to
experimental data. For example, MDFE can be used both to parameterize a PBFE
model and to test some of its specific predictions. The rigorous and simplified meth-
ods can employ the same charge set and the same molecular structures, obtained
from the same MD or MC simulations.

Simple free energy methods usually decompose the free energy into a few distinct
contributions, such as the van der Waals and electrostatic terms in the LIE equa-
tion (12.61). They usually make use of only one or two simulations, and rely on
an assumption of linear response, at least for some of the free energy contributions.
In fact, the individual free energy contributions depend on the choice of a specific
reaction pathway. For a ligand binding reaction, an instructive pathway is the one
shown in Fig. 12.5, where the purely nonpolar interactions, the attractive dispersion
interactions, and the Coulomb interactions are all treated in separate steps. With this
pathway, it is apparent that linear response is unlikely to hold for all the steps, and so
no rigorous, analytical free energy formula exists. Rather, we can take an empirical
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view, inspired by the scaling behavior of solvation free energies in simple liquids,
where nonpolar and dispersion terms have a simple behavior. This leads to the modi-
fied, or extended LIE methods that have become popular [13–16]. With careful para-
metrization, and in combination with other experimental and computational methods,
they provide a useful and predictive tool.

PBFE and MM/PBSA provide a related, but different set of tools that can give
good qualitative accuracy if they are carefully parameterized. They are especially
useful for processes dominated by electrostatics, such as comparisons between a
charged and a neutral ligand [12]. However, they must be used with caution, par-
ticularly when protein reorganization is significant. If a very high protein dielectric
constant (ε ∼ 20–80) is needed to reproduce an experimental result, it is possible that
the physical basis of the continuum model has broken down for the problem at hand.
For example, the linear response approximation may not be verified. In the case of
acid/base reactions with unusual pKa values, it is highly recommended to obtain
structures for both endpoints of the ionization reaction (possibly from MD simula-
tions), and to check that calculations using either of the two endpoints give similar
results. If not, one may end up reproducing an experimental result simply through
parameter fitting with an unphysical model.

As computers become even faster and force fields expand to cover more types
of molecules, both MDFE and simplified methods will be increasingly useful. The
most fruitful approach will be to use a spectrum of methods, both for ligand design
and for fundamental studies of biomolecular thermodynamics.
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Applications of Free Energy Calculations to Chemistry
and Biology

Christophe Chipot, Alan E. Mark, Vijay S. Pande, and Thomas Simonson

13.1 Introduction

A complete understanding of most chemical and biochemical processes requires a
careful examination of the underlying free energy behavior. Solvation and transport
properties, protein–ligand binding, proton and electron transfer reactions are all of
major interest, and evidently cannot be understood or predicted without a knowledge
of the associated free energy changes. The ability to determine a priori the associated
physical constants with a reasonable level of reliability, using statistical simulations,
is within reach today. Large, realistic, physical and biological assemblies remain a
challenge for modern theoretical chemistry. However, enormous progress has been
made since the first attempts, published over two decades ago. Developments on
several fronts, including theory, software, and hardware have helped to bring free en-
ergy calculations to the level of robust and well-characterized modeling tools, while
broadening their field of applications. Taking advantage of massively parallel archi-
tectures, for example, cost-effective, precise and accurate free energy calculations
can help rationalize experimental observations, and, in some cases, be predictive.
In this chapter, we review applications of free energy calculations in chemistry and
biology, ranging from the estimation of solvation free energies, protein–ligand bind-
ing constants, partition coefficients, conformational equilibrium constants, and acid–
base and redox constants. Our goal is not to provide an exhaustive account of all
possible simulations published hitherto, but rather highlight a number of applica-
tions that illustrate why one might want to perform free energy calculations, what
one may learn from these that is not easily learned from experiment, and what new
insight into interesting chemical or biological processes one may gain. Conclusions
on the role played by free energy calculations in the molecular modeling community
are drawn, with a prospective look into their promising future.
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13.2 Protein–Ligand Association

13.2.1 Relative Protein–Ligand Binding Constants

The cost of a molecular dynamics (MD) free energy study depends very much on
both the system and the goal of the study. If the goal is to reproduce qualitatively
an experimental number and interpret it in terms of microscopic interactions, and if
the systems of interest (e.g., native and mutant protein) are very similar, then only
limited conformational sampling will be needed in most cases, and a few short runs
with a small model may suffice.

If the goal is to predict accurately and precisely an unknown free energy differ-
ence, or if the transformation involves large conformational changes, MD free energy
calculations can be more costly. Not only are many long simulations needed, but
comparisons between different force fields may be necessary to assess the accuracy.
One such study examined the binding of the native Raf protein and its Arg89Lys mu-
tant to the signaling protein Ras [1]. Experimentally, only a lower bound (3 kcal/mol)
was known for the reduction in binding due to the mutation; this number was mea-
sured [1] after the MD free energy study was performed. MD simulations showed
that two very different conformations of the region around Arg89 are populated
in both the native and mutant Raf. By using multiple MD free energy runs with
three different force fields, and by identifying and exploring the important conform-
ers using biased sampling techniques, it was shown that the reduction in binding
is 3±2 kcal/mol, close to the experimental lower bound. Interestingly, the calcula-
tions showed that the weaker binding of the Arg89Lys mutant protein comes from a
stronger solvation of the Lys89 side chain in the mutant protein in the unbound state.
This is presumably a general effect, which contributes to the known, lower propen-
sity of Lys (compared to Arg) to participate in protein–protein interfaces. This effect
would have been difficult to observe by experiment alone.

A second example of a difficult case is the enzyme aspartyl–tRNA synthetase
(AspRS). Aminoacyl–tRNA synthetases attach a specific amino acid to a tRNA that
bears the appropriate anticodon, establishing the amino acid–trinucleotide correspon-
dence that forms the genetic code. Engineering amino acid specificity is an impor-
tant goal in biotechnology, which has already led to bacteria with an extended or
reduced genetic code [2, 3]. In particular, this provides a route for introducing arti-
ficial amino acids into proteins in vivo [3, 4]. AspRS was the object of a series of
MD free energy studies, which aimed to understand and modify the specific binding
of its substrate, L-aspartate (Asp), and its discrimination against chemical analogues
such as asparagine (Asn) and D-aspartate [5–7]. Neither the binding constant for
Asn nor the X-ray structures of the AspRS:Asn and AspRS:D-Asp complexes were
known experimentally. This system represents a difficult electrostatic problem. The
substrate Asp is charged, while Asn is neutral. The co-substrate ATP can bind two
or three Mg2+ cations, for a total charge of either zero or two. Two nearby histidines
can be charged or neutral. A flexible, ‘flipping’ loop can close over the amino acid,
bringing a negative glutamate to coordinate the amino acid’s ammonium group. To
enhance Asn binding, mutations of several nearby residues were considered, mod-
ifying the net charge of the binding pocket further. All these charged groups can



13 Applications of Free Energy Calculations to Chemistry and Biology 465

HN

O

O

O
O

NH3

NH3

N

N

N

N

N
N

O
O

+

+

+

+

P

P

P

Rib Ade
2+

+

Glu171

Asp

Lys198

Arg489
Arg217

His448

Flexible Loop

Motif 2

ATP

Gln199

His449
NH

−−

−−

−−
−−

−−

Fig. 13.1. Cartoon of the aspartyl–tRNA synthetase amino acid binding site. The aspartate
ligand is shown, along with the most important recognition residues. Groups that have been
mutated in free energy simulations are boxed or circled. ‘Flexible loop’ and ‘Motif 2’ refer to
conserved motifs in the enzyme structure

couple to each other, so that a complex network of interactions and many alternate
electrostatic states must be considered. Figure 13.1 shows a cartoon of the active site,
including the most important specificity determinants.

In the MD free energy studies, over 15 different states were considered, corre-
sponding to six different values of the net charge in the binding pocket (from −2
to +3). The inhomogeneous continuum reaction field method was used (see below)
[8, 9], so that all electrostatic interactions were explicitly included. Experimental
measurements were available or performed specifically to compare Asp, Asn, D-Asp,
and succinate binding. For Asp versus Asn, the discrimination is very strong, so that
only a lower bound could be obtained experimentally for the binding free energy dif-
ference, ∆∆G ≥ 7 kcal/mol. This was sufficient to support important features of the
computational model. Good agreement was obtained for D-Asp and succinate, which
bind less strongly than Asp, but less weakly than Asn. Thus validated, the computa-
tions revealed several interesting features. Long-range interactions electrostatically
couple the amino acid ligand, ATP and its associated Mg2+ cations, a histidine side
chain (His448) next to the amino acid ligand, and the ‘flipping’ loop, which closes
over the active site in response to amino acid binding. Closing this loop brings a
negative glutamate into the active site; this causes His448 to recruit a labile proton,
which interacts favorably with Asp and accounts for most of the Asp/Asn discrimi-
nation. Co-binding of the second substrate, ATP, increases specificity for Asp further
and makes the system robust towards removal of His448, which is mutated to a neu-
tral amino acid in many organisms. Thus, AspRS specificity is assisted by a labile
proton and a co-substrate, and ATP acts as a mobile discriminator for specific Asp
binding to AspRS [5–7].

Alchemical transformations have also been applied to the challenging case of G
protein-coupled receptors (GPCRs), for which little structural information is avail-
able experimentally at the atomic level. Starting from a template of a seven-helix
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transmembrane domain, a model of the human cholecystokinin-1 receptor (CCK1R)
was refined through successive stages, using a host of experimental data, includ-
ing site-directed mutagenesis experiments of both the ligand and the receptor [10].
The in vacuo construct was then immersed in a realistic membrane environment and
examined over a period of 30 ns, during which the receptor and the solvent were
relaxed concomitantly. Free energy perturbation (FEP) calculations were carried out
to mutate the agonist nonapeptide CCK9 at its N- and C-termini, both in the free
and in the bound states [11]—viz. S-Tyr3 to Tyr and Asp8 to Ala. The very good
reproduction of the experimental binding constants opens new vistas for the design
of potent agonists and antagonists in GPCRs in the absence of experimentally re-
solved three-dimensional structures.

In the field of membrane proteins, free energy calculations may also help inter-
pret inferences based on experiments. For instance, to understand how ion selectiv-
ity is controlled in voltage-gated potassium channels, Benoı̂t Roux and coworkers
applied FEP calculations to KcsA, artificially disrupting the interaction of the cation
K+ with the different carbonyl moieties lining the narrow pore region of the chan-
nel [12]. Comparing simulations performed in a fully flexible channel and in a frozen
one, they shed new light on the dynamic nature of the pore region, which, combined
with the intrinsic electrostatic properties of the participating carbonyl groups, ensures
ionic selectivity — in particular K+ versus Na+ ions. It is worth noting that removal
of carbonyl–carbonyl interactions immediately abolishes the selectivity at the center
of the narrow pore region, with which sodium ions may now interact favorably.

These examples show that for difficult cases, and especially when a prediction
is being made, a large number of simulations may be necessary. Today, the contin-
uing increase in computer power has made such multiple simulations possible in a
reasonable time frame. Several other recent studies illustrate the scope of molecular
dynamics free energy for molecular recognition problems; they include studies of
nucleic acids [13], proteins [14–16], and methodological studies of convergence and
precision [17, 18]. Several recent reviews provide additional examples [19, 20].

13.2.2 Absolute Protein–Ligand Binding Constants

As has been discussed in the chapter on perturbation theory, the term absolute free
energy is often abused. It was emphasized that the epithet absolute referred to our
ability to determine A = −1/β ln QNV T , thus implying that current computational
methods could allow the modeler to access the full canonical partition function,
QNV T . This is not the case. For example, determination of the Helmholtz solvation
free energy of a given chemical species implies an accurate evaluation of QNV T ,
which requires that all possible configurations of the solvent around the solute be
taken into account. This would be true for an ergodic system, in the hypothetical
limit of infinite sampling. But numerical estimates of the partition function based on
finite-length simulations are governed by Boltzmann sampling, which favors the low-
energy regions of configurational space, and are, therefore, necessarily incomplete.

It still remains that the pervasive use of the expression absolute free energy in
the literature requires that this concept be clarified in the case of protein–ligand
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association. As can be seen in the thermodynamic cycle of Figs. 2.8 and 2.9, the
direct, horizontal transformation that brings the ligand from its free, unbound state
to its associated state, is not amenable to current, state-of-the-art statistical simu-
lations. Protein–ligand binding phenomena generally occurs over time scales that
are incommensurate with those characteristic of molecular dynamics simulations,
because they involve a global search by the ligand of the optimal anchoring site in the
protein, and, therefore, fall into the category of multiple-minimum problems. Free
energy differences can be computed along a predefined order parameter. However,
the definition of a useful, non ambiguous reaction coordinate connecting the initial
and final states of the transformation is usually difficult. Recent work by Woo and
Roux addresses this problem in terms of potentials of mean force, and opens new
perspectives for the direct determination of binding constants [21]. In this approach,
a series of independent stages are performed. The free ligand is first restrained in
the conformation of the native, bound state, then translated into the binding pocket
of the protein. Remarkable agreement with experiment was found for the binding of
pYEEI peptide to the SH2 domain of the human Lck protein. It should be empha-
sized, however, that association occurs at the surface of the Lck protein. It is not clear
whether the proposed method would remain applicable to ligands buried deeply in
protein cavities, e.g., as in GPCRs. Binding free energies can also be computed using
nonequilibrium, steering, numerical experiments [22], in which the ligand is pulled
out of the protein pocket by means of an external force; attempts in this direction
admittedly have remained scarce [23, 24].

The terminology absolute can, in a sense, be understood as the opposite of rel-
ative. As seen in Figs. 2.8 and 2.9, the computation of absolute binding constants
constitutes a special case of relative free energy calculations. Instead of mutating
the ligand into an alternate one and measuring a relative affinity toward a common
protein, the ligand is annihilated in both the free, unbound state and in the asso-
ciated state. Such free energy calculations, first proposed by Jorgensen et al. [25],
are often referred to as double-annihilation simulations. Annihilation transforma-
tions cancel the interaction of the ligand with its environment by scaling either the
non-bonded parameters or the interaction potential energy function—see Chap. 2. In
annihilation simulations, as the protein–ligand interactions are reduced, the ligand
may drift away from its original, native position. This leads to practical, sampling
difficulties, since in theory, the ligand should explore the entire simulation volume,
which would require an excessively long simulation. A better scheme is to lock the
non-interacting, ghost ligand into the binding pocket by means of an appropriate set
of restraints. Enforcing these positional restraints leads to a loss of translational and
rotational entropy, and, hence, to a free energy contribution that must be taken into
account in the thermodynamic cycle of Figs. 2.8 and 2.9 [26, 27]. For this, analytical
methods can be used [21, 27, 28].

Arguably, the foundations for the calculation of protein–ligand binding con-
stants were laid by the pioneering article of Tembe and McCammon [29], which
demonstrated the usefulness of the FEP methodology using a naive, van der Waals–
sphere representation of a receptor–ligand complex. Hermans and Shankar pushed
the level of description one step further by examining the absolute free energy of
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association of gaseous xenon to myoglobin [30]. Benefiting from a noteworthy
increase of computational power, Merz was able to investigate over a somewhat
more realistic time scale binding of carbon dioxide to carbonic anhydrase [31], and
Lee et al. all the association of phosphoryl choline to antibody MP603 [32]. The
following year, Miyamoto and Kollman tackled the hitherto unexplored interaction
of biotin with avidin, one of the strongest known covalent binding free energies
between a small peptide ligand and a protein. Employing the FEP machinery, they
estimated the absolute free energy of association of biotin with the related strepta-
vidin protein [33, 34]. Despite a simplified description of the protein–ligand com-
plex, and somewhat short simulations, in comparison with the current standards for
free energy calculations, the experimental binding constant [35] was reproduced
satisfactorily and a hypothesis for van der Waals pre-organization in the binding
pocket was proposed to play as significant a role as electrostatic contributions in
protein–ligand association [34]. Interestingly, the prototypical biotin–streptavidin
problem was revisited eight years later [36], employing a markedly more rigorous
modeling of the tetrameric structure of streptavidin and covering longer time scales.
Although the improvement over the Miyamoto and Kollman results was marginal,
the more recent calculations suggested that electrostatic and van der Waals contribu-
tions were of comparable weights and underlined that the free energy term arising
from positional restraints should not be ignored when growing a ligand into the bind-
ing pocket of a protein.

While free energy calculations of protein–ligand association have taken advan-
tage of the enormously increased computer power available in recent years, they
have also benefited greatly from methodological developments. For instance, Roux
et al. [37] and Gilson et al. [27] clarified the theoretical bases for the computation of
protein–ligand binding constants and explained how it can be compared with exper-
iment. Hermans and Wang emphasized the critical role played by the loss of transla-
tional and rotational entropy in protein–ligand binding free energy calculations [26].
Boresch et al. pursued these efforts by proposing a general scheme for the compu-
tation of protein–ligand absolute binding free energies, using appropriate external
biases to restrict the translational and rotational motion of bound ligands [28]. These
authors presented a theoretical framework to take into account these restraints and re-
late them to the sometimes-overlooked standard state dependence of protein–ligand
association equilibria. Also of interest, the investigation of Swanson et al. based on
long MD trajectories sheds new light on the conformational modifications of both
the ligand and the protein upon molecular association [38].

A problem closely related to that of protein–ligand binding is the question of
how water molecules migrate in and out of the binding pocket as the ligand is ac-
commodated by the protein [37]. Quantification of this phenomenon relies to a large
extent on our ability to estimate the associated entropic contributions. Hamelberg
and McCammon devised a numerical approach to measure the standard free energy
for removing water molecules occupying the binding sites of protein–ligand com-
plexes [39]. Woo et al. have applied grand canonical Monte Carlo simulations to
the determination of the chemical potential of water molecules confined in binding
pockets and in thermodynamic equilibrium with an external water reservoir [40].
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13.2.3 Molecular Dynamics Free Energy Yields Structures and Free Energy
Components

In experimental studies of molecular recognition, an important goal is to interpret the
overall binding free energy in terms of specific structural groups, such as individual
hydrogen-bond partners, and specific physical effects, such as electrostatic forces.
Group contributions to the binding affinity can be estimated from point mutations,
as in alanine scanning experiments [41, 42]. Double mutant cycles can be used to
measure the contributions of individual residues to ligand binding specificity [42,
43]. For example, the binding affinities of a substrate and an inhibitor to a native
and a mutant protein can be measured. The result is a triple free energy difference,
∆∆∆G = ∆∆Gmut −∆∆Gnat. Here, ∆∆Gnat and ∆∆Gmut are the binding free
energy differences between the substrate and the inhibitor for the native and mutant
proteins, respectively. If the mutation replaces a particular residue by an alanine,
deleting the original side chain, ∆∆∆G can be interpreted as a measure of that side
chain’s contribution to the binding specificity.

Free energy simulations can provide the same information. We continue to use
ligand binding specificity as an illustration. It is straightforward to compute ∆∆∆G
values with FEP. However, as with experiments, they are usually costly to obtain.
In some situations, an approximate method can be used to obtain the free energy
changes ∆∆Gmut for several mutations at a time from just one or two simulations;
see [44] and Chap. 12. Usually, though, a complete set of simulations must be done
for each side chain or group whose contribution ∆∆∆G is sought.

A much simpler and more efficient approach is to calculate free energy ‘com-
ponents’ [45]. Let ∆Gprot and ∆Gsolv be the free energies to transform the sub-
strate into the inhibitor in the protein complex and in solution, respectively, so that
∆∆Gnat = ∆Gprot−∆Gsolv. Because molecular mechanics energy functions com-
monly take the form of sums over small groups of atoms, these two free energies can
be expressed as a sum over groups of atoms [45]. In particular, ∆Gprot takes the
form of a sum over individual protein residues and solvent. The contribution of a
particular side chain or residue to ∆∆Gnat is referred to as a free energy compo-
nent. It provides another measure of the contribution of the side chain to the ligand
specificity.

The interpretation of free energy components requires care, since they are not
measurable quantities (unlike ∆∆∆G) and depend on the details of the calculation.
As discussed in Sect. 2.10, free energy components are not state functions, so that
they depend on the integration path used to connect the endpoint states [46–50]. This
is easy to see by considering a diatom A–B in solution. Let us first ‘turn off’, or
decouple the van der Waals and Coulomb interactions of B from its environment;
second, we lengthen the A–B bond to a large value; third, we restore the van der
Waals and Coulomb interactions of B; fourth, we shorten the bond back to its orig-
inal value. This closed thermodynamic cycle nevertheless has nonzero free energy
components for both A and B [46, 47]. Indeed, the solvent distribution around B is
different in steps 1 and 3, so that the corresponding van der Waals and electrostatic
contributions do not cancel; meanwhile, there is a nonzero free energy component
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for atom A in step 4, arising from the bond shortening, but not in the other steps
(including step 2, where B is a ghost particle).

Nevertheless, previous experience has shown that free energy components pro-
vide a useful, qualitative measure of the importance of particular amino acids for
ligand specificity and other properties. Their significance has been tested in sev-
eral ways. Archontis et al. computed components for the aspartyl–tRNA case, and
compared them to residue components obtained with a continuum electrostatics, or
Poisson–Boltzmann (PB) free energy approach [6], for which the free energy com-
ponents are pathway independent. Both methods identified the same amino acids as
specificity determinants, and showed that contributions from several other nearby
ionized amino acids approximately cancel. The amino acids with large components
were found to be completely conserved among all known AspRS sequences. The
MD free energy components were systematically larger than the PB components by
a factor of about 4–10. The smaller magnitude of the PB components was due to
the contribution of continuum solvent, which is ‘folded into’ the amino acid com-
ponents in the case of PB. Another test was performed more recently for the same
system [7]: ∆∆∆G values were computed for the four groups that have the largest
free energy components in the AspRS ligand binding pocket. The ∆∆∆G values and
free energy components agreed qualitatively, with the components being systemati-
cally larger by a factor of 3–8. As with the PB components, the ∆∆∆G values have
a contribution from protein and solvent dielectric relaxation folded in, and indeed,
the reduction factor is in good agreement with the mean dielectric constant estimated
for the AspRS active site [51].

Finally, Mark and van Gunsteren studied the path dependency of free energy
components for several systems, including the protein azurin, for which the effect
of the Asn47Leu mutation on the copper oxidation potential was computed [49, 52].
This case is of interest because both legs of the thermodynamic cycle (analogous
to Figs. 2.8 and 2.9) can be calculated. The horizontal, ‘alchemical’ and vertical,
‘chemical’ runs agreed approximately, but gave very different free energy compo-
nents, because they corresponded to different physical processes.

Other free energy decompositions have also been found useful. These include
calculations of dielectric relaxation free energies [51], of the free energy to freeze the
ligand’s rotational degrees of freedom in a protein–ligand binding reaction [21], of
the van der Waals contribution to a protein solvation free energy [53], of the solvent
contribution to a protein–protein association free energy [54], and of ligand binding
entropies [55].

13.2.4 Electrostatic Treatments

When the mutation of interest involves a significant rearrangement of charge, it is
critical to treat electrostatic interactions accurately. Since the systems of interest are
macroscopic, a finite computer model is not normally sufficient: bulk solvent must
be explicitly included at some stage of the calculation. This is especially important
if a charge is introduced into or removed from the system.
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Four recent studies provide a good overview of the strategies available today.
Van den Bosch et al. [56] used periodic boundary conditions, with a protein fully
solvated in a large box of water; long-range electrostatic interactions were approxi-
mated by a homogeneous continuum reaction field approach. Another, increasingly
popular approach is to use Ewald summation (also with periodic boundary condi-
tions) [57]. The main drawback of periodic boundaries is the cost associated with
the large explicit solvent layer. Aqvist and Luzhkov [58] and Warshel et al. [59] both
used large, but finite spheres with radii of 20–30 Å; within the spheres, all electrosta-
tic interactions were calculated efficiently by use of a multipole approximation for
distant groups [32, 60]. Since no net charges were created or deleted and the simula-
tion models were fairly large, bulk solvent was not considered explicitly. Other work
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Fig. 13.2. Three-step ICRF scheme to compute the free energy change ∆G associated with
a local transformation in a macromolecule in bulk solution. Step I: the dielectric constant of
that portion of the macromolecule that lies outside a spherical inner region (‘MD region’) is
switched to that of bulk solvent. Step II: the local transformation is carried out using a series
of MD simulations. The transformation is schematized by the removal of a minus sign near the
center of the inner, MD region. Step III: the dielectric constant of that portion of the macro-
molecule that lies outside the MD region is switched back to its original value. The free energy
changes for steps I and III are calculated with a Poisson–Boltzmann continuum model; the free
energy change for step II is calculated from thermodynamic perturbation theory. Reproduced
from the Journal of Physical Chemistry
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with spherical models has explicitly taken into account the free energy to transfer the
finite simulation models into a bulk continuum solvent [61, 62]. In their early studies
involving charge creation [63], Warshel and coworkers used ‘shell’ models, where
regions close to the mutation are treated in detail, more-distant regions are treated
as networks of polarizable dipoles, and the most distant regions are treated as a
dielectric continuum. Those studies were the first to include a sophisticated model
of bulk solvent. Simonson et al. used a new, inhomogeneous continuum reaction
field method (ICRF) [8, 9] (Figure 13.2). This method employs a spherical system,
including part of the protein and some explicit solvent, initially surrounded by either
vacuum [8] or a homogeneous dielectric medium [9, 64]. The mutation is performed
for this system using an MD free energy simulation. In a second stage, the finite
model is transferred into the inhomogeneous environment formed by the complete
protein and bulk solvent. The free energy for the transfer is obtained from continuum
electrostatics. An efficient method was proposed recently by Roux et al. to include
the inhomogeneous reaction field during the MD free energy step directly, eliminat-
ing the need for a transfer step [65, 66]. The ICRF approaches are similar in spirit
to the shell models of Warshel et al., but employ a continuum dielectric environment
rather than polarizable dipoles. In both cases, by combining MD simulations without
truncation and a sophisticated treatment of bulk solvent, all the relevant electrostatic
interactions are included. The efficiency of the ICRF methods makes them attractive
alternatives to periodic boundary models and Ewald summation.

13.3 Recognition and Association: Following the Binding
Reaction

Investigation of recognition and association processes involves the definition of an
order parameter that delineates rigorously the approach of the two chemical species.
Our ability to determine the underlying free energy changes along the order parame-
ter is central to the study of these processes of fundamental chemical and biologi-
cal interest. Definition of a nonambiguous order parameter, possibly a true reaction
coordinate, constitutes the sine qua non condition to compute the free energy. There
are noteworthy examples where a practical reaction coordinate is difficult to find.
Such is the case of protein–ligand recognition and association, where the ligand
must be brought from the free, unbound state, into the binding pocket. A number
of authors have, however, considered the reverse, dissociative transformation, which
consists of extracting the ligand from the protein towards the bulk aqueous medium
by means of an external force applied within a reasonable pulling regime.

Historically, pioneering free energy calculations along an order parameter mainly
relied on Monte Carlo simulations, using multistage sampling [67] and the so-called
umbrella sampling (US) [68] numerical schemes, which are described in Sect. 3.3. In
the latter, a bias is applied to the system to overcome the barriers and escape from the
minima of the free energy landscape, thereby guaranteeing a uniform sampling along
the order parameter. Biases are not known a priori and must be guessed intuitively
by the modeler, which may be cumbersome for qualitatively new problems. Ideally,
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to obtain a uniform sampling of conformational space, the bias should correspond
to the negative of the free energy. US simulations are distinct from stratification
strategies, which break the reaction path into a large number of narrow windows, in
each of which sampling is necessarily expected to be fairly uniform. US simulations
were pioneered by Patey and Valleau, who derived the free energy profile describing
the interaction of an ion pair dissolved in a dipolar fluid [69]. The early successes
prompted a growing community to follow this path for novel, exciting investigations
of recognition and association phenomena.

Thus, Pangali et al. applied Monte Carlo simulations to examine the hydrophobic
effect in a very simplistic model formed by two Lennard-Jones spheres in a bath
of 214 water molecules [70]. Employing a multistage strategy, they were able to
recover successfully the signature of the hydrophobic effect. Notably, in 1979,
their free energy profile was in excellent agreement with predictions based on the
Pratt and Chandler model [71]. Furthermore, it would be confirmed by subsequent,
much longer simulations, using far more sophisticated models and potential energy
functions [72, 73]. Following similar multistage strategies, Jorgensen and cowork-
ers investigated a variety of association processes of chemical systems, including
the mutual interaction of aromatic compounds [74], and that of aromatic compounds
with chaotropes [75]. In 1987, Tobias and Brooks used thermodynamic perturba-
tion theory to explore the free energy surface of two tagged argon atoms in liquid
argon [76] and observed the expected features for such a system, viz. a contact and a
solvent-separated minima. Since then, many authors studied free energies of associ-
ation of small molecules in order to improve our general understanding of the nature
of the primitive hydrophobic effect and wetting/dewetting phenomena [77, 78]. Em-
ploying thermodynamic integration, Peter Kollman and coworkers tackled the associ-
ation of somewhat larger solutes in aqueous environments to decipher the underlying
physical principles that drive π–π [73, 79] and cation–π [80] association.

Ion–ion recognition and association also represents an important field of applica-
tions for free energy calculations. The seminal articles in this area focused primarily
on the potential of mean force delineating the interaction of oppositely charged, sim-
ple ions solvated in water, addressing the existence of contact and solvent-separated
ion pairs [81, 82]. The demonstration that free energy calculations could provide a
bridge between the structural detail of ion pairs and their associated energetics was
rapidly fueled by several studies tackling a variety of solvated ionic systems, includ-
ing like-charge ion pairs [83–85]. More recently, Rozanska and Chipot employed US
simulations with different periodic boundary conditions to examine the reversible
association in water of a guanidinium cation and an acetate anion along their C2v

axis [86]. Ewald boundary conditions yield the expected features of the free energy
profile: A contact and a solvent-separated minimum, with the free energy tending
towards qGdm+qAcO−/4πε0ε1r at large separations r. Here, qGdm+ and qAcO− are,
respectively, the charges of the cation and the anion, ε0 is the permittivity of vacuum
and ε1, that of water. In contrast, using a 12 Å cutoff leads to a physically unreal-
istic, repulsive profile. This result suggests that great care ought to be taken when
simulating hydrated proteins that feature salt bridges between the charged amino
acids, usch as arginine and aspartate.
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Compared to US and its subsequent variants, the ABF method obviates the
a priori knowledge of the free energy surface. As a result, exploration of ξ is only
driven by the self-diffusion properties of the system. It should be clearly under-
stood, however, that while the ABF helps progression along the order parameter,
the method’s efficiency depends on the (possibly slow) relaxation of the collective
degrees of freedom orthogonal to ξ. This explains the considerable simulation time
required to model the dimerization of the transmembrane domain of glycophorin A
in a simplified membrane [54].

13.4 Free Energies of Solvation

Because of its simplicity, the calculation of the free energy of solvation was one of
the first practical applications of the free energy perturbation and integration method-
ology [87, 88]. Today, solvation free energies remain of primary importance both for
testing new methodology, for developing and testing force fields, and for specific
applications such as predicting how molecular compounds will partition between
different environments [89]. The free energy of solvation corresponds to the free
energy of transferring a compound from one well-defined reference state (gas) to
another (solution), allowing a direct comparison with experiment. In addition, as the
interaction of a solute with its environment in the gas state (vacuum) is effectively
zero, only the interactions of the solute with a particular solvent environment need
be considered.

One of the most influential applications of free energy calculations over recent
years has been the use of solvation free energies for the refinement and verifica-
tion of empirical molecular force fields. Thermodynamic properties such as excess
free energies and free energies of solvation have long been used in the parametriza-
tion of models for simple molecules and solvents such as water [90] and methanol.
However, the parameter sets used to describe most compounds have historically
been based primarily on structural properties and fitting to the results from quantum
mechanical calculations. This is despite the fact that many of the properties of inter-
est, especially in biomolecular systems, such as protein or peptide folding, depend on
how compounds partition between different environments. The primary reason why
thermodynamic properties have until recently not been more generally incorporated
into force field parametrization was cost, and the difficulty in obtaining converged
results.

Jorgensen and coworkers did nevertheless make extensive use of solvation free
energies over many years for the verification of the OPLS force field [91–93]. In
particular, solvation free energies have long been used to rationalize the choice of
partial atomic charges. Although electron density can be determined from quantum
mechanical calculations (and experiment), the assignment of partial atomic charges
is an artificial construct and as such, subjective and highly model-dependent. Sol-
vation free energies have been used both to justify the use of a particular charge
model (such as the so-called restrained electrostatic potential (RESP) charges which
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proved highly successful in reproducing free energies of solvation for a range of
compounds [94]) or for the introduction of specific charge-scaling factors [95, 96].

A shift in force field parametrization came when Daura et al. [97] began to use
solvation free energies as a primary input in the parametrization of aspects of the
GROMOS force field. An immediate offshoot of this was a dramatic improvement in
the accuracy with which folding of small peptides could be predicted in solution [98].
In 2003, Villa and Mark [99] published a systematic study of the free energy of sol-
vation in water and hexane of neutral analogues of 18 of the 20 common amino acids
based on the GROMOS96 force field using a thermodynamic integration approach.
Notably, the hydration free energies of the analogues of the polar amino acids were
shown to be too positive; in essence, the polar amino acids in the force field were
too hydrophobic. Equivalent studies by Macallum and Tieleman [100] using the
OPLS force field and Shirts et al. [101] using CHARMM [102], AMBER and OPLS all
demonstrated a similar systematic underestimation of the interaction of polar solutes
with water. Using a distributed computing approach and dedicating the equivalent
of ca. 200 CPU years (viz. Celeron 1 Ghz) to the calculation, the solvation free
energies for 15 amino acid side analogues were determined to unprecedented preci-
sion, i.e., three significant figures. This left no question that the observed deviation
from experiment, greater than 2 kcal/mol in some cases, was significant. This work
is leading to changes in force field parametrization. For example, the latest versions
of the GROMOS force field, the 53a5 and 53a6 parameter sets, have specifically been
developed to reproduce free enthalpy of hydration and solvation [103]. Notably, two
parameter sets were published, as it proved impossible to reproduce simultaneously
the properties of pure (low dielectric liquids) and hydration free energies using a
single charge set. This provides compelling evidence for the need to include explicit
polarization in empirical force fields. It also opened the question of the reliability of
the solvent models used as a reference. Shirts and Pande have, for example, proposed
a modified version of the TIP3P model of Jorgensen, specifically parameterized to
better reproduce solvation free energies with existing force fields [104].

In addition to being used to verify and refine current empirical force fields,
calculations of the free energy of solvation at times challenge our basic assumptions
regarding chemical systems and the adequacy of current models used to describe
them. For example, in contrast to simple hydrophobicity arguments, the successive
methylation of amines does not lead to a monotonic increase in solvation free energy.
At one level, such anomalous behavior highlights the inadequacy of predictions
based on group contribution models and suggests that rigorous thermodynamic per-
turbation approaches should be applied even in apparently simple cases. However,
despite their best efforts, a succession of workers [105–107] failed to reproduce the
trend observed experimentally using perturbation approaches. Even the inclusion
of polarization effects, which had been argued was the reason for the anomalous
behavior of such amines, did not lead to a significant improvement in the agreement
between the calculations and experiment [108]. We note that several workers have
recently claimed to have resolved this issue by developing specific all-atom and
united-atom models that reproduce the observed experimental trends [109, 110].
However, the need to introduce specific parameters for each compound in what is



476 C. Chipot et al.

in effect a homologous series simply underlines the limitations of our current abil-
ity to describe such systems. Nevertheless, despite questions in regard to how best
to model specific systems there is little doubt that our growing ability to use free
energy perturbation methods to reliably estimate thermodynamic properties such as
solvation free energies is improving the reliability and driving the convergence of
molecular force fields.

13.5 Transport Phenomena

Transport properties of molecular assemblies may also be investigated through the
computation of free energy profiles along a representative order parameter. Here, the
vocabulary transport embraces both the translocation of a solute across the interface
separating two media of different dielectric permittivities and the permeation through
integral membrane proteins. Simulation of transport processes are closely related to
the previous topic of solvation free energies. In particular, studying its equilibrium
aspects, such as partition coefficients may be viewed as a special case of solvation
free energy calculations.

13.5.1 Partitioning Between Solvents

Differential solvation properties and partition coefficients may be investigated using
free energy calculations [111–114], in particular perturbation theory, wherein the
solute is either created or annihilated in two different solvents, i.e., by determining
∆∆Asolvation = ∆A2

creation−∆A1
creation, where ∆Ai

creation denotes the free energy
change upon creation of the solute in solvent i, from which the partition coefficient,
log10 P1,2, may be inferred. Whereas the partition coefficients, log10 P1,2, indicate
the propensity of a given solute to translocate spontaneously between solvent 1 and
solvent 2, they provide no information on the thermodynamics of this process and
the underlying interfacial properties of the solute. This crucial information may, how-
ever, be accessed by computing the free energy profile along the direction normal to
the surface that separates the two media [115].

One of the major shortcomings of the additive pairwise approximation used in
classical potential energy functions lies in the absence of explicit induction effects,
which may modulate significantly the computed free energy differences character-
izing the translocation of a solute between two media of different dielectric permit-
tivities. Electrostatic potential-derived point charges representing the isolated solute
described by an unperturbed, ground-state wave function, ψ0, and a Hamiltonian,
Ĥ0, correspond to an underestimated polarity when the latter is immersed in a polar
environment, e.g., water. Symmetrically, point charges derived from the electrostatic
potential obtained from a polarized wave function, ψ, and a perturbed Hamiltonian,
Ĥ , often largely overshoot the molecular dipole moment. This excess of polarity
may be characterized by a reversible work for ‘inflating’ the charges borne by the
solute, known as the distortion energy [95, 113], ∆Adistort, and defined by:
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∆Adistort =
〈
ψ
∣∣∣Ĥ0

∣∣∣ψ
〉
−
〈
ψ0

∣∣∣Ĥ0

∣∣∣ψ0

〉
. (13.1)

Considering that, roughly speaking, the electrostatic component of the solvation
free energy varies as the cube of the molecular dipole moment, it becomes obvious
that the corrective term (13.1) should be taken into account in the determination of
differential solvation properties of very polar solutes. In the computation of trans-
fer free energies across an interface, it has been suggested that equation (13.1) be
expressed as a function of the number density of one of the two media, so that the
correction is zero in solvent 1 and ∆Adistort in solvent 2 [115].

Hydration may be viewed as a special case of differential solvation, where
solvent 1 is described by a water lamella in equilibrium with the gas phase that
corresponds to solvent 2. The hydration free energy is determined from the free
energy profile that delineates the transfer of the solute across the water–air inter-
face. Accurate reproduction of this quantity using effective intermolecular poten-
tial energy functions has proven to be a difficult task, because the solute is ex-
pected to undergo significant changes in its polarization upon translocation from
the gas phase to the aqueous medium [95]. Equally challenging is the estimation
of adsorption free energies, which may be inferred from the profile that describes
the free energy changes along the direction normal to the aqueous interface, and
compared readily to second-harmonic-generation experiments [116, 117]. Pohorille
and Benjamin pioneered in the endeavor of accessing adsorption free energies from
molecular statistical simulations [118]. From their US simulations, they predict the
adsorption free energy of phenol at a water–air interface to be equal to −2.8 kcal/mol,
to be compared to the experimental value of −3.8 kcal/mol. For the same system,
Chipot reports a largely underestimated adsorption free energy of −1.7 kcal/mol, but
a hydration free energy of −6.6 kcal/mol, which coincides almost perfectly with the
experimental value of −6.5 kcal/mol [95]. That different theoretical calculations can
yield good agreement with different experimental quantities reflects more the limi-
tations of pairwise additive force fields than the difficulty to obtain converged free
energy profiles for relatively simple molecular systems.

In principle, free energy calculations could serve as a predictive tool for estimat-
ing water–membrane partition coefficients of small drugs, in strong connection with
the so-called blood–brain barrier (BBB). Along with the assessment of their toxicity,
this would represent the ultimate step in a rational, de novo design of pharmaco-
logically active molecules. Diffusion of small, organic solutes in lipid bilayers has
been examined for a variety of molecular species ranging from benzene [119, 120]
to more-complex anesthetics [121, 122]. Accessing partition coefficients through
statistical simulations implies, however, the determination of the underlying free
energy changes along an appropriately chosen order parameter, like the direction
normal to the interface [123]. In the specific instance of inhaled anesthetics, analy-
sis of the variations of the free energy for translocating the solute from the aqueous
medium into the interior of a lipid bilayer suggests that potent anesthetics reside pref-
erentially near the water–membrane interface. In sharp contrast with the dogmatic
Meyer–Overton hypothesis [124], potency has been shown to correlate with the inter-
facial concentration of the anesthetic, rather than only its lipophilic properties [125].
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Models of lipid bilayers have been employed widely to investigate diffusion
properties across membranes through assisted and non-assisted mechanisms. Sim-
ple monovalent ions, e.g., Na+, K+, and Cl−, have been shown to play a crucial role
in intercellular communication. In order to enter the cell, the ion must preliminarily
permeate the membrane that acts as an impervious wall towards the cytoplasm. Pas-
sive transport of Na+ and Cl− ions across membranes has been investigated using
a model lipid bilayer that undergoes severe deformations upon translocation of the
ions across the aqueous interface [126]. This process is accompanied by thinning
defects in the membrane and the formation of water fingers that ensure appropriate
hydration of the ion as it permeates the hydrophobic environment.

Free energies of solvation, in general, and the determination of partition coef-
ficients, in particular, are also widely used to benchmark free energy perturbation
methods against alternative approaches and the explicit treatment of solvent against
continuum representation such as PB calculations or the increasingly popular gen-
eralized Born (GB) models. For instance, Best et al. [114] performed extensive cal-
culations on a series of eight small organic compounds in water and water saturated
octanol using the AMBER force field. They compared explicit free energy calcula-
tions and calculations based on a GB model to differences in solvation free energy
and partition coefficients obtained experimentally. Using an explicit perturbation
approach, the average unsigned error in the solvation free energies was 1.34 kcal/mol
in water-saturated octanol, and 1.28 kcal/mol in water. The error in the octanol/water
partition constants was significantly smaller at 0.74 kcal/mol which suggests some
cancelation of error and small but systematic problems with the force field. Interest-
ingly, using the more computationally efficient GB model the error in the partition
constants was only 0.50 kcal/mol. The force field used in conjunction with the GB
model was identical to that used in the explicit simulations. This begs the question
of whether continuum methods provide a better representation of the electrostatic
contributions to the solvation free energy or whether the GB agreement was partly
fortuitous.

13.5.2 Assisted Transport in the Cell Machinery

The considerable free energy associated with the transfer of ions from the aque-
ous medium to the interior of the membrane [126] rationalizes the use of specific
membrane channels and transporters by the cell machinery, facilitating and control-
ling selectively the passage of ionic species across the lipid bilayer [127–129]. For
instance, gramicidin A, a prototypical channel for assisted ion transport across mem-
branes, has been the object of thorough analyses on both experimental and theoretical
fronts. MD has proven to be able to reproduce the key structural features observed
experimentally [129], thereby suggesting that ion selectivity and binding in mem-
brane carriers, as well as gating mechanisms are amenable to atomistic simulations,
in general, and free energy calculations, in particular.

Schulten and coworkers coupled SMD [23] simulations with the Jarzynski iden-
tity [102] to derive the free energy profile for glycerol conduction in the facilitator
GlpF, a channel that allows the selective passage of water and small, linear alcohols,
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e.g., glycerol [106]. Beyond the computational challenge of performing free energy
calculations on a large molecular assembly, this study rationalizes experimental ob-
servations by highlighting potential binding sites along the conduction pathway, to-
gether with energetic barriers.

The unique role played by the NPA motif of GlpF was the object of a related
investigation aimed at deciphering the molecular mechanism that prevents proton
translocation across aquaporins. Chakrabarti et al. determined the reversible work
involved in: (i) the transfer of a proton across the single-file water wire formed in the
pore, and (ii) the subsequent reorganization of that water wire [130]. In the absence of
the proton, the second step is impeded by the bipolar orientation of water around the
NPA motif. On the other hand, proton transfer is strongly disfavored by a large free
energy barrier arising at the location of the NPA region. The electric field generated
by the channel appears to act against proton translocation from the periplasm to the
cytoplasm.

Aquaporins have been the object of active research targeted at understanding
how nature controls the selective passage of small molecules across the biological
membrane. Combining nonequilibrium MD simulations and the Jarzynski equality,
Tajkhorshid and coworkers proposed to pinpoint the key features that distinguish
Escherichia coli AqpZ, a pure water channel, from GlpF [131]. Coercing the passage
of glycerol through AqpZ results in a free energy barrier approximately three times
higher than that characterizing GlpF, which may be ascribed to steric hindrances in
the narrow region of the selectivity filter. The computed free energy profiles also
reveal differences in the periplasmic vestibule of the channels, the deeper minimum
of GlpF being proposed to enhance the capture of glycerol.

Crystal structures of the potassium channel KcsA were determined recently, and
a wide range of biophysical and electrophysiological data are available. A series of
MD free energy studies have been performed, in which the role of the ligand is played
by one or more of the transported ions [12, 58, 132, 133]. In particular, the ability of
potassium and sodium to bind in the KcsA pore were compared. The selectivity of the
pore was compared to a series of simpler systems — viz. liquid N-methylacetamide
(essentially a liquid of peptide groups), the cyclic ionophore valinomycin, and sev-
eral simpler model systems [12]. By considering systems of varying rigidity and
polarity, it was shown that the pore selectivity arises from a balance between the
attractive interactions between the ion and the backbone carbonyl groups, and repul-
sion between the carbonyl groups. This balance is sensitive to the size of the ion, and
is robust with respect to the thermal fluctuations of the pore.

An earlier, structure-based hypothesis had proposed that the selectivity was deter-
mined by a precise and rigid size complementarity between the pore and potassium;
this rigid complementarity is inconsistent with the plasticity of the KcsA structure
and is not needed for selectivity. Additional simulations examined in detail the mech-
anism of ion conduction through the channel [58, 132, 134]. The translocation of
K+ ions in single file through the narrowest region of the pore is expected to be
the rate-limiting step in the conduction mechanism. In both studies, ion conduction
was found to involve transitions between two or three main states, with either two
or three K+ ions occupying the selectivity filter in the KcsA pore. Small differences
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between the studies are compatible with the expected MD free energy uncertainty.
The largest free energy barrier was about 2–3 kcal/mol, so that ion conduction is lim-
ited by diffusion [58, 132]. This example illustrates further the power of free energy
simulations, where dynamical and thermodynamical data are obtained from the same
set of computer experiments, and direct comparisons can be made to model systems,
some of which cannot be studied experimentally.

13.6 Protein Folding and Stability

An often proposed and potentially very exciting application of the free energy pertur-
bation methods is the prediction of the effect of mutations on protein stability. In the
early 1990s, this attracted much attention, especially after calculations of Kollman
and coworkers [135, 136] showed good correlation with experiment. This was
despite limited simulation times and the very challenging nature of the calculations.
To estimate the effect of amino acid substitution on protein stability, one must con-
sider not just the effect within the folded protein, but also the effect of the mutation
on the unfolded state. While the determination of the effect of a substitution in the
folded state is fairly straightforward, the unfolded state is problematic, due to our
inability to define an appropriate structural model. In many early studies, the un-
folded state was simply approximated by a short peptide in an extended conforma-
tion. While this might be adequate if the residue in question was fully exposed to the
solvent, it quickly became clear this approach was not generally applicable. Unfor-
tunately, the agreement with experiment in many early studies appeared to have been
simply fortuitous [137]. The rise and sudden fall in the use of free energy methods
to predict changes in protein stability provides an important illustration of how to
select successful applications. Free energy calculations perform well when used to
determine the difference in free energy between two well-defined states. In the case
of protein stability the problem is not simply that an unfolded protein cannot be ad-
equately modeled as an extended chain, but that in principle, all possible unfolded
states must be considered. Although attempts have been made to combine multiple
states, for example a proposed unfolded state and a proposed transition state [138],
the real utility of these calculations is questionable.

This said, well-chosen free energy calculations can be used to address important
issues associated with protein stability. For example, Hodel et al. [139] investigated
the effect of cis–trans proline isomerization on the stability of staphylococcal nucle-
ase. In this case the unfolded reference state is the same and the difference in free
energy dependent solely on the nature of the folded state. In other cases important
insight can be gained despite the uncertainties in relation to the value of the calcu-
lated free energy an example being the effect of helix capping in lambda–cro pro-
tein [140]. Caution must, however, always be used when attempting to gain insight
from simulations involving poorly defined end states or based on an assignment of
components [45]. As noted above, the assignment of free energy components are
force field and pathway dependent. As such, free energy components do not have
a clearcut physical interpretation that can be directly related to experiment [49].
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Rather, their value is for qualitative comparisons between series of similar systems,
with free energies computed along similar pathways [141]. A practical illustration
of this is the work of Prevost et al. [142] and of Sun et al. [143], which aimed to
determine the contribution of hydrophobicity to the effect of the mutation Ile96Ala
on the stability of barnase. This is a comparatively trivial mutation and both sets
of workers obtain estimates of the change in stability in close agreement with ex-
periment. However, whereas Prevost et al. [142] found that hydrophobicity makes
a minor contribution to the change in stability, Sun et al. [143] found that it is the
dominant contribution. This difference may in part be related to differences in the
force field used, but is primarily attributable to differences in methodology with
one group using a dual topology approach while the other scaled individual terms in
the force field to effect the mutation. Another example was discussed above, where
mutations in the protein azurin were performed along very different pathways, lead-
ing to different free energy components [49].

13.7 Redox and Acid–Base Reactions

13.7.1 The Importance of Electrostatics

In biochemical systems, acid–base and redox reactions are essential. Electron trans-
fer plays an obvious, crucial role in photosynthesis, and redox reactions are central
to the response to oxidative stress, and to the innate immune system and inflamma-
tory response. Acid–base and proton transfer reactions are a part of most enzyme
mechanisms, and are also closely linked to protein folding and stability. Proton and
electron transfer are often coupled, as in almost all the steps of the mitochondrial
respiratory chain.

Acid–base and redox reactions have also been used extensively to probe elec-
trostatic interactions in proteins. Indeed, the proton binding constants of titratable
groups in a protein are highly sensitive to electrostatic interactions with their sur-
roundings, including other protein groups or cofactors, aqueous solvent, counteri-
ons, lipids, and other macromolecules. The same is true for the redox potential of a
protein group or cofactor, such as a heme or an iron–sulfur cluster. Interactions with
specific protein side chains can be probed by site-directed mutagenesis.

In both the cell and the test tube, proteins are surrounded by aqueous solvent and,
in many cases, lipid bilayers. The dielectric properties of the protein interior contrast
sharply with those of the highly polarizable aqueous solvent. The electrostatic inter-
action between two amino acids cannot be deduced from a simple Coulomb’s law:
dielectric shielding by protein and especially by solvent must be accounted for. In
addition, when a charge such as a redox electron is transferred to a site within a pro-
tein, the protein and solvent relax, or reorganize; the corresponding reorganization
free energy makes an important contribution to the redox potential. Finally, when a
charge is transferred from a small molecule in solution to a protein interior, one must
take into account not only the interactions within the protein, but also the attractive
interactions with solvent that it experienced prior to the transfer. Within the protein,
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the interactions with solvent are reduced, so that a partial desolvation of the charge
has occurred. Polar groups within the protein may or may not be able to compensate
effectively for the desolvation. The solvent contribution to the transfer free energy
can be thought of as a ‘desolvation penalty’. It represents an important contribution
to the redox potential difference (or pKa difference) between the protein and the
small molecule. Similar considerations apply to the protein folding reaction.

These effects are difficult to analyze fully with experiments alone, and free en-
ergy simulations are a powerful complementary tool. One of the first applications of
MD free energy to proteins was a study of an acid–base reaction [144]. For these
problems, it is especially important to model long-range electrostatic interactions
accurately and efficiently. Methods such as those described in the previous section
(e.g., particle mesh Ewald) are now readily available in many simulation programs.
With molecular dynamics free energy and an explicit treatment of solvent, the sol-
vent shielding of protein charges is automatically included, as are protein and sol-
vent dielectric relaxation. Recent studies have considered both redox and acid–base
processes, including problems related to photosynthesis and respiration. An espe-
cially fruitful area is the study of enzyme reactions, where the reactive part of the
system is treated quantum mechanically (QM/MM treatment). Another recent de-
velopment is to perform MD simulations in an extended thermodynamic ensemble,
where protons can freely bind to the protein or dissociate, effectively simulating a
constant pH ensemble. This provides another route to obtain proton binding con-
stants [145–147]. Recent studies have also illustrated two outstanding difficulties.
One is the difficulty to obtain sufficient conformational sampling and convergence
of the thermodynamic properties, because of the long dielectric relaxation times
that are often involved. Another is the need for polarizable force fields in certain
cases. In the next sections, we describe selected recent studies that illustrate these
different aspects. Many earlier studies have been reviewed elsewhere; see for exam-
ple [63, 148, 149].

13.7.2 Redox Reactions and Electron Transfer

In the MD free energy context, electron transfer has usually been modeled as a sim-
ple, classical mechanical, electrostatic process [56, 150–152]. The redox electron is
treated as a set of point charges. The transfer reaction consists of shifting the charges
from a small group of donor atoms to a group of acceptor atoms. This leads to a
reasonable description of outer-sphere contributions to the redox potential, and to a
particularly simple MD free energy setup. The model can then be improved in several
ways. For example, quantum mechanical effects associated with inner-sphere groups
can be treated separately, by performing ab initio calculations on a small fragment
of the protein. A more sophisticated method is to include quantum effects during
the MD free energy simulations, either through a path integral treatment of nuclear
degrees of freedom [141, 153], or through a QM treatment of selected electronic
degrees of freedom (the QM/MM method) [154], or both.

An important model system for electron transfer studies is the electron carrier
cytochrome c (Cyt c). Its redox center is a heme, coordinated by a histidine and
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a methionine. Oxido-reduction of yeast Cyt c and a small heme:peptide analogue,
microperoxidase-8 (MP8) were compared recently by FEP, using both classical and
quantum heme models, a large explicit solvent box, a particle mesh Ewald treat-
ment of long-range electrostatics, and long simulations (a total of 23 ns) [148, 150].
Several computational points are worth noting. Oxidizing the heme group changes
the net charge of the system. Since tin foil boundary conditions were used, a uni-
form, compensating, background charge density develops that exactly cancels the
new charge. Since the background charge density is uniform, it does not contribute
to the forces or perform any work, and can be ignored [155]. Since the system is
periodic, a contribution to the free energy change arises from interactions between
the redox electron and its images in other boxes. With the 59 Å box length used, this
contribution was very small (<0.25 kcal/mol). Finally, despite the long simulation
times, convergence of the free energy was only approximate. In particular, runs pre-
pared independently, using either the oxidized or the reduced Cyt c crystal structures
gave somewhat different free energy changes for Cyt c oxidation. The results from
different runs spanned a 7 kcal/mol range. The average over all runs was about 6
kcal/mol (relative to the MP-8 value), fortuitously close to the experimental value
of 7 kcal/mol. The scatter among runs could be attributed in part to the behavior of
a buried water molecule; in some runs, it diffused to the surface of the protein and
escaped, in disagreement with crystallographic data.

Despite the limited convergence and the simplicity of the overall model, this
study illustrates the information that can be obtained by FEP. The dielectric response
of the protein and solvent were found to be linear, and the reorganization free energy
was found to be a more robust property than the redox potential (in agreement with
experiment). The reorganization free energy for Cyt c oxidation was much smaller
than that for MP-8 in solution. The former free energy could be reproduced with a
dielectric continuum model, in which the heme was treated as a cavity, the rest of the
protein as one dielectric medium, and surrounding solvent as another. The solvent
dielectric constant was 80; that of the protein was just 1.1. This low value indicates
that the protein reduces its dielectric reorganization almost to the theoretical limit (a
dielectric of one). Note that the MD model did not include electronic polarizability,
so that these dielectric values refer to atomic reorganization, not electronic polariza-
tion. Together with the Marcus estimate of the electron transfer rate, this result means
that Cyt c is a ‘dielectrically perfect’ enzyme: by reducing its atomic reorganization
to the theoretical limit, it speeds up electron transfer to the greatest possible extent.

Studies of ferredoxin [152] and a photosynthetic reaction center [151] have an-
alyzed further the protein’s dielectric response to electron transfer, and the protein’s
role in reducing the reorganization free energy so as to accelerate electron trans-
fer [152]. Different force fields were compared, including a polarizable and a non-
polarizable force field [151]. One very recent study considered the effect of point
mutations on the redox potential of the protein azurin [56]. Structural relaxation
along the simulated reaction pathway was analyzed in detail. Similar to the Cyt c
study above, several slow relaxation channels were found, which limited the ability
to obtain very precise free energy estimates. Only semiquantitative values were



484 C. Chipot et al.

obtained, as in [141]. Finally, a QM/MM MD free energy treatment was developed
and applied to study FAD reduction in cholesterol oxidase [154].

13.7.3 Acid–Base Reactions and Proton Transfer

MD free energy studies of proton transfer present similar features and similar dif-
ficulties. Proton binding is usually modeled as a rearrangement of atomic charges
(Fig. 13.3). Often, the goal is to compare proton binding to a protein side chain, such
as an aspartate, and to an analogous, small molecule in solution, such as acetate.
Comparison of the binding free energies yields the pKa shift of the protein side
chain, relative to the small molecule:

pKa,prot = pKa,model +
1

2.303 kBT
∆∆G. (13.2)

Here, pKa,prot and pKa,model refer to the protein and the small molecule,
respectively, and ∆∆G is the difference between the proton binding free energies
to the protein and to the small molecule. Interactions between the positive charge of
the proton and the surrounding protein and solvent are very strong, so that the pro-
tonation free energies are large, and ∆∆G is obtained as a difference between two
large numbers.

In one recent study, the pKa values of three aspartate side chains in two pro-
teins were computed [156]. The aspartates had, respectively, a large pKa upshift, a
large downshift, and an unshifted pKa. Long, repeated simulations were performed
with two force fields. The upshifted aspartate was partly buried within the protein
(thioredoxin). For this case, several slow relaxation channels were identified. They
correspond to protein degrees of freedom that couple strongly to the reaction coordi-
nate (the gradual protonation of the aspartate) and adjust on a nanosecond timescale.
They include the rotation of the aspartate itself around its own χ2 dihedral angle,
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Fig. 13.3. Schematic view of an aspartate molecule showing the atomic charges that are
changed going from the ionized form (lower values) to the neutral form (upper values). The
specific values are taken from the CHARMM22 force field.
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rearrangements of a chain of water molecules that runs alongside the aspartate, re-
arrangements of side chains that line the water chain, and the rotation of a nearby
lysine to form a salt bridge with the ionized aspartate. Thus, it was difficult to obtain
adequate convergence of the corresponding pKa shift. A similar, slow convergence
was observed in another recent study [51]. Furthermore, the ionized state was un-
derstabilized by both force fields (AMBER [157] and CHARMM [102]), leading to an
error of 3 units for the computed pKa. This is probably because the partly buried
Lys–Asp salt bridge was not correctly described with the fixed atomic charges em-
ployed. A polarizable force field may be necessary to capture the correct magnitude
of the interaction. For the unshifted and the downshifted pKa values, the experimen-
tal behavior was captured more accurately.

Enzyme reactions frequently involve proton transfer and acid–base reactions.
They can be studied with FEP, using either classical or quantum mechanical methods
[63, 158, 159]. Many studies have been done with either semiclassical, empirical va-
lence bond methods or with QM/MM methods using a semi-empirical Hamiltonian
(e.g., AM1 or PM3). For instance, the multistate empirical valence bond model has
recently been extended to describe the protonation of titrable amino acids and the
determination of accurate of free energy profiles delineating acid ionization and the
corresponding pKa values [160], thereby opening the way to the simulation in pro-
teins of proton transfer between protonable residues [161–163]. The QM/MM meth-
ods automatically include electronic polarizability within the QM region. All these
studies have played an essential role in elucidating the basic mechanisms of enzyme
catalysis and the range and limitations of transition state theory [63, 158]. For exam-
ple, Warshel and coworkers have accumulated a large body of evidence to document
catalysis by electrostatic stabilization of the transition state. It is beyond the scope
of this chapter to present the QM/MM methodology for FEP; we refer to earlier
books [63, 164] and to several recent articles [154, 165, 166], which provide just a
small, illustrative sample of the recent literature.

13.8 High-Performance Computing

Even with sophisticated, modern sampling methods, the calculation of free energy
quantities with experimentally relevant precision and accuracy can still be an enor-
mous challenge. Thus, there are many types of free energy calculations that can sig-
nificantly benefit from high-performance computing. In this section, we will review
some of these new methods and applications which efficiently utilize new, massively
parallel computer architectures to improve the speed, precision, and accuracy of such
calculations, concentrating on biomolecular free energies. While, biomolecular free
energies are of course not the only free energies of interest to the scientific commu-
nity, this field is sufficiently diverse to demonstrate a range of methods, approaches,
and applications.

For example, calculating the affinity of ligand–protein binding (a natural first
step in structure-based, computational drug design) is a canonical application of free
energy methods. It is important to ask why are drugs not ‘engineered’ like other
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pieces of technology in modern life, like bridges or automobiles. In all of these cases
(drugs, bridges, automobiles), the fundamental physics is understood. However, the
accuracy needed in assessing the ligand binding free energy of binding is surprisingly
high — at least 1 kcal/mol and ideally 0.5 kcal/mol or better — and this level of
accuracy would be extremely difficult to achieve, if possible at all. If possible, such
a technique could revolutionize the early stages of drug design and has been a goal
of free energy calculations for many years.

However, while one goal of free energy calculation must be high accuracy (and
corresponding high precision), another important goal is computational tractability.
Clearly if a calculation is impossible to perform (or effectively impossible due to
exceedingly high computational requirements), such a calculation would not be use-
ful for applications. Moreover, with the goals of screening over a large number (e.g.,
100,000 to 1,000,000) by calculating the ligand binding free energy for each ligand
bound to the desired protein, the computational tractability of a given calculation
becomes of even greater importance.

Herein lie two fairly different approaches to this problem. One approach consid-
ers the computational tractability to be paramount, and in this case, one is willing
to sacrifice accuracy for tractability. Protein–ligand docking is an example of this
approach, and due to its tractability, has become a very prevalent means to quickly
assay how well a ligand can bind to a protein.

The opposite approach has also been considered: to make accuracy paramount,
independent of computational cost. For example, these cases typically employ the
most accurate methods and complex sampling methods, both of which contribute to
the computational complexity of the calculation. Clearly, just because a calculation
is computationally demanding does not in itself demonstrate that it will be more ac-
curate. However, elements which contribute to the accuracy of a calculation in terms
of more accurate models — e.g., all-atom models, explicit solvation — or enhancing
the degree of sampling would clearly be more computationally demanding.

While such highly accurate methods may not be universally practical today, on
account of their large computational demands, they are useful for forecasting the
future of free energy methods. Even after decades of exponential growth in computer
speed, computers are still expected to grow exponentially faster for at least another
10–15 years, thereby yielding a 1000-fold increase in computer power. That, coupled
with new methods in massively parallel and grid-based computation, suggests that
the computational resources available to the average researcher in 15 years will be
1000- to 1,000,000-fold times greater than what is available today.

What could one expect from such computational power? The inherent challenge
lies in the tradeoff that one must make: with a fixed computational budget, does one
perform more rigorous sampling with a less detailed model, or less sampling with
a more accurate model? However, without sufficient sampling (leading to a high-
precision calculation), it is impossible to truly assess the accuracy of the models.
Thus, enhancing sampling is a natural place to start in order to take the next steps.

To examine the accuracy of solvation free energies, first one needs to achieve a
sufficient precision to compare with experiment. This was recently done extensively
by Shirts et al. [101], where the Folding@Home distributed computing network
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was used to perform extensive TI calculations of amino acid side-chain analogs.
They achieved a high degree of statistical precision in their simulations, obtaining
uncertainties for the free energy of hydration of 0.02–0.06 kcal/mol, equivalent to
that obtained in experimental hydration free energy measurements of the same mole-
cules. They found that the free energies were surprisingly accurate (with a typical
RMS error of 0.6 kcal/mol). Moreover, they found that there was an overall trend to
make amino acid side chains less soluble in solution, as pointed out above.

13.8.1 Enhancing Sampling: A Natural Role for High-Performance
Computing

In many cases of interest, such as protein–ligand binding, the desired timescales for
sampling (microseconds to milliseconds) are typically beyond what is possible with
modern atomistic simulations (nanoseconds). How can one surpass this 1,000- to
1,000,000-fold impasse? One approach is to use existing supercomputing resources
(typically thousands of CPUs) to work together to speed a single calculation. This
more traditional approach has been used successfully in many areas, but has limita-
tions in scaling — typically, even with the fastest networks, one can only scale to
roughly 100 atoms per CPU. Thus, a 10,000 atom system could scale only to 100
CPUs. This limitation has led to the natural progression to study large systems (hun-
dreds of thousands to millions of atoms) for a relatively short timescale (nanosec-
onds). While there are several problems which are well served by this method, such
as water channels [167, 168] or ion channels [132, 169, 170], clearly complementary
methods would serve to address systems which cannot be examined by these means.

Recent advances in computational methodology suggest an alternate approach.
While a computer that is 100,000 times faster than the fastest CPUs does not exist, it
is possible to obtain grid computing resources with 100,000 processors [171, 172].
However, 100,000 CPUs is not the same as a single CPU which is 100,000 times
faster — one must make significant changes to the algorithms used. This paradigm
shift is analogous to that which occurred in the early 1990s when supercomputers
shifted to massively parallel machines, such as the Connection Machine CM-5 or
Cray T3D. New algorithms were needed to run on this new hardware paradigm: a
problem must be broken in multiple pieces, although fast communication between
CPUs allow for a reasonably tight coupling of calculations.

However, as traditional supercomputers only have a few hundred to thousand
CPUs, to obtain larger resources, distributed or grid computing methods have been
utilized. These distributed computing resources lead to another paradigm shift: even
more CPUs are present, but with much slower communication and typically with a
large diversity of CPU speeds. Finally, with such a large CPU array, it is common for
CPUs to join or leave the grid at any time, making dynamic load balancing and fault
tolerance a critical challenge. Thus, with these new challenges, new algorithms are
needed for this newer paradigm. While utilizing this unusual resource is a challenge,
if such a resource could be efficiently utilized, one should be able to reach levels of
sampling previously impossible [101, 104, 171–173].
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13.8.2 Conformational Free Energy

A natural application of high-performance computing is to conformational sampling,
which can be significantly enhanced using grid-based algorithms on large grids (e.g.
10,000 CPUs). Clearly, in most cases, running a single long simulation is not possi-
ble, due to the long timescales typical of conformational equilibration (milliseconds
to seconds) compared with simulation (nanoseconds). Towards this end, there are
a variety of approaches which have been employed, with differing goals, computa-
tional tractability, and outputs.

For example, Brooks and coworkers [174] pioneered the approach of calculating
the free energy landscape (or potential of mean force) from the equilibrium popula-
tion distribution. Because it is excessively time-consuming to reach equilibrium for
high-dimensional protein molecules with conventional molecular dynamics, simula-
tions are performed with US, already discussed in Sect. 1.3. A biasing potential is
added to the original Hamiltonian; the biased simulations are subsequently recom-
bined to remove the bias in a mathematically strict way [175]. The population distrib-
ution, P(q) can then be converted to the free energy with ∆A(q) = −1/β ln P(q).
With this approach, Brooks and coworkers have obtained the free energy landscape
and folding dynamics of an α-helical protein (viz. protein A [176]), an αβ mixed
protein (viz. GB1 [177, 178]), and a mostly β protein (viz. src-SH3 [179]) with nu-
merous successful comparisons to experiment.

US studies can produce informative free energy landscapes but assume that de-
grees of freedom orthogonal to the surface equilibrate quickly. The MD time needed
for significant chain or backbone movement could exceed the length of typical US
simulations (which are each typically on the nanosecond timescale). However, in
spite of this caveat, US approaches have been very successful. One explanation for
this success lies in the choice of initial conditions: US simulations employ initial
coordinates provided by high-temperature unfolding trajectories, which themselves
have been found to yield predictive information about the nature of the relevant con-
formational space.

A number of other techniques have been developed to overcome the long
timescales present in conformational sampling. For example, generalized ensemble
methods have played a significant role in new methodology for free energy calcula-
tion [180]. We will focus on parallel tempering, or replica exchange MD, which has
been widely used in protein folding simulations. In this approach, a number of simu-
lations (‘replicas’) are performed in parallel at different temperatures. After a certain
period (typically 0.1 to 1 ps), conformations are exchanged with a Metropolis prob-
ability. This criterion ensures that the sampling follows the canonical Boltzmann
distribution at each temperature. Ideally, kinetic trapping at lower temperatures is
avoided by exchanging conformations with higher temperature replicas. This method
is easier to apply than other generalized ensemble methods because it does not re-
quire a priori knowledge of the population distribution. However, replica exchange
is typically more computationally demanding than US, requiring more CPU days
for a given calculation. Also, it requires processors more tightly coupled (in terms
of their networking), thus making grid-based applications more difficult for replica
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exchange MD. However, one potential benefit of replica exchange MD over US is
that one need not specify order parameters a priori in replica exchange MD, allow-
ing one to potentially perform more-complex analysis with the same set of simulation
data.

Replica exchange MD has had a significant impact in the study of conformational
free energy in protein folding. After Sugita and Okamoto demonstrated its effective-
ness with a gas-phase simulation of a pentapeptide Met-enkephalin [181], Sanbon-
matsu and Garcı́a obtained the free energy surface of the same system using explicit
water [182]. With 16 parallel replicas they observed enhanced sampling (at least five
times) compared to conventional constant temperature molecular dynamics. Because
the method is quite simple and because it is trivially parallelized in low-cost cluster
environments, it gained wide application rapidly. Berne and coworkers applied this
method to obtain a free energy landscape for β-hairpin folding in explicit water us-
ing 64 replicas with over 4,000 atoms [183]. With the equilibrium ensemble and the
free energy landscape in hand, they reported that the β-hairpin population and the
hydrogen-bond probability were in agreement with experiments, and proposed that
the β-strand hydrogen bonds and hydrophobic core form together during the fold-
ing pathway. If care is taken to fully reach equilibrium [184], replica exchange MD
becomes powerful for elucidating the folding landscape. For example, Garcı́a and
Onuchic applied the method to a relatively large system, protein A [185]. With 82
replicas for more than 16,000 atoms with temperatures ranging from 277 to 548 K,
and with about 13 ns MD simulations for each replica, they reported convergence to
the equilibrium distribution with quantitative determination of the free energy barrier
of the folding.

Garcı́a and coworkers studied two 21-residue helical peptides, for which we re-
port equilibrium simulation results herein: the capped alanine homopolymer A21

(Ace–A21–NMe), which is naturally insoluble in water, and the Fs peptide (Ace-
A5[AAAR+A]3A–NMe), a soluble α-helical arginine-substituted analog of A21. Us-
ing replica exchange MD, with a total sampling time of ∼1.7 µs, they showed that
AMBER-94 overstabilizes helical conformations in both peptides [186] by compar-
ing the Lifson–Roig (LR) helix–coil parameters [187, 188] derived from simulation
to the experimentally determined values. In response to the poor agreement resulting
from that comparison, they introduced a modified potential, in which the φ and ψ
torsion potentials in the original AMBER-94 are set to zero, and found much better
agreement with experimental helix–coil parameters. In comparing the two sequences
they reported a shielding of backbone carbonyl oxygen atoms from the surrounding
aqueous media by the large arginine side chains four residues downstream acting to
stabilize helical polyalanine-based peptides with such insertions, as suggested in pre-
vious studies [189, 190]. Additionally, Nymeyer and Garcı́a compared generalized
Born (GB) implicit solvation with an explicit (transferable intermolecular potential)
representation of the solvent and showed that the implicit model significantly favors
a non-native, compact helical bundle in simulations of Fs [185], suggesting that an
explicit representation of the solvent may be needed to most accurately capture helix-
coil dynamics in simulation.
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Clearly, replica exchange MD is not a panacea, and there have been developments
to generalize this approach as well as to examine other generalized ensemble meth-
ods. For example, a replica exchange MD variant was further developed to include
exchanges in multidimensional Hamiltonian space in combination with US [191]. It
was also adapted to a heterogeneous parallel cluster by multiplexing the replicas at
each temperature [184]. Nevertheless, it suffers from one significant problem when
it is applied to significantly large systems. As can be inferred from the examples de-
scribed in the above (82 replicas for protein A versus 16 for Met-enkephalin), the
major drawback of the original replica exchange MD is the dependence of the num-
ber of replicas on the degrees of freedom N in the system. To obtain a reliable result,
each pair of adjacent replicas must have overlapping energy distributions [181]. Due
to the variance of energies in statistical mechanics, a system N times larger requires
N1/2 times more replicas. As a remedy, alternate Hamiltonian replica exchange MD
has been proposed where replicas are generated by varying parameters other than
the temperature such as the degree of hydrophobicity of the polymer chain [192]
and a scaling parameter for selected energy terms such as the dihedral energy and
protein–protein non-bonded interactions [193].

Moreover, there have been concerns regarding the computational cost of obtaining
converged data with replica exchange MD. To test convergence, one must show that
the results obtained in a given calculation are independent of the initial conditions.
However, this test is fairly expensive, since it requires multiple replica exchange MD
calculations to test convergence. Moreover, typically an replica exchange MD cal-
culation is seeded with conformations from throughout the free energy landscape,
making tests of convergence more difficult. As this method matures, we expect that
further tests for convergence and a push for quantitative results will help generalized
ensemble methods to attain even further predictive capability.

Finally, applying replica exchange MD-like methods to grid computing is not
always simple and direct. Unfortunately, replica exchange MD requires both a
homogenous cluster as well as fault tolerance, two aspects which are not present
in grid computing. Therefore, for cases where even this level of coupling is too
strong, there have been other approaches suggested. For example, a natural first
approach to take is a generalization of replica exchange MD: Multiplexed replica
exchange MD [184] addresses the issues of fault tolerance and the inhomogeneity
of the network by assigning multiple processors (and thus multiple simulations) to
each temperature replica, and then performing swaps between replicas of neighbor-
ing temperatures as those simulations complete. By making copies of replicas at a
given temperature, fault tolerance is achieved (since the entire multiplexed replica
exchange MD simulation does not wait for any single CPU to complete) and the
difference in CPU speeds is handled naturally (since processors simply swap when
available in an asynchronous manner). Also, recent efforts towards Markovian state
models [194] suggest new advances in sampling which should be useful for both
kinetics and thermodynamics.
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13.9 Conclusions and Future Perspectives for Free Energy
Calculations

Free energy calculations constitute a direct link between theory and experiment,
by quantifying at the thermodynamic level the physical phenomena modeled by
statistical simulations. With over two decades of insight gained from methodological
development and characterization, a wide variety of problems of both chemical
and biological relevance can now be tackled with confidence. Among the advances
achieved in recent years, a significant step forward has been made in the calculation
of free energies along a well-delineated reaction coordinate. ‘Alchemical transforma-
tions’ employed to mimic site-directed mutagenesis experiments have also benefited
from advances in the understanding of the methodology and its efficient application.
Efforts to appraise in a rigorous fashion the associated errors have played an active
role in turning free energy calculations into another tool in the arsenal of the mod-
eler. Altogether, free energy calculations have come of age, and are now a predictive
approach, and no longer a mere proof of concept. High-performance computing has
played an important role in reaching this status. By improving sampling, one can
determine free energies with a sufficiently high accuracy, laying the path for such
calculations to become more commonplace in the future. With this increase in preci-
sion, quantitative comparison to experiment yields very detailed tests of the accuracy
of our models.

Thus, in addition to having greater predictive power, we now can better under-
stand the limits of applicability of our models and the natural next steps to improve
them. What is the future for free energy computation in academia and industry? Will
massively parallel computations play a role? While it is natural to use very large-
scale methods to address free energy calculations, clearly one would not invest in
such methods (considering their great expense financially and in human time) with-
out knowledge that these methods would be useful. But, until such resources are
available, one would not know how potentially useful they may be. This leads to a
‘catch–22’ situation: while it is tempting to consider using greater computational re-
sources, such resources generally are not available to scientists unless there is clear
proof that they would significantly improve their results.

With recent advances in both sampling and model accuracy going hand in hand,
future studies will have much greater precision and accuracy than ever before. It
is likely that with the increased access to massively parallel architectures, as the
price/performance ratio of computer chips continues to fall, the bottleneck of free
energy calculations will shift from a purely computational aspect to a human one,
due to the need for qualified modelers to set these calculations up and interpret them.
This explains why their use in industry, and particularly in the pharmaceutical world
over the past years has remained scarce. Cutting-edge applications of free energy cal-
culations emanate essentially from academic environments, where the focus is not so
much on high throughput, but rather on well-delineated, specific problems that of-
ten require more human attention than computational power. Yet, it is envisioned
that in the reasonably near future, free energy methods will become an unavoidable
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element of screening pipelines, discriminating between candidates selected from
cruder approaches, to retain only the best leads towards a given target.
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Summary and Outlook

Andrew Pohorille and Christophe Chipot

In this final chapter, we address a few issues that might have lingered in the reader’s
mind from the beginning of the book. In the first section, we will summarize and
illustrate in several examples the central idea that was initially put forth in the
Introduction. This idea is that the many different methods for free energy calcula-
tions have common theoretical underpinnings, and may, therefore, be understood in
a unified framework. On the basis of our current state of knowledge, we will further
provide general suggestions about which methods might be used successfully for
different problems of both chemical and biological interest, and how to make free
energy calculations more reliable. In the second section, we will turn toward the
future and address two closely related topics that are important for further develop-
ment in this research area. One is the relevance of free energy calculations to solving
problems of interest to basic science and technology. The second regards the main
conceptual and technical difficulties in the field and the most promising directions
for resolving them.

14.1 Summary: A Unified View

A recurrent, unifying theme of this book is that almost all free energy calculations
in chemistry and biology are based on just four approaches for estimating the ratio
of the partition functions in (1.15) of Chap. 1. They are: (1) free energy perturbation
(FEP), (2) probability density, i.e., histograms, (3) thermodynamic integration (TI),
and (4) nonequilibrium work methods, and are all discussed at length in Chaps. 2–6.
Conceptually, all these approaches are closely related. For instance, FEP and TI can
be considered as two extreme cases of the nonequilibrium work method, in which
the change in a system is either instantaneous or infinitely slow. Similarly, TI can be
derived from FEP by taking the limit of an infinitely small perturbation. Different
methods for calculating free energy differences can be framed in terms of one of
these four generic formalisms, or the combination thereof.

At the core of practically all methods for free energy calculations are techniques
for improving sampling of the relevant regions of phase space. These techniques



504 A. Pohorille and C. Chipot

have proven to help overcome quasi-nonergodicity scenarios, which, unfortunately,
are only too common in chemical and biological systems. Many of these techniques
appear to be quite different and are often specifically tied to estimating free energy
as either a time-averaged or a space-averaged quantity. Yet, after careful analysis, all
of them can be reduced to two basic strategies: stratification, or multistaging, and
importance sampling, introduced in Sect. 1.4 of Chap. 1. Since both strategies have
turned out to be extremely powerful, they are often used together.

Another apparent difference between the various free energy methods lies in the
treatment of order parameters. In the original formulation of a number of methods,
order parameters were dynamical variables – i.e., variables that can be expressed
in terms of the Cartesian coordinates of the particles – whereas in others, they
were parameters in the Hamiltonian. This implies a different treatment of the or-
der parameter in the equations of motion. If one, however, applies the formalism of
metadynamics, or extended dynamics, in which any parameter can be treated as a
dynamical variable, most conceptual differences between these two cases vanish.

Understanding and appreciating the connections between different methods is
important not only from a theoretical standpoint, but also for evaluating the effi-
ciency and the accuracy of each of them. In some instances, closely related methods
were developed independently of each other, and the connection between them was
discovered only later. Bennett’s acceptance ratio method [1] and the simple overlap
sampling (SOS) scheme of Lee and Scott [2], discussed in Chap. 6, can serve as a
case example. Both methods rely on sampling configurations in the reference and the
target states, and calculating energy differences between these two states and a suit-
ably defined intermediate. In SOS, this intermediate is located halfway between the
reference and the target state, whereas in Bennett’s method, its location is optimized
to minimize the statistical error. This immediately implies that SOS is simpler, albeit
less accurate than the seminal acceptance ratio method.

Conversely, analysis of two methods that seem to be very closely related – viz.
the adaptive biasing potential and the adaptive biasing force (ABF), described in
Chaps. 3 and 4, respectively – reveals that they are in fact less similar than might
have appeared. Although they are both, in their generic form, aimed at augmenting
the Hamiltonian of the system such that all values of the order parameter between the
initial and the final states are sampled uniformly, they belong to different families of
free energy methods, namely probability density and TI, respectively. More impor-
tantly, they differ in the adaptation strategy. To modify the potential, it is required that
the probability distribution be approximated in the full range of the order parameter,
or at least within one stratum. In contrast, the derivative of the potential with respect
to the order parameter – i.e., the average force – can be adapted locally. The latter
procedure provides good estimates faster, and for this reason ABF is expected to be
more efficient that the adaptive biasing potential.

A closer look at different methods helps us to understand which features are
responsible for their success. Let us compare, for instance, the nonequilibrium work
method with the adaptive equilibrium approaches, described above. In the most
common implementation of the former, the instantaneous force acting on the sys-
tem along the order parameter is always equal to zero. In contrast, in the adaptive
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approaches, only the average forces at each value of the order parameter are modi-
fied to become equal to zero, yet fluctuations of the force remain unchanged. This
difference appears to form the physical basis for the argument that free energies cal-
culated using configurations from an equilibrium ensemble will be more efficient
than free energies estimated from nonequilibrium simulations [3].

Even seemingly unrelated methods can be represented in a similar framework.
Let us consider now parallel tempering, discussed in Chap. 8, in which separate
molecular dynamics (MD) trajectories – or Monte Carlo (MC) walkers – are run
for N different values on an order parameter, e.g., the temperature. Let us further
assume that N increases within a given range. In the limit N → ∞, the order
parameter becomes a continuous parameter. It can then be treated as a dynamical
variable in extended dynamics simulations, and the free energy can be evaluated
using probability distributions or TI methods augmented, for example, by an adap-
tive algorithm. These considerations illuminate a feature of parallel tempering that
makes this method efficient: the extension of the sampled space by an additional
parameter, combined with possible large jumps in the phase space help overcome
quasi-nonergodicity in the system. In general, this is a well-known strategy for im-
proving the efficiency of optimizing complex functions of many variables. In the
context of free energy calculations, the usefulness of this strategy was demonstrated
for TI [4]. Conversely, reducing the dimensionality of phase space that occurs in
constrained TI, or effectively in stratified simulations with very small windows, can
exacerbate problems with quasi-nonergodicity. This shows that the same technical
trick works for different methods.

Since different methods are conceptually related, and rely on similar enhanced
sampling techniques, one might propose that they are approximately equally efficient
if implemented optimally. Although this assertion has never been demonstrated for-
mally, intuitively, it may not be far from true. In practice, however, at least at the cur-
rent state of the art, different methods have not reached the same level of optimality.
This is one reason why there are established preferences for applying specific free
energy methods to different problems. Yet, these preferences are not always related
to efficiency. Often, other criteria, such as simplicity and robustness, also play a role.
For instance, assigning parameters to additional variables in extended dynamics, so
that they are effectively coupled to the rest of the system, still remains somewhat
of an art. For this reason, applications of this approach to free energy calculations
have been rather limited, even though methods based on extended dynamics may
ultimately prove to be very efficient.

Among the methods discussed in this book, FEP is the most commonly used to
carry out ‘alchemical transformations’ described in Sect. 2.8 of Chap. 2. Probability
distribution and TI methods, in conjunction with MD, are favored if there is an order
parameter in the system, defined as a dynamical variable. Among these methods,
ABF, derived in Chap. 4, appears to be nearly optimal. Its accuracy, however, has
not been tested critically for systems that relax slowly along the degrees of free-
dom perpendicular to the order parameter. Adaptive histogram approaches, primarily
used in Monte Carlo simulations – e.g., multicanonical, WL and, in particular, the
transition matrix method – yield superior results in applications to phase transitions,
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as commented on in Chaps. 3 and 10. Traditional applications of the potential dis-
tribution theorem (PDT), relying upon the particle insertion method and described
at the beginning of Chap. 9, may yield unparalleled accuracy when estimating free
energies of dissolving small solutes. Parallel tempering, discussed in Chap. 8, has
proven its usefulness for problems, in which: (1) a simple order parameter cannot be
conveniently defined, and (2) severe quasi-nonergodicity problems are encountered
during sampling. Problems of this kind are frequently encountered in the exploration
of protein structures, protein folding, or in the formation of clusters. If a suitable
order parameter cannot be identified, but the initial and the final states of the system
are known, transition path sampling introduced in Chap. 7 is the method of choice.
Nonequilibrium methods, presented in Chap. 5, have proven to be extremely valuable
for interpreting the so-called ‘pulling’ experiments carried out on single molecules.
So far, however, they have not been found to be particularly efficient for other prob-
lems. It should, nonetheless, be stressed that these methods are much newer than the
methods based on equilibrium simulations, and, quite obviously, their potential has
not yet been fully realized.

Association of different methods and specific classes of problems should not be
viewed as a ready-made recipe for deciding how to carry out free energy calculations.
In fact, for each case listed above, there are documented instances, in which methods
other than the popular, most common ones have been applied successfully to a given
problem. Instead, it provides an initial guidance for choosing a method suitable for
the problem at hand – a valuable help, especially for users less experienced with free
energy calculations. It is unlikely that one would go wrong by selecting a method
on the basis of this guide, but it might be possible to do even better by considering
appropriate alternatives.

No matter which method is selected, it is essential to follow good practices,
which can be considered as the computational equivalent of proper experimental pro-
tocols. At a very modest, additional computational effort, and sometimes even saving
computer time, a properly chosen method can provide greatly improved free en-
ergy estimates. For instance, it is recommended to use overlap sampling or Bennett’s
method in conjunction with FEP. Similarly, combining the probability density or TI
approach with any good technique that yields nearly uniform sampling of the relevant
regions in phase space almost always guarantees improved accuracy of the results. If
simulations with several biasing potentials are carried out, employing the weighted
histogram analysis method (WHAM), or any similar scheme (see Sect. 6.6.3), is
strongly encouraged. Another aspect of free energy calculations that needs to be
closely controlled is the completeness of sampling. Although there is no foolproof
defense against persistent quasi-nonergodicity scenarios, various indicators can be
used to assess whether adequate sampling has been achieved. For example, in FEP
calculations, one should routinely plot the integrand in (2.12) of Chap. 2 as a function
of ∆U to provide evidence that it is sufficiently smooth to yield reasonable estimates
of ∆A. The final, and critical element is a careful analysis of the associated error,
which, as has been seen in Chap. 6, can be tricky. Without error bars on free energy
estimates, the goal of achieving good agreement between theory and experiment –
the Holy Grail of the field – becomes, however, meaningless.
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14.2 Outlook: What is the Future Role of Free Energy
Calculations?

The significance of free energy calculations in basic theoretical research on chemical
or biological systems is firmly established. This is because free energies, or chemical
potentials, are the central quantities that determine the behavior of these systems at
or near equilibrium. Their knowledge is essential for elucidating the principles that
explain how different systems work, or processes of interest proceed. Once these
principles are understood, they can guide the experimental design of novel systems.
Theoretical and computational research on the nature of hydrophobic effects repre-
sent a good example of this approach. After an extensive effort that has spanned three
decades and involved numerous calculations of hydration free energies, potentials of
mean force and conformational equilibria for solutes of different sizes, and under
different thermodynamic conditions, a coherent molecular picture of hydrophobic
phenomena has started to emerge [5–7].

The usefulness of free energy calculations to problems of technological inter-
est is not as clear, even if the solution to these problems depends on the knowledge
of thermodynamic equilibria at a microscopic level. This is particularly evident in
biotechnology, nanotechnology, and computer-aided drug design. Doubts about free
energy calculations persist, but not because there has not been any progress in this
area. On the contrary, as we have argued in the Introduction, this progress has been
impressive. It has been matched, however, by equally impressive progress in com-
petitive approaches. One of them relies on high-throughput experiments. In drug
design, it entails rapid screening of large libraries of ligands for protein binding to
uncover potential lead compounds. In protein engineering, it involves similar tech-
niques for finding proteins with novel functionalities such as phage display [8],
DNA shuffling [9, 10], and in vitro evolution [11]. Another competitive approach
is based on heuristic computational methods. In the earliest days of free energy
calculations, only a few such methods – e.g., QSAR – were available, and their
range of applicability was rather limited. Since then, several powerful methods,
such as molecular docking [12–14], homology modeling [15, 16], and computational
protein design [17–19] have been developed and matured.

For these reasons, it has sometimes been argued that ab initio free energy cal-
culations are and will remain less effective than the alternative approaches. We feel
that this point of view is based on false premises. All the methods mentioned above
have their place in technology-motivated research. Quite likely, the most effective
approach is to use them in combination, probably in a hierarchical fashion. In this
spirit, molecular-level free energy calculations should be used to improve and refine
initial designs obtained from high-throughput experiments or computations.

The continuing success of free energy calculations in developing a better un-
derstanding of complex chemical and biological systems and the usefulness of these
calculations in aiding molecular-level technologies rely on further progress in several
areas of theory and computation. Despite remarkable theoretical advances, especially
in enhanced sampling techniques, several methodological issues that may influence
dramatically the efficiency and the reliability of free energy calculations remain
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unresolved. They are mainly connected with understanding the nature of different
motions in complex systems. One example is the choice of an appropriate order pa-
rameter, or, more generally, a suitable reduction of a many-body problem to motion
of the system on a low-dimensional hyperplane in a potential of force averaged over
the remaining degrees of freedom. This problem is particularly acute if slow, col-
lective motions in a system are responsible for quasi-nonergodicity. Currently, no
general method has been put forth for identifying degrees of freedom that equilibrate
slowly during the transformation of a system from the initial to the final state. Con-
sequently, it is often difficult to define order parameters that facilitate their adequate
sampling. For instance, insertion of a protein into a membrane involves slow, col-
lective reorganization of the many surrounding phospholipids and extensive changes
in the structure of the water–membrane interface near the site of insertion. Similarly,
protein folding is associated with concerted changes of many torsional angles in both
the backbone and the side chains. In spite of countless efforts, a low-dimensional
description of either one of these transformations has not been yet developed. On
several recent occasions, it has been realized that seemingly reasonable choices of
order parameters are poor approximations to the actual reaction coordinates, which
represent progress along reaction pathways. Such choices may lead to unreliable
estimates of the free energy barriers associated to the process of interest, and to in-
complete sampling of states of the system that are relevant to the accurate estimate
of free energy differences.

The knowledge of an order parameter that approximates well the reaction coor-
dinate is insufficient to guarantee a reliable estimate of the free energy. Once such an
order parameter has been identified, enhanced sampling techniques almost always
have to be used to ensure efficient free energy calculations. This reduces the time
scale of motion along this parameter, and, hence, leads to a more efficient statistical
averaging. There is, however, a natural limit to this reduction: sampling has to be
sufficiently extensive to allow motions along other degrees of freedom in the system
to be properly averaged statistically. This means that, if there are many slow mo-
tions that influence the state of the system during the transformation, benefits from
enhanced sampling techniques are limited, unless all these motions are identified
and adequately sampled. The existence of such motions in complex systems, for in-
stance in proteins, is quite common, as brought to light by the so-called ‘essential
dynamics’ [20–23], and normal-mode analysis [24–29].

Whenever a suitable definition of an order parameter is not feasible, the range of
tools that can be used for efficient free energy calculations becomes quite limited. In
some instances, it is possible to employ a ‘generic’ order parameter, such as temp-
erature, for example in conjunction with parallel tempering described in Chap. 8.
In the special case when both the initial and the final states are known, transition
path sampling, discussed in Chap. 7, can be used profitably. At the present time,
however, these methods are not as reliable and efficient as approaches requiring
an order parameter. Our ability to calculate free energy differences becomes even
more limited if the final state of the system is not known a priori, as is often the
case in protein folding. In general, successful calculations of free energies associ-
ated with such complex processes as protein–protein and protein–DNA interactions,
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binding of large, flexible ligands to macromolecules, or assisted transport of ions
across membranes will, most likely, require the extension of the current theoretical
framework into the areas of statistical mechanics and molecular simulations that have
been traditionally considered as separate – for instance chemical kinetics and chem-
ical dynamics.

In addition to theoretical advancements, the second ingredient that has driven
progress in free energy calculations was the continuously increasing power of
digital computers. This can be clearly seen by comparing the work of Tembe and
McCammon [30], Miyamoto and Kollman [31], and that of Hénin et al. [32], pub-
lished roughly 10 years apart. They all have in common the use of perturbation theory
and molecular dynamics simulations to tackle protein–ligand association problems.
Yet, whereas Tembe and McCammon investigated a rudimentary model consisting
of a ‘receptor’ and a ‘ligand’ atom solvated by a bath of 50 solvent Lennard-Jones
particles, Miyamoto and Kollman considered one hydrated monomer of the homot-
etramer streptavidin, to which the ligand biotin was bound, and Hénin et al. studied
the seven-helix human G-coupled protein receptor (GPCR) of cholecystokinin [33]
in a hydrated palmitoyloleylphosphatidylcholine (POPC) lipid bilayer, forming a to-
tal of 72,255 atoms.

In an effort to bridge computer simulations to reality, especially in biology and
material science, the size of the systems modeled at the atomic level constantly in-
creases. For example, the recent MD simulation of the movement of tRNA into the
ribosome during decoding [34] – a fundamental step for information transfer from
RNA to protein – involved a 2 ns trajectory of some 2,640,000 atoms. Such computa-
tional effort would have been unthinkable a decade ago. This creates large demands
on free energy calculations. As the size of the system grows continuously, so does the
range of motions that need to be sampled properly. Reliable free energy calculations
for large systems thus also require longer simulation times – or, equivalently, longer
MC walks. It is unlikely that simultaneous growth in both spatial and temporal scales
of simulations can be achieved by simply relying on the increasing speed of a single
processor, even if the latter continues to obey Moore’s law in the coming 10 years.
To meet the growing computational demands, it is necessary to take full advantage
of massively parallel or massively distributed computing. The first steps in this di-
rection have already been made, in particular in the pioneering work of Vijay Pande,
described in the previous chapter.

The increasing focus on interprocessor communication rather than on floating-
point operations, which is associated with massively parallel computing, has to be
accompanied by the development of algorithms for molecular simulations and free
energy calculations that minimize the time needed for transferring data between
processors. Fortunately, most methods for obtaining free energies parallelize in a nat-
ural way. For example, individual trajectories in nonequilibrium work calculations
or parallel tempering can be run on separate processors, or clusters of processors.
A similar strategy can be applied to different strata in stratified calculations, dis-
cussed in Sects. 1.4, 2.6, and 3.3.1. It is also possible to carry out parallel free energy
calculations for many different ligands interacting with a common macromolecule,
or for a variety of single-point mutations in a protein. This would be analogous to
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high-throughput experiments, albeit performed in silico. These strategies work well
on tens of processors, but it is not clear whether they will remain equally efficient
if implemented without modifications on hundreds or thousands of processors. New
theoretical formulations of the problem and/or new algorithms might then be needed.

Methodological and computational advances should not be dichotomized from
the issue of precision in the description of the forces acting in the system. In the early
days of free energy calculations, the reliability of the results was essentially deter-
mined in terms of sampling accuracy. In fact, several high-impact, early simulations
were later proven to be too short to yield accurate free energy estimates. As the field
matured, it became, however, increasingly commonly accepted that the shortcomings
of the molecular force fields rather than incomplete sampling constituted the main
factor limiting the reliability of free energy calculations.

Calculations of forces may be improved in several ways. One is to pursue efforts
towards the development of accurate classical, atomic-level force fields. A promis-
ing extension along these lines is to add nonadditive polarization effects to the usual
pairwise additive description of interatomic interactions. This has been attempted in
the past [35–39], but has not brought the expected and long-awaited improvements.
This is not so much because polarization effects are not important, or pairwise addi-
tive models can account for them accurately in an average sense in all, even highly
anisotropic environments. Instead, it seems more likely that the previously developed
nonadditive potentials were not sufficiently accurate to offer an enhanced description
of those systems in which induction phenomena play a crucial role.

Another direction for improving the description of intermolecular interactions is
to include quantum effects. This is usually necessary whenever there is a significant
charge redistribution during the transformation between the initial and the final state,
and, in particular, when chemical bonds are formed or broken, or when a charge
transfer occurs between chemical species. The problem arises, for example, in the
calculation of free energies characterizing spontaneous or enzymatic reactions, or
proton transfer between ionizable groups. If a system of interest can be reduced to a
small-size model, purely quantum mechanical methods can be employed. In general,
however, combination of quantum and statistical mechanics is needed. A variety of
techniques, such as quantum mechanics/molecular mechanics (QM/MM) [40, 41],
Car–Parrinello [42–45], or valence bond [46–48] methods have been devised for this
purpose. The problem in applying these techniques is not conceptual; as has been
shown in Chap. 11, free energy calculations can be integrated smoothly with quantum
mechanical simulations. In practice, these calculations become prohibitively slow as
the size of the system increases, even if only a reduced part of it is treated at the
quantum mechanical level.

At the antipodes of the latter description, there is a continuous need for better
‘low-resolution’ models that involve, for instance, coarse graining of molecules, or
implicit solvation. This need is motivated by the expectation that the free energy
of a large system can be calculated with sufficient accuracy without requiring that
all its components be described at the atomic level. In many cases, this is equivalent
to the assumption that a mean-field approximation works, or that many fast degrees
of freedom can be removed from the system, yet without any appreciable loss of



14 Summary and Outlook 511

accuracy. Several ideas along these lines have been discussed in Chap. 12, but there
is still plenty of room for improvement.

The requirements for additional details in the electronic structure, which are cap-
tured in quantum mechanical calculations, and for a reduced representation of the
system appear to be at cross purposes. This is, however, not so, because both of these
requirements can be accommodated in the rapidly developing area of multiscale sim-
ulations. They hold great promise, allowing large, complex systems to be described
accurately in simulations of manageable size. Yet, this field is still in the early stages
of development, and relatively little work has been done on integrating it with free
energy calculations. One new approach that appears to be particularly compatible
with multiscale modeling is based on the quasichemical approximation, which was
discussed in Chap. 9. Without much doubt, the ability to obtain reliable free energy
estimates on the basis of multiscale simulations would constitute a significant theo-
retical and practical advance.

The final element consists of providing access to state-of-the-art techniques of
free energy calculations to a broad research community interested in applications of
molecular simulations to chemistry and biology. This requires integration of these
techniques with modern simulation software to a much greater extent than has been
done so far. The goal is to create tools that would allow researchers, who are primar-
ily focused on applications rather than on theoretical developments, to carry out free
energy calculations with the same level of confidence and control that they currently
have in electronic structure calculations or bioinformatics analyses. This does not, of
course, mean that such calculations should be treated as ‘black-box’ routine jobs. As
is the case in other areas of theoretical chemistry and biology, computational tools
can complement, but not substitute for an insight into the problem at hand.
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