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Macro parameters (E ,T ...)

Thermodynamic laws
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Basic relations (TdS = dE + pdV ...)
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Maxwell relations
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General relations (Cp − CV from V ,T ,p...)
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An example

To an infinitesimal process,

the first law yields

dQ = dE + dW . (1.1)

If the process is also quasi-static, the second law says

dQ = TdS. (1.2)

As well known, the work done by the system is given by

dW = pdV . (1.3)

Combining (1.1) to (1.3), one may get that

TdS = dE + pdV . (5.1.5)
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The aim of this chapter

The whole chapter will be based on

only the thermo-

dynamic laws to derive important relationships between

macroscopic quantities. Those conclusions are completely

independent of any specific models assumed to describe

the microscopic constituents of a system.
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Energy

Theorem
For an ideal gas, its internal energy does not depend on its vol-
ume, but only on its temperature, which is

E = E(T ).

proof. Suppose that there are ν mole ideal gas. The equation of
states and (5.1.5) tell us,

TdS = dE + pdV ;

p
T

=
νR
V

;

⇒ dS =
1
T

dE +
νR
V

dV . (2.1)

From the exact differential of E , one may obtain that

dE =

(
∂E
∂T

)
V

dT +

(
∂E
∂V

)
T

dV . (2.2)
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Energy

Combining (2.1) and (2.2), one gets that

dS =
1
T

(
∂E
∂T

)
V

dT +

[
νR
V

+

(
∂E
∂V

)
T

]
dV .

Compared with

dS =

(
∂S
∂T

)
V

dT +

(
∂S
∂V

)
T

dV ,

one has (
∂S
∂T

)
V

=
1
T

(
∂E
∂T

)
V

;(
∂S
∂V

)
T

=
1
T

(
∂E
∂V

)
T

+
νR
V
.
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Energy

By the equality of the second derivatives for S(T ,V ),

(
∂

∂V

)
T

[
1
T

(
∂E
∂T

)
V

]
=

(
∂

∂T

)
V

[
1
T

(
∂E
∂V

)
T

+
νR
V

]
,

which further implies

��
���1

T
∂2E
∂V∂T

=

(
∂

∂T

)
V

1
T

(
∂E
∂V

)
T

+
��

���1
T

∂2E
∂T∂V

+ 0.

Therefore, (
∂E
∂V

)
T

= 0,

which means the internal energy of an ideal gas is not depen-
dent on its volume.

12 / 43



An example For ideal gases Maxwell Relations General case Applications

Energy

By the equality of the second derivatives for S(T ,V ),(
∂

∂V

)
T

[
1
T

(
∂E
∂T

)
V

]
=

(
∂

∂T

)
V

[
1
T

(
∂E
∂V

)
T

+
νR
V

]
,

which further implies

��
���1

T
∂2E
∂V∂T

=

(
∂

∂T

)
V

1
T

(
∂E
∂V

)
T

+
��

���1
T

∂2E
∂T∂V

+ 0.

Therefore, (
∂E
∂V

)
T

= 0,

which means the internal energy of an ideal gas is not depen-
dent on its volume.

12 / 43



An example For ideal gases Maxwell Relations General case Applications

Energy

By the equality of the second derivatives for S(T ,V ),(
∂

∂V

)
T

[
1
T

(
∂E
∂T

)
V

]
=

(
∂

∂T

)
V

[
1
T

(
∂E
∂V

)
T

+
νR
V

]
,

which further implies

��
���1

T
∂2E
∂V∂T

=

(
∂

∂T

)
V

1
T

(
∂E
∂V

)
T

+
��

���1
T

∂2E
∂T∂V

+ 0.

Therefore, (
∂E
∂V

)
T

= 0,

which means the internal energy of an ideal gas is not depen-
dent on its volume.

12 / 43



An example For ideal gases Maxwell Relations General case Applications

Energy

By the equality of the second derivatives for S(T ,V ),(
∂

∂V

)
T

[
1
T

(
∂E
∂T

)
V

]
=

(
∂

∂T

)
V

[
1
T

(
∂E
∂V

)
T

+
νR
V

]
,

which further implies

��
���1

T
∂2E
∂V∂T

=

(
∂

∂T

)
V

1
T

(
∂E
∂V

)
T

+
��

���1
T

∂2E
∂T∂V

+ 0

.

Therefore, (
∂E
∂V

)
T

= 0,

which means the internal energy of an ideal gas is not depen-
dent on its volume.

12 / 43



An example For ideal gases Maxwell Relations General case Applications

Energy

By the equality of the second derivatives for S(T ,V ),(
∂

∂V

)
T

[
1
T

(
∂E
∂T

)
V

]
=

(
∂

∂T

)
V

[
1
T

(
∂E
∂V

)
T

+
νR
V

]
,

which further implies

��
���1

T
∂2E
∂V∂T

=

(
∂

∂T

)
V

1
T

(
∂E
∂V

)
T

+
��

���1
T

∂2E
∂T∂V

+ 0

.

Therefore, (
∂E
∂V

)
T

= 0,

which means the internal energy of an ideal gas is not depen-
dent on its volume.

12 / 43



An example For ideal gases Maxwell Relations General case Applications

Energy

By the equality of the second derivatives for S(T ,V ),(
∂

∂V

)
T

[
1
T

(
∂E
∂T

)
V

]
=

(
∂

∂T

)
V

[
1
T

(
∂E
∂V

)
T

+
νR
V

]
,

which further implies

��
���1

T
∂2E
∂V∂T

=

(
∂

∂T

)
V

1
T

(
∂E
∂V

)
T

+
��

���1
T

∂2E
∂T∂V

+ 0

.

Therefore, (
∂E
∂V

)
T

= 0,

which means the internal energy of an ideal gas is not depen-
dent on its volume.

12 / 43



An example For ideal gases Maxwell Relations General case Applications

Heat capacities

Consider a system A = A(T , y). y probably be V or p. Recall
that,

Cy :=

(
dQ
dT

)
y
, (2.3)

and

cy :=
1
ν

Cy =
1
ν

(
dQ
dT

)
y
. (2.4)
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Heat capacities

In an infinitesimal process,

the first law tells us

dQ = dE + pdV .

In any case, for ν mole an ideal gas, (should be in an infinites-
imal process) by the definition of heat capacity with constant
volume,

νcV = CV :=

(
dQ
dT

)
V

=
dE
dT

.

Thus,
dE = νcV dT .
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Heat capacities

Similar, in any case, for an ideal gas, by the definition of heat
capacity with constant pressure,

νcp :=

(
dQ
dT

)
p

=

(
dE + pdV

dT

)
p

=

(
dE
dT

)
p

+

(
pdV
dT

)
p

= νcV + νR.

Thus,
cp = cV + R.

cp → more easily to get by experiment.
cV → more easily to get by theoretic calculation.
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An example For ideal gases Maxwell Relations General case Applications

Quasi-static adiabatic process

For an ideal gas, T is keeping constant⇒

pV = const .⇒ p↓ =
const .

V ↑

decreases when the gas expands.
For an ideal gas, when it expands under an adiabatic (dQ =
0) condition,

0 = dQ = dE ↓ +dW ↑ ⇒ T ↓= 2E ↓ /3Nk .

Question: How is the pressure p related to V in a kind of
the second process?
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An example For ideal gases Maxwell Relations General case Applications

Quasi-static adiabatic process

Theorem
In the second process,

pV γ = const . (2.5)

where γ :=
cp
cV
> 1.
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An example For ideal gases Maxwell Relations General case Applications

Quasi-static adiabatic process
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An example For ideal gases Maxwell Relations General case Applications

Outline

1 An example: TdS = dE + pdV .

2 A special case: for ideal gases
Energy: E = E(T )
Heat capacities: cp = cV + R
Quasi-static adiabatic process: pV γ =constant

3 Maxwell relations and thermodynamic functions

4 General cases
Heat capacities, after Maxwell relations
Energy, after Maxwell relations

5 Applications
Heat engines
Refrigerators
Equivalence of Kelvin and Clausius statements
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An example For ideal gases Maxwell Relations General case Applications

Maxwell relations

Consider a quasi-static infinitesimal process with a system

hav-
ing only V as an external parameter. one should have

dQ = TdS = dE + pdV . (3.1)

20 / 43



An example For ideal gases Maxwell Relations General case Applications

Maxwell relations

Consider a quasi-static infinitesimal process with a system hav-
ing only V as an external parameter.

one should have

dQ = TdS = dE + pdV . (3.1)

20 / 43



An example For ideal gases Maxwell Relations General case Applications

Maxwell relations

Consider a quasi-static infinitesimal process with a system hav-
ing only V as an external parameter. one should have

dQ = TdS = dE + pdV . (3.1)

20 / 43



An example For ideal gases Maxwell Relations General case Applications

E = E(S,V )

From (3.1), one can find dE = TdS − pdV .

Further,(
∂E
∂S

)
V

= T (S,V );(
∂E
∂V

)
S

= −p(S,V );

∂2E
∂V∂S

=
∂2E
∂S∂V



⇒
(
∂T
∂V

)
S

= −
(
∂p
∂S

)
V
.

(3.2)

Note: here, dE is used as an exact differential.
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An example For ideal gases Maxwell Relations General case Applications

H = H(S,p)

Again, consider the same process and the same system as pre-
vious.

Let V = V (p). Then

d(pV (p))

dp
= V (p) + p

V (p)

dp
.

Equivalently,
pdV = d(pV )− Vdp.

From again (3.1), i.e. TdS = dE + pdV , one has

TdS = dE + d(pV )− Vdp
⇒ d(E + pV ) = TdS + Vdp.

(3.3)
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An example For ideal gases Maxwell Relations General case Applications

H = H(S,p)

Therefore, one can find d(E + pV ) is another exact differential.

Define
H := E + pV

and call it “enthalpy”. As you can imagine, something should be
done to H as treated to E before.
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An example For ideal gases Maxwell Relations General case Applications

H = H(S,p)

By definition of H, one has dH = TdS + Vdp and further,

(
∂H
∂S

)
p

= T (S,p);(
∂H
∂p

)
S

= V (S,p);

∂2H
∂p∂S

=
∂2H
∂S∂p


(
∂T
∂p

)
S

= −
(
∂V
∂S

)
p
. (3.4)
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An example For ideal gases Maxwell Relations General case Applications

F = F (T ,V )

Again and again, consider the same system and process as be-
fore.

Very similarly, one can find d(E − TS) should be an exact
differential. So define a quantity

F := E − TS,

where E and S are treated as functions of T and V .
F then is usually called the “Helmholtz free energy”.
And, by using the equality of the cross derivatives, one may ob-
tain that (

∂S
∂V

)
T

=

(
∂p
∂T

)
V
. (3.5)
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An example For ideal gases Maxwell Relations General case Applications

G = G(T ,p)

Again and again and again, the same system and process are
under considered.

One can also find d(E −TS + pV ) is another
exact differential. Define

G := E − TS + pV

and call it “Gibbs free energy”. Again, the equality of the cross
derivatives tells us

−
(
∂S
∂p

)
T

=

(
∂V
∂T

)
p
. (3.6)
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An example For ideal gases Maxwell Relations General case Applications

Summarize

Maxwell relations(
∂T
∂V

)
S

= −
(
∂p
∂S

)
V(

∂T
∂p

)
S

= −
(
∂V
∂S

)
p(

∂S
∂V

)
T

=

(
∂p
∂T

)
V

−
(
∂S
∂p

)
T

=

(
∂V
∂T

)
p

Thermodynamic functions

dE = TdS − pdV
dH = TdS + Vdp

dF = −SdT − pdV
dG = −SdT + Vdp
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An example For ideal gases Maxwell Relations General case Applications

Outline

1 An example: TdS = dE + pdV .

2 A special case: for ideal gases
Energy: E = E(T )
Heat capacities: cp = cV + R
Quasi-static adiabatic process: pV γ =constant

3 Maxwell relations and thermodynamic functions

4 General cases
Heat capacities, after Maxwell relations
Energy, after Maxwell relations

5 Applications
Heat engines
Refrigerators
Equivalence of Kelvin and Clausius statements
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An example For ideal gases Maxwell Relations General case Applications

Heat capacities

One can use the Maxwell relations for some substance to de-
duce the relation between the heat capacity under constant vol-
ume and the heat capacity under constant pressure.

Theorem
Let

α :=
1
V

(
∂V
∂T

)
p

;

κ := − 1
V

(
∂V
∂p

)
T
.

Then,

Cp − CV = VT
α2

κ
. (4.1)
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An example For ideal gases Maxwell Relations General case Applications

Energy

One can also use the Maxwell relations to deduce the internal
energy of some substance as a function of volume and temper-
ature.

Theorem
Treat E as a function of V and T . Then,(

∂E
∂T

)
V

= CV ;(
∂E
∂V

)
T

= T
(
∂p
∂T

)
V
− p.
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An example For ideal gases Maxwell Relations General case Applications

What is a heat engine?

T1 > T2
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An example For ideal gases Maxwell Relations General case Applications

What is a heat engine?

Energy conservation⇒

Q1 = W + Q2.

Define

η :=
W
Q1
≤ 1.

η = 1⇒W = Q1

Perfect!
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An example For ideal gases Maxwell Relations General case Applications

Kelvin statement

Kelvin: Impossible to construct a device, operating in circle, that
produce no effect other than the extraction of heat from a reser-
voir and do equivalent amount of work. 1

1

P. Jacobs, Thermodynamics, Imperial College Press, 2013.
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An example For ideal gases Maxwell Relations General case Applications

Why not?

Remember Q1 = W + Q2 and W > 0.

Perfect requires Q1 = W .
Circle means no entropy change to the device.
No effect means no entropy change to the outside.
So that

∆S = −∆Q1

T1
= −W

T1
< 0,

which is a contradiction with the second law.
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An example For ideal gases Maxwell Relations General case Applications

What is a refrigerator?

T1 > T2
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An example For ideal gases Maxwell Relations General case Applications

What is a refrigerator?

Energy conservation⇒

Q1 = W + Q2.

Define

η′ :=
Q2

Q1
≤ 1.

η′ = 1⇒ Q2 = Q1

Perfect!
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An example For ideal gases Maxwell Relations General case Applications

Clausius statement

Clausius: Impossible to construct a device, operating in circle,
that produce no effect other than flowing heat from a colder to a
hotter body. 2

2P. Jacobs, Thermodynamics, Imperial College Press, 2013.
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An example For ideal gases Maxwell Relations General case Applications

Why not?

Remember Q1 = W + Q2 and T1 > T2.

Perfect requires Q1 = Q2.
Circle means no entropy change to the device.
No effect means no entropy change to the outside.
So that

∆S =
∆Q1

T1
− ∆Q2

T2
= Q1

(
1
T1
− 1

T2

)
< 0,

which is a contradiction with the second law.
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Equivalence

“Clausius⇒ Kelvin”:

Kelvin is wrong⇒
M1 possible (W = Q).
For M2,⇒
Q2 = W + Q1 = Q + Q1.
For M1 + M2, it is possible
to absorb Q1 from T2;
while to eject Q2 − Q = Q1
to T1;
Remember T1 > T2.
This contradicts with Clau-
sius statement.
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Equivalence

“Kelvin⇒ Clausius”:

Clausius is wrong⇒
M1 possible.
For M2,⇒
W = Q1 −Q.
For M1 + M2, it is possible
to absorb Q1 −Q from T1;
while to do W = Q1 −Q to
the outside;
This contradicts with Kelvin
statement.
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