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Elementary statistical concepts and
examples
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The drunkaed’s random walk in one dimension

Each step the drunk takes is of equal length I. The
probability to right is p, while the probability to leftisq=1 -
p. After N steps, what’s the probability Py(m) of his being
located at the position x = ml?



Elementary statistical concepts and
examples
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Example of a random walk in two dimensions ~ Example of a random walk in three dimensions.
The single self-interstitial migration in alpha-
iron at 950K .




The simple random walk problem

IN one dimension

x=ml, —-N <m<N
N = ny+ ny,
m=ny— n,=2n; —N,
1 1
ng=-W+m)n, =2 (N—-m)
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The probability Wy (n,) of taking ny steps
to the right and n, steps to the left is

\

Wy (ny) = n1gh : o
v(ny) P : ;

The probability Py (m)of his being
located at the positionx = ml is

The 8 sequences of steps which are

possinble if the total number of steps

Py(m) = Wy (ny) N=3.
N!
(N +m)/2]' [(N —m)/2]!

Py(m) = [ p(N+m)/2(1 _ p)(N—m)/z




The simple random walk problem
In one dimension

S S N! 1.
P=a=5. W=y —myz @

L
w("n)

P(m)

0.20
0.18
0.16
0.14 I
012

0.10

0.08
086

0.04

0.02 I I
] 2 1 I l L =
5

(U TR i N

i 8 % 30 -1 1213 15 16 17 18 19 20 n

~20 -18 =16 14 12 -10 -8 -6 -4 ~2 0O 2 4 6 10 12 14 16 18 20 m

Binomial probability distribution forp = g = % when N = 20 steps.



General discussion of mean values

The mean value of « is denoted by u and is defined by
M
i=1 P (U,
M
If the f(u)is any function of u, the mean value of f(u) is defined by,

I PQf) N
=5 oo QL Pw =1

u

=1
SO,

M
Fa@) = ) Pu)f ()
i=1

and

fw) +g) = fw) + g(w)
cf(w) = cf (W)

Au= (u—-—uw)=u—-—u=0, Au?= (u — u)?=u?2 —u%* >0




Calculation of mean values for
random walk problem

The mean number of n,0f steps to the right i1s denoted by n; and is defined by

N! N
n. = — ni —nq
1= Z Wnn, = Z P q nq
— - nl!(N —_ n1)!
n1—1 n1—1
and
N
Z Wn,) =1
n1=1
SO
ny = Np
m=n,—n,=n —n,=N(p —q)
and

(An,)%= Npq

(Am)? = 4(An,)?= 4Npq
1



Calculation of mean values for
random walk Droblem
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Binomial probability distribution for p = 0.6 and g = 0.4, when N = 20
steps.



Probability distribution for large N

The location n; = 7 of the maximum of W is approximately determined by the
condition

aw _dinw _
dn1 B or dn1 B

where the derivatives are evaluated for n; = ny. To investigate the behavior of
W (n,) near its maximum, we shall put

n =N+
and eapand InW (n,) in a Taylor’s series about 15 .

In Win,) = In W) + Bin + 4Bm* + 3Bm* 4+ - - -
_d*In W

where B, = Tk
In the region where 5 is sufficiently small, higher-order terms in the expan-
sion can be neglected so that one obtains in first approximation an expression
of the simple form

W(ny) = W e}



Probability distribution for large N

SO
1
n]_ =Np,and BZZ _N_pq
sincep + g = 1. And
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Gaussian probability distribution

The Gaussian approximation (1-5-19) also yields immediately the probability
FP(m} that in a large number of N steps the net displacement is m. The cor-
responding number of right steps is, by (1-2-9), n, = 3(N + m). Hence
(1-5-19) gives

N + m

> o oar 1 m— Nip — g))*

probability of finding the particle anywhere in the range between r and x 4+ dx
15 simply obtained by summing FP(m) over all values of m lying in dz, 1.e., by
multiplying P{m) by dx/2l. This probability is thus proportional to dx (as
one would expeect) and ean be written as
i

®(x) dr = P(m) a7 (1-6-3)
where the quantity ®(x), which is independent of the magnitude of dx, is
called a “probability densify.”’ Note that it must be multiplied by a differ-
ential element of length dx to yield a probability.

By using (1-6-1) one then obtains

1
P(x) dz = —==— e~ &9 gy (1-6-4)
’ @) '\/"ﬂrrnr

where we have used the abbreviations

(p — qINI (1-6-5)
24/ Npgl (1-6-6)

|rj"‘
o

and



Gaussian probability distribution

And

o

f _: ®(x) de = V?-;?r . f_ﬂ S

Voro
e
The mean values :

E = f_mx x®(x) dx (@ —pt= f:., (x — p)*®(x) dr
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Probability distributions involving
several variables

The statistical deseription of a situation involving more than one variable
requires only straightforward generalizations of the probability arguments
applicable to a single variable. Let us then, for simplicity, consider the ease of
only two variables u and v which can assume the possible values

oy wheret = 1,2, ... 6 M
and i wherej = 1,2, , .. ,N

Let P(u:r;) be the probability that u assumes the value u; and that v assumes
the value »;.

The probability that the variables « and v assume any of their possible
gelg of values must be unity; i.e., one has the normalization requirement

M

N
E Plugv) =1 (1-7-1)

1=1 j=1

where the summation extends over all possible values of u and all possible
values of v

N
PH(“E}I = 2 Ij{'ﬂi,!lj)

i=1

M
Py(o;) = 3, Plusey)

i=1

M M

N
Z P.(w) = Z [Z P(u‘-,u,)] =1

L | i=1 =1

P('&f,ﬂj} = Pu[ﬁu'jpu(”i}
if w and v are statistically independent.

Let us now mention some properties of mean values. If F(u,v) is any
function of u and », then its mean value is defined by

M ON
Flu,p) = E E P (,0) F (u4,05) (1.7-6)

i=1j=1

Note that if f{u) is a funetion of u only, it also follows by (1-7-2) that
o) = 3% Pluipf(w) = 3, Pulw)fu) (1-7-7)

If F and G are any functions of « and », then one has the general result

F+G=3Y E Puu) [Fluqe) + Gl
= E E P (s, ) F(us,v;) + z E P v; )G (as,05)
or n v
> F¥G=F+@ (1-7-8)
> Flu)g(v) = f(u) g(v) (1-7-9)



Comments on continuous
probability distribution

One dimension Two dimensions
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Fig. 1:8-1 Subdivision of the range a1 < u < a; of a continuous variable u ok
into a countable number of infinitesimal intervals du of fixed size.

To make the connection between the continuous and discrete points of view
quite explicit, note that in terms of the original infinitesimal subdivision
interval du,

Plu) = ®(u) du

Similarly, if one considers any interval between u and u + du which is such - |-

that du is macroscopically small although du > 6u, then this interval con- b

t..ams du/du possible values' of'u; for which the probability I‘f(.u;) has essen- Fig. 1-8-2 Subdivision of the continuous variables u and v into small inter-
tially the same value—call it simply P(x). Then the probability P(u) du of vals of magnitude su and s.

the variable assuming a.value between % and u + du should be given by ®(u,v) dudy = Plu,p) tlu oy
multiplying the probability P(u.) for assuming any discrete value in this ! U Eu G
range by the number du/8u of discrete values in this range; i.e., one has

- properly

a: b
®(u) du = P(u;)‘;—: = %%‘—)du (1-8-1) I-:u fb “du dy Plup) =1

Z Plu;) = 1 f"’ ®(u) du = 1 Fluy) = f:g f:‘ duw dv ®(u,v) Fu,v)

a1

70) = 3 Pl T~ o G



Comments on continuous
probability distribution

Functions of random variables

Fig. 1-8-4 Dependence of the r component B: = B cos 8 of a two-dimen-

X . ) ) L. ) sional vector B on its polar angle 6.
Fig. 1-8+3 Illustration showing a function ¢(u) which is such that u(y) is a

double-valued function of ¢. Here the range d¢ corresponds to u being either
in the range du, or in the range du;.

Functions of random variables Consider the case of a single variable u 19
and suppose that g(u) is some continuous function of u. The following ques- P8 df = Gy B. = B cos
tion arises quite frequently. If ®(u) du is the probability that » lies in the 2% i ]

range between u and uw 4 du, what is the corresponding probability W(g) de
that ¢ lies in the range between ¢ and ¢ + de? Clearly, the latter probability
is obtained by adding up the probabilities for all those values u which are such

that ¢ lies in the range between ¢ and ¢ + dg; in symbols W (B.) B 5 [ 1 dB . I 1 dB;
( =2 <oen - = e ———
sy 3 27 |B sin 0 x B |sin 0]
Wig) de = fd ®(u) du (1-8-8)
e
Here u can be considered a function of ¢ and the integral extends over all those - By
values of u lying in the range between u(¢) and u(e + de). Thus (1-8.8) 5 =L - post @)t = fi=rd paike,
. Isin 8] = (1 — cos* @)t = |1
becomes simply B
_ [etde du _ | du | .
Wip) dp = [/ G’(R)‘@‘dw - o || a89
The last step assumes that u is a single-valued function of ¢ and follows, since 3 (IB, ; f B<RB.<R
the integral is extended only over an infinitesimal range de.  Since u = u(yp), ”(B ) dB. = - 5 ,/B‘E—_'"B"i Q== P ¥ e
the right side of (1-8-9) can, of course, be expressed completely in terms of . TULENT V *
If u(¢) is not a single-valued function of ¢, then the integral (1-8-8) may con- 0 otherwise

sist of several contributions similar to those of (1-8-9) (see Fig. 1-8-3).



General calculation of mean values
for random walk

Functions of random variables

Let w(s;) ds; be the probability that the ith displacement lies in the

range between s; and s; + ds;. b F = N3
where F=5= [dsw(s)s
wls)
l] (Az)* = (x — 2)°
! 0 ! \v
(a) (h)
Fig. 1-9:1 Some examples of probability distributions giving, for any one )
step, the probability w(s) ds that the displacement is between s and s + ds. r— 1= Z [:S.' _ §J
(a) A4 rather general case, displacements to the right being more probable than R
those to the left. (b) The special case discussed in Sec. 1+2. Here the peaks, W
centered about +1 and -1, respectively, are very narrow; the area under the . A
right peak is p, that under the left one is q. (The curves (a) and (b) are not or Ar = Z 8y
drawn to the same scale; the total area under each should be unity.) fm]
where As = 8; — 8
N
The total displacement x is equal to (Az)? = Z (As;)?
i=1
N
r=st st fav= Y s TAz): = NTBa)t
x)? = Agz)
> (az) = N{as)
s . 212 = e E = [ Aall
Taking mean values of both sides, where (4s)* = (As;)* = [ dsw(s)(As)
N N
=Y &= ) & :
= A%z A*s 1

1 =



General calculation of mean values
for random walk

Diffusivity (cm

Time Interval (ps)

The single self-interstitial diffusion in alpha-iron at 950K via SLD



General calculation of mean values
for random walk

T(K)
000000000000 800

. : :
O - Tm=1043K ]

Is)

Diffusivity (cm

™m/T

The single self-interstitial diffusion in alpha-iron
at different tempreture via SLD

E ~2.63609xkgT,, = 236.929 meV



General calculation of mean values
for random walk

For the problem discussed in the last section, the total displacement x in N

steps is given by

x= ) & (1-10:1)

We now want to find the probability ®@(z) dz of finding x in the range between
xand z + dz. Since the steps are statistically independent, the probability of 1
a particular sequence of steps where E{I — ES':] = — " dk g®1Ea—zl
;) =
2r J - =

the 1st displacement lies in the range between $; and s, + ds;
the 2nd displacement lies in the range between s; and s; + ds;

the Nth displacement lies in the range between sy and sy + dsy
5 ol . : S I = ;
is simply given by the product of the respective probabilities, i.e., by ®(x) = ff : f w(s)w(s) * + - wisy) 5= J[ dk giftert -+ Fev=zd dgy dsq - - - dsy
-

w(s1) dsy - w(ss) dss w(sy) dsy or (?(I) _ l ft P f " ds, w{s,) TR f&u dsx w(sy) e
If we sum this probability over all the possible individual displacements which /- - o
are consistent with the condition that the total displacement x in (1-10-1)
always lies in the range between x and x + dz, then we obtain the total prob-
ability ®(z) dz, irrespective of the sequence of steps producing this total dis-
placement, In symbols we can write

[ k) = f_‘: ds e*w(s)

®(z) dx = jf v f w(s)w(ss) - - - w(sy) dsidsz + -+ dsy (1-10-2)
P Hence (1-10-6) becomes
where the integration is over all possible values of the variables s;, subject to 1 - ) .
the restriction that » ®(z) = 5 f " dk e+ QY (k)
z < §S‘<r + dx (1-10-3)
t=]

N

®(z) dx ff_, fw(aljw(s_) w(s_}la(z .-‘E‘lq)dx'] sy ds ds



Probability distribution for large N

Remark To the extent that w(s) varies slowly over a period of oscillation, In Q¥ = N[5k — %s—"’kz - %(ﬁk)’ LR ]
the integral Q(k) = [dse™w(s) = 0. The reason is that in any range a < . N’[igk e _&,(:;2 e §2)k2 « e ]
8 < bin which w varies slowly so that |dw/ds|(b — a) < w, but which contains = Nlisk TRk o
many oscillations so that (b — a)k >> 1, the integral = - [m - #(As) ]
» b where (As)? = g* — §°
/a ds e**w(s) = wla) fa ds et = ()
Sethl ! o : Hence we obtain
these tw t an say t
ombining these two inequalities one can say that OV (k) = i Nk~ N TETR
f-nd" e*w(s) ~ 0 Thus (1 - 10 - 8) becomes
to the extent that & is large enough so that everywhere (‘P( ) _ 1 = n (NT—2) k=) NTETT iR
: z) =5 [ dke
iy | l&w
ds |k
The actual ecalculation is straightforward. We want first to compute - —autb III'H" i da
Q(k) for small values of k. Expanding e* in Taylor’s series, Eq. (1-10-7) [ l!'i!{ ' v = -MI — §
becomes = {1
Q) = fj_’ ds w(s) e = '/: dsw(s)(1 + ths — kst 4 - - )
or  Qk) = 1+ ik — ¥kt - - - (1-11-1) ®(z) = Lo
where o= /: ds w(s)s” (1-11-2) 1/’2#01
p=N§

is a constant which represents the usual definition of the nth moment of s.
Here we assume that |w(s)| — 0 rapidly enough as |s| —» = so that these

a? = N(As)?

moments are finite,. Hence (1-11-1) yields . . L. )
-~ We already showed that for the Gaussian distribution (1-6-4)
InQ¥k) = NIn Q(k) = NIn [l + &5k — 4s%? - - 7] (1-11-3)
T =
Using the Taylor’s series expansion valid for y < 1, and @z = a_s]
n(l4+y)=y— 3y --- .
( v=y— Hence (1-11-9) implies
= Ns }
and (Az)* = N(As)?



