PHYSICAL REVIEW B

. VOLUME 37, NUMBER 16

1 JUNE 1988

. Numerical study of the late stages of spinodal decomposition

T. M. Rogers, K. R. Elder, and Rashmi C. Desai
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S IA7
(Received 14 September 1987)

A numerical simulation of a two-dimensional system with a continuous order parameter (model
B) is used to study phase separation for a critical quench. Domain growth and scaling are investi-
gated through the pair correlation function. At late stages, the characteristic domain size grows as
R(t)~t'3. It is only in this time regime that scaling of the correlation function is established. The
scaling function and the asymptotic growth law are found to be independent of the strength of
thermal fluctuations. Details of the finite-difference scheme used to simulate the dynamics are dis-

cussed.

I. INTRODUCTION

Pattern formation in phase separation is a problem of
longstanding perplexity. When a system, initially in a
homogeneous equilibrium state, is rapidly cooled
{quenched) into the two-phase coexistence region, small
spatial inhomogeneities in the order parameter evolve
into macroscopic domains, and eventually, into a two-
phase equilibrium state. A rough distinction can be
drawn between nucleation and spinodal decomposition,
depending on whether the quench leaves the system in a
metastable or unstable state. The phenomenon, ubiqui-
tous in physics, chemistry, and metallurgy, has been stud-
ied extensively.! Recently, much controversy has erupt-
ed with respect to the late stages,>~2* which can be
characterized by the coarsening of domains separated by
interfaces. There is evidence of universality in this time
regime, in the sense that some properties do not depend
on the detailed microscopics. Although the delineation
of universality classes is not fully understood, the symme-
try of the order parameter and the existence of conserva-
tion laws seem to play a major role.

In this paper, the case of a scalar conserved order pa-
rameter is considered. For such a system, both experi-
ments?®®~?* and computer simulations'!~!% suggest that
the topology scales with time. In particular, during late
stages of coarsening, the spatial patterns at two different
times are related by a global change of the length scale.
The emergence of scaling is a result of a single length
dominating the dynamics. An important quantity relat-
ing experiments, simulations, and theories is the time-
dependent structure factor, S(k,¢), which measures the
strength of spatial correlations in the order parameter
with wave vector k, at time f. A signature of scaling is
the fact that the structure factor can be cast in the form

S (k,t)=R%t)Sy(kR (1)), (1.1)

where S, is a time-independent function and R(z) is a
characteristic length of the system (such as the average
domain size). The time dependence of R, and the extent
of universality, have become intensely debated questions.

For a nucleating system, the classic work of Lifshitz
and Slyosov? on cluster growth forms the theoretical
focus. They developed a description of coarsening based
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on an evaporation-condensation mechanism, whereby
larger clusters grow at the expense of smaller ones. The
growth is mediated by the surface tension. Their asymp-
totic analysis predicts a power-law growth in time for the
average cluster radius: R ~t", where n is 1. This theory,
and later extensions to it,>® rely on a small volume frac-
tion of one phase with respect to the other. Cluster
coalescences are important for concentrated mixtures of
the two phases, ”’® and can affect the exponent, 7.

During a critical quench (i.e., spinodal decomposition),
a percolating cluster is formed and it is not obvious that
the Lifshitz-Slyosov theory should apply. Along a
different vein, approximate theories for the evolution of
the structure factor® 1% yield an exponent of 1 (which
should probably be interPreted as an intermediate-time
result). In addition, Huse'! has given a dimensional argu-
ment for expecting n=1% at late times, while a
renormalization-group calculation by Mazenko et al.!?
gives logarithmic growth near zero temperature, for ac-
tivated diffusion. Comparatively little is known about the
role of fluctuations.

Considerable computer effort has also been brought to
bear on the problem. Lebowitz et al.'* used a spin-
exchange kinetic Ising model to study phase separation.
They first demonstrated that the structure factor scales
with time and measured a growth exponent ranging from
0.19 to 0.35 depending on the depth of the quench and
the degree of off-criticality. Further Ising simulations'!!2
led to conflicting interpretations. Recently, a detailed
study'* has shown a time-dependent exponent asymytoti-
cally approaching §, confirming the work of Huse. 1 In
molecular-dynamics simulations, !> » =% has been seen,
although with the introduction of Langevin noise!® the
exponent becomes - over the same time scales.

A difficulty with these microscopically based simula-
tions is the extensive computer time required to probe
Jate-stage coarsening. There has been mounting interest
in using numerical simulations based on a coarse-grained
description of the order parameter, which has the advan-
tage of making larger time scales accessible. (This ap-
proach has already proved successful for the case of a
nonconserved order parameter.'”?%2%) In Ref. 27, such
investigations were initiated, although the authors did
not look at domain growth and scaling. Preliminary in-
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vestigations of late-stage phenomena have been reported
for Monte Carlo'® and Langevin dynamics.!® In addi-
tion, a coupled map scheme with conserved dynamics!’
has been developed to study the problem.

In this paper, a numerical study of domain coarsening
in spinodal decomposition is presented for a diffusive sys-
tem with a conserved order parameter (model B). The
approach is similar to investigations of Oppo and
Kapral® for the nonconserved case. Particular attention
is paid to the time dependence of the characteristic
fength scale and the onset of scaling. The simulations
yield a late-stage growth exponent of 1. A power-law an-
satz for the growth at intermediate times leads to an
“effective exponent” which changes continuously with
time. Scaling is only established asymptotically.
Thermal fluctuations seem to have no effect on the
asymptotic growth law or the scaling function. However,
the strength of the noise does change the approach to the
late-stage growth and affects corrections to scaling. Some
important technical considerations in the implementation
of the numerical scheme are also discussed.

II. COMPUTER SIMULATION

The theoretical framework for understanding the dy-
namics of spinodal decomposition is based primarily on
the formulations®® of Cahn and Hilliard and of Cook.

" They developed a phenomenological equation for the
time evolution of the order-parameter fluctuations,
o(r,t), which is referred to as model B in the scheme of
critical dynamics. Namely,

aé(r,t)_ 22
3 =MV 55 +4(r, 1),

where M is the mobility. The theory introduces a
coarse-grained free energy F, which is a functional of the
local order parameter. For a critical quench, F must ex-
hibit a symmetric double-well structure. It is usual to
employ the Ginzburg-Landau-Wilson form

(2.1

F=1[dr|—r¢*+ %¢4+K(V¢)2 , (2.2)

where 7, u, and « are positive (phenomenological) con-
stants. (For an off-critical system, there would be an ad-

ditional term proportional to ¢°, which is not considered
J

T DE, ) = — 2k TMV?S(r—1')8(2 —1t') .

AT
2Ax 2 N

1/1,‘,]-(?1):1!’;,]'(” —1)+

The order parameter ¥ is defined only on the sites
i,j€[1,N] of a square lattice. The summation over
nearest neighbors (NN) is such that

2 W) =F Wy )+ )+ (00

NN

+F ) —4f (Y ;)

for an arbitrary function f(¢). The value of {¢,;] at a

2.7)

I—t,l',-,j(n—1)+¢ij(n—1)——1——5-21/;,-’j(n—1) +77,-,j(n—1).
N Ax® NN
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here.)’ The thermal noise §(r,?) satisfies the fluctuation-
dissipation relationship,

(2.3)

Here kp is Boltzmann’s constant and T is the tempera-
ture. Reference 1 gives an excellent introduction to the
vast literature on the derivation of and approximate solu-
tions to model B.

Following the notation of Grant et al.,” Egs.
(2.1)-(2.3) can be put in the dimensionless form

%‘Tﬁ =1V — P — Vi) + Ve, (2.4)
with ‘
(u(x, u(x, 7)) = —V2(x—x")8(r—7") , 2.5)

where

1/2
r
xX=|— T,
K
2Mr?
T= 1,
K
172
u _
1/’2 _ ¢,
r
and
drn
kBTu r
€= 3 —
r K

The transformation emphasizes the fact that model B
contains only one dimensionless parameter, €, which
characterizes the strength of the noise. (For fixed ¢, vari-
ations of », u, and k can be absorbed into a unified
description by appropriate rescaling of space and time.)
The zero-temperature limit of the model corresponds to
€=0. The magnitude of € increases with temperature.
Near the critical point (r—0), € diverges for d<4. In
the language of critical phenomena, é=0, corresponds to
the mean-field limit.

The simulations reported here adopt a finite-difference
approximation for both the spatial and temporal deriva-
tives in Egs. (2.4) and (2.5). In two dimensions, the re-
sulting discretized equation is

(2.6)

|
given iteration, n, depends upon {¢;;} at the previous

iteration as well as the thermal noise {7;;}. Unlike Ising
simulations, here 1 is a continuous variable, with equilib-
rinm values of 11 corresponding to the wells of the free-

" energy functional defined in Eq. (2.2).

The fluctuation-dissipation relation for the discrete
equation can be maintained by producing two indepen-
dent Gaussian random variables v'!,v?) at each lattice
site,?” such that
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_ (1) {1) (2} (2)
M= py Vit~ Vi HVij1—vi5) (2.8)
where
(b) GAT

(V@) (m)) = ( 8:18,,18m,n8a0 -

i Ax)4

The mapping manifestly obeys the conservation law ap-
propriate for a critical quench,

2¢ij=0 .

i, j

2.9)

The discretization scheme introduces a (dimensionless)
time step, Ar, and a (dimensionless) mesh size, Ax. Con-
nection with the continuous equations can be established
by noting,

T=nAT
and
x=iAXR+jAXY .

The dynamical evolution of the discrete and continu-
ous models, however, are not necessarily identical. For
example, the discrete equations can undergo a subhar-
monic bifurcation for a certain range of Ax and AT
whereas, this is not possible in the continuous equations.
As a result, the time step and mesh size must be chosen
carefully in order to establish a correspondence between
the two models. These restrictions are discussed in Sec.
III C.

HI. RESULTS

We have investigated the dynamics of phase separation
in the discrete model for a critical quench. The system
was initially prepared in a homogeneous (single phase)
state by assigning, to each lattice site, a random number
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uniformly distributed in the interval [—¢; +¢€3]. The
magnitude of € reflects the strength of thermal fluctua-
tions in the initial state. All computations were carried
out on a two-dimensional square lattice with periodic
boundary conditions. Throughout the remainder of the
paper, the term “trial” refers to a single integration of the
model for a given initial condition. A “run” involves an
average over several different trials, each trial being start-
ed from its own random seed (i.e., an average over the
noise). Tables I(a) and I(b) summarize the parameters
used for each run.

A. Growth and scaling

The time evolution of the order parameter for a
characteristic trial is shown in Fig. 1. In these snapshots,
the shaded regions correspond to positive values of the
order-parameter field. The symbol size at each lattice site
is proportional to the magnitude of the field. [It should
be noted that there is (statistical) symmetry of the field
with respect to the spatial distribution of negative and
positive values of the order parameter. In Fig. 1, howev-
er, regions where the order parameter is negative have
been left blank.] The early stages of phase separation
{not shown in the figure) involve the amplification of local
fluctuations into large scale inhomogeneities. A detailed
study of this process will be presented elsewhere. The
late stages [Figs. 1(a)—1(c)] are characterized by domains
(where i is near one of the two equilibrium values),
separated by relatively sharp interfaces. Here the
configurations exhibit an interwoven, connected topology
which is common in spinodal decomposition.! The size
of the domain increases with time as shown in these
figures.

In order to make a quantitative analysis of domain
growth, it is useful to focus on the pair correlation func-
tion,

&

TABLE 1. (a) Parameters used in the simulations: effect of noise strength € on phase separation (see
text for definitions). (b) Parameters used in the simulations: effect of mesh size Ax and time step Ar.

Run € € Ax AT Size Nigiass® R’

(a)

A 0 0.05 1.7 0.3 100X 100 126 (7<900)

26 (7> 900) 0.32%0.01

B 0.05 0.05 1.7 0.3 124124 20 0.3240.01

C 0.2 0.05 1.7 0.06 124 124 10 0.311+0.02

D 0.5 0.05 1.7 0.02 124 124 7 0.271+0.02
(b)

E 0.05 0.0 0.7 0.01 100 100 1

F 0.05 0.0 1.4 0.1 124124 5

G 0.05 0.0 1.9 0.3 124 124 2

H 0.05 0.0 2.1 0.3 124 124 2

I 0.05 0.0 2.3 0.3 124 124 2

J 0.05 0.0 2.8 0.3 124 124 3

K 0.05 0.05 1.7 0.03 124X 124 2

2N a1 Tefers to the number of trials used to average over the noise.
bCalculated for 7> 900 in runs A, B, D, and for 7> 3000 in run C.
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FIG. 1. Time evolution of the order-parameter field during
phase separation in run 4. The shaded regions correspond to
1¥>0. (a), (b), and (c) correspond to 7=150, 600, and 2200, re-
spectively.
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G(x,f)=# S (Y +x, T, T)) (3.1)
2

where x is a lattice vector. The angular brackets in Eq.
(3.1) denote an average over the thermal noise. If the sys-
tem is isotropic then G depends only on the radial dis-
tance, r = | x|. A further circular average leads to the
radial pair correlation function,

g(r,r)=i

N > G(x,7), (3.2)

Ix|=r '

where N, is the number of lattice vectors of magnitude 7.
Figure 2 shows the typical dynamical evolution of the ra-
dial correlation function. The domain structure is ap-
parent in the oscillations of the function about zero. As
the system coarsens, spatial correlations extend increas-
ingly further along the radial axis.

In the simulations, the distance at which g(r,7) first
crosses zero, R;(7), has been used as an arbitrary mea-
sure of domain size. To establish consistency, the second
zero, R,(7), has also been determined. The zero was ob-
tained by an interpolation of the datapoints over a region

. extending from the nearest minimum to the nearest max-

imum. Using the individual trials for run B, a standard
deviation of 2% was obtained for R, and R,. This result
was used to estimate the statistical errors in all other
30 ‘

runs.

A logarithmic plot of the two radii as a function of
time is given in Fig. 3 for run A. In this run there was no
noise (e=0), consistent with the assumptions of Lifshitz

0.8 T T T T

0.6} ¢ 4

g(r,7)

48

FIG. 2. Time dependence of the radial pair-correlation func-
tion in run 4. The lines correspond to =150 ( 4), 7=600 (B),

and 7=2400 (C).
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FIG. 3. The first zero and second zeros of g(r,7) as a func-
tion of time in run A4. (The data is plotted using natural loga-
rithms.) The solid lines correspond to 126 trial averages; the
dashed lines, 26.

and Slyosov.? (Randomness only enters through the ini-
tial conditions.) The datapoints for R and R, are nearly
(but not identically) parallel. It should be noted that if
there is scaling, the ratio of the two lengths will be con-
stant in time, leading to perfectly parallel lines. The in-
stantaneous slope can be interpreted as an effective ex-
ponent, n.s. The curvature in the plots for intermediate
times indicates a continuous change of n.. At late
stages, the data appear to be converging to a slope of 1+ I
A linear fit to the datapoints for 7> 900 gives a slope of
0.32+0.01 for both R, and R,. Contrary to other stud-
ies, there is no convincing intermediate regime, where the
slope levels off at ng=1. Rather, our data suggest a
smooth and continuous approach to the asymptotic limit,
n =4. It should be noted that because of the slow change
of the (effective) exponent with time, it is easy to misin-
terpret intermediate time data to favor an asymptotic ex-
ponent which is lower than the true value. We believe
that our simulations have probed a sufficiently large time
scale to avoid this problem.

The intermediate stages of growth involve the estab-
hshment of broad domain walls, which then sharpen with
time.>' There is a correlation between the establishment
of sharp walls and the onset of n =1. This was pointed
out by Oono and Puri,!” who associated an exponent of }
with “soft” (i.e., broad) walls and 1 - with “hard” (i.e.,
thin) Walls (The terminology is comed from Mouritsen’s
studies®? of growth for a system with a nonconserved or-
der parameter.) Although we do not see a well-defined
region where n =, it is clear from our simulations that
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~ the effective exponent is significantly smaller than 1 when

the domain walls are broad compared to the size of the
domains.
The scaling ansatz for the pair-correlation function is

glnr)=f(z (3.3)

where z =r/R (7) and R (7) is some characteristic length
scale. The scaling function, f(z), is time independent.
The data for R (7) have been used to test for scaling in
the simulations The results, for intermediate times, are
shown in Flg 4. There is no scaling here as evidenced by
the change in shape of f(z) with time. The minima and
maxima of the function are slowly changing, and there is
a shift of the second and third zeros with respect to the
first. Figure 5 shows that further changes in the scaling
function cannot be distinguished for r>900. To within
the accuracy of the statistics, the onset of scaling is coin-
cident with the establishment of ng=1. The data sug-

gest, in fact, that both are asymptotic results.

B Eﬁ‘ect of noise

The role of the thermal noise in domain growth and
scaling was investigated in runs 4, B, C, and D (e=0,
0.05, 0.2, and 0.5, respectively). For nonzero e, the spa-
tial distribution of the domains in late-stage coarsening is
qualitatively similar to the case for e=0. A large per-
colating cluster forms, with an interwoven topology. The
interfacial structure, however, is dependent on € as illus-
trated in Fig. 6. This snapshot corresponds to €=0.5.
By comparison with Fig. 1, it is evident that increasing
the strength of the noise leads to a rougher domain topol-
ogy, with broader and more diffuse interfaces.

Logarithmic plots of R, as a function of 7 for the four
runs are shown in Fig. 7. The domain growth is faster for
larger €, indicating that fluctuations facilitate phase sepa-
ration {(especially for early and intermediate times). The
plots appear to converge to the same slope at late times.
The last column in Table I(a) gives the effective exponent
of each run for the latest time scales probed. Within the
accuracy of our statistics, the exponent has reached 1 for
€=0, 0.05, and 0.2. (The effective exponent is slightly
less than 1 for €=0.5, which suggests that the asymptotic
growth regime has not been reached.) We conclude that
the noise has no effect on the late-stage growth exponent.
However, the approach to this asymptote is € dependent.
In particular, the transition is slower for larger noise
strengths. [This is possibly an interpretation of the
molecular dynamics simulations of Refs. 15 and 16,
which give an exponent of . without noise and an
(effective) exponent of 1 with noise.]

Scaling of the pair-correlation function for nonzero €
follows a similar trend to Figs. 4 and 5 (e=0). For inter-
mediate times, the scaling ansatz breaks down. It is only
in the late-stage regime, where the effective exponent ap-
proaches 1, that scaling is obeyed by the system. A com-
parison of the late-stage scaling functions is given in Fig.
8. There is excellent agreement for €=0, 0.05, and 0.2,
indicating that the form of the (asymptotic) scaling func-
tion is independent of the strength of the noise. The dot-
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FIG. 4. The scaled correlation function for intermediate stages in run 4. The data is plotted for r=60 (dotted line), 7=150
{dashed line), and 7=900 (solid line). There is no scaling in this time regime.

ted line on the graph corresponds to the latest time exam-
ined for €=0.5. There is a clear mismatch of this data,
since the simulation has not reached the late-stage scaling
regime. This interpretation is consistent with the fact
that, for this run, the effective exponent is less than 1

(Fig. 7).

C. Effect of A7 and Ax

Equation (2.4) is a nonlinear stochastic diffusion equa-
tion which presents a challenging numerical problem.
The choice of a finite-difference algorithm is based upon
the constraints of a stochastic noise term*? and the need
for computer efficiency. The discretization scheme intro-
duces two parameters, namely, the dimensionless time
step Ar, and the dimensionless mesh size Ax. Some care
must be taken with these parameters to avoid spurious

solutions.

In the absence of noise, Eq. (2.6) becomes a spatially
coupled map, similar to the nonconserved map studied in
Ref. 25. Tt is insightful to adapt their linear stability
analysis to study the bifurcation structure.

For a lattice of size N X N, the Fourier transform of the
order parameter is defined

1 ixk
Su="3 X ¥e™, (3.4)
N° %

where the sum is over the lattice vectors. The Fourier
modes are restricted to the reciprocal lattice,

27
T NAx
where I,m €[1,N]. The mesh size Ax has been explicitly

incorporated here so that the continuous limit is trans-
parent (i.e., Ax —0). In Fourier space, the map becomes

k

(IX4-m9) , (3.5)
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FIG. 5. The scaled correlation function for late stages in run 4. The data is plotted for 7=900 (dotted line), 7= 1500 (dashed line),

and 7=2400 (solid line).

Gulr+An= |1-2(k) - £T0%0) |g(7)

+EIT(0 S, 3, £l T i) »
s

(3.6

where
I‘(k)=—A-xz—z[cos(kxAx)—{—cos(kyAx)—Z] .

(k) is the Fourier transform of the discrete Laplacian.
(Note that, lim,,_,,I'(k)=—k?%) We are interested in
stability about the homogeneous fixed point & =18, o,
which corresponds to a single phase state of the system.

Linearizing around this fixed point, for a critical quench
(1p5=0), yields

8&(r+AT)= 3 H, 8& , (3.7
<

where
Hy = 1_921r(k)—%r2(k) B -

Fourier modes for which | H, | <1 are stable, since a
small perturbation, 8&;, will decay with successive itera-
tions. Two types of instability can be identified, Hy ; > 1
and Hy , < —1, corresponding to tangential and subhar-
monic bifurcations, respectively. For the critical quench,
a tangential bifurcation occurs when
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FIG. 6. Configurational snapshot for €=0.5 and 7=3000.
The shaded regions correspond to positive values of the order
parameter.

—T(k)<1. (3.8)

The instability leads to growth of small k modes. This is
consistent with Cahn’s analysis?® of the continuous equa-
tion (2.4), and reflects the onset of spinodal decomposi-
tion.

2.8 Y T T T T

2.6

2.4}

2.0}

In(R,)

1.8 -

14|

27 1 1 1 1
1.2\5.0 + 4.0 8.0 6.0 7.0 8.0 9.0

In(z)

FIG. 7. The time dependence of R for €=0 (dashed line),
€=0.05 (solid line), €=0.2 (open squares), and €=0.5 (crosses).
Increasing the magnitude of € increases the time scale for the
onset of linearity in the plot. The lines all appear to converge to
a slope of 1 [see Table I(a)].

9645

More subtle is the subharmonic bifurcation condition,
which has no counterpart in the continuous equation

-—~——1"(k)-— SIrdk)<—2.

2
Beyond the subharmonic bifurcation, the dynamics of the
discrete and continuous models can be qualitatively
different. In two-dimensional systems, this bifurcation
can be avoided, for all k¥ modes, by maintaining the in-
equality

(3.9)

(Ax)*
16—2(Ax)?

In effect, this restricts the choice of At for a given Ax.
The constraints of (3.10) have been observed for all simu-
lations reported here.

The mesh size is an important consideration in the
simulations. Ideally, one would like to use a vanishingly
small Ax. Computer limitations, however, require a more
pragmatic approach. The continuous equation (2.4) in-
herently possesses a small length scale /, which is the
width of the interface. This is clearly seen in one dimen-
sion, where the steady state solution (corresponding to a
domain interface) is known: ¢=tanh[1/V2(x —x¢)].
The interface is centered at x,, and has a width of ap-
proximately 3 in dimensionless units.?! This translates
into an upper limit for Ax. We have investigated the
dependence of the simulations on Ax in the range
(0.7,2.8). For the time scales we have probed, the results
converge for small Ax. However, there is a relatively
sharp cutoff for Ax ~1.4-1.7, beyond which the simula-
tion becomes mesh-size dependent. This trend is illus-
trated in Fig. 9, where we have plotted R, as a function
of 1/Ax, for 7=2400. We believe that this effect is relat-
ed to the inability of a large mesh size to accurately
reflect the spatial gradients inherent in the interface of
the continuous model. Figure 10 shows that the growth
law is sensitive to the mesh size for large Ax. Most strik-
ing is the fact that the growth exponent itself is affected.
It should be noted that the introduction of an underlying
lattice has a physical basis in Langer’s derivation® of
model B. He defines a coarse-graining length, over which
the detailed microscopic properties are averaged. At this
level, the mesh size used in our simulations can be inter-
preted as a coarse-graining length.

The subharmonic bifurcation condition imposes a re-
striction on the time step, A7, which is strongly depen-
dent on the mesh size. For small €, this appears to be the
only constraint on the time step. In Fig. 11 the results of
simulations for Ar=0.3 and A7r=0.03 are compared
(e=0.05). The data are identical, within the accuracy of
the statistics. For large ¢, the linear perturbation analysis
is insufficient. The noise introduced at each time step has
an average magnitude of (eA7)!/2/Ax2. This finite am-
plitude perturbation can lead to divergences in the simu-
lation if At is too large.

AT < (3.10)

IV. DISCUSSION

These simulations shed considerable light on the prob-
lem of domain growth. Runs A4 through D show that the
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FIG. 8. Late-stage scaling function for €==0 (solid line), ¢=0.05 (open squares), and €=0.2 (crosses). The dashed line corresponds
to the latest time probed for €=0.5 (this simulation has not reached the scaling regime).

late-stage growth exponent is § for model B. This is con-
sistent with computer simulations'!*!%17 and experi-
ments?*~2* on other systems with a scalar conserved or-
der parameter. There is strong evidence that it is, in fact,
a universal feature of such systems.

An effective exponent can be introduced to describe the
intermediate stages of domain growth. Figures 3 and 7
show that the exponent varies continuously with time.
However, this description may be somewhat misleading
since scaling is not established until the very late stages.
In particular, for the range of € we have studied, the
pair-correlation function does not scale during the time
scales where n.4 < 1. This result has important theoreti-
cal implications, since it discounts the possibility of an
(intermediate) scaling regime where the growth exponent
is 1.

It has been argued™!! that the approach to asymptotic
growth of the average domain size is given by a power
series expansion in ¢ ~!/3;

R()=A ;1" A+ Ayt~ P - -, (4.1)

This prediction has been verified in spin-exchange Ising
simulations'"!® and in experiments on a binary alloy.?*
Figure 12 shows a plot of R, as a function of 773 for our
data. For €=0, the data are remarkably linear over the
late-stage regime. During these time scales, the first two
terms in the expansion correctly describe the growth. As
€ is increased, the onset of linearity is pushed further in
time, indicating the increasing importance of higher-
order terms. The final slope attained by the data for each
€ is given in Table II. The similarity of the slopes is a
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a change in the growth law.



9648

TABLE II. Growth coefficient A, [see Eq. (4.1)] for various
values of €.

Run € o A,
A 0 0.841+0.02
B 0.05 0.85+0.02
C 0.2 0.81+£0.03
D 0.5 0.814+0.05

strong indication that the leading order coefficient, 4, is
independent of €. When this information is combined
with the analysis of the scaling functions, we are led to
the conclusion that fluctuations are irrelevant to asymp-
totic domain growth.

The strength of thermal noise does play an important
role in the early and intermediate stages of phase separa-
tion. With increasing €, domain growth is enhanced and
the time scale for the onset of scaling is increased. Large
€ corresponds to a quench near the critical point of the
model. Thus it can be expected that the transition regime
will become increasingly more important as the critical
point is approached.

The breakdown of scaling at intermediate times may be
" related to the establishment of sharp walls. The interfa-
cial width, /, introduces a second length scale into the
problem, which leads to a more general scaling ansatz,

g(nt)=f(r/R,I/R) . 4.2)

Since the time dependence of [ is different from that of R,
it is only when / /R —0 that Eq. (3.3) is valid. This limit
is always obtained for sufficiently large times (since / de-
creases to a constant with time). The ratio of the two
length scales becomes a natural small expansion parame-
ter for a late-stage theory of the pair correlation function.
It can be shown analytically that model B predicts
R ~ '3 in the limit I /R —0. As € is increased, the walls
become broader due to the noise. This increase in [
affects corrections to asymptotic growth and may be re-
lated to the increase in the time scales for the onset of
scaling as seen in the simulations.

The simple finite-difference algorithm produces
efficient (vector) code. However, there are some limita-
tions, such as the subharmonic bifurcation and the
mesh-size effect. As with any simulation, one must be
careful to avoid spurious solutions. It should be pointed
out that model B contains only one dimensionless param-
eter, which is related to the strength of fluctuations.
Consequently, a faithful computer simulation of the mod-
el should admit only one parameter through which the
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physics can change (i.e., €). Variation of other parame-

__ters (for example, Ax and Ar) should yield consistent re-

sults when appropriately interpreted. Conversely, if one

-assumies the discrete lattice is fundamental (as in the
work of Langer"), then our data suggest that the coarse-
graining length is not important in the dynamics as long
as it is much less than the interfacial width.

V. CONCLUSIONS

The process of phase separation in model B is an intri-
guing theoretical problem, which eludes complete under-
standing. The method of finite differences provides an
effective algorithm for studying the problem numerically.
Using this technique, we have attempted to gain some in-
sight into domain growth and scaling in the model.

We find that during late stages, the domains coarsen as
a power of time. The measured (asymptotic) exponent of
1 places the model in the same universality class as the
spin-exchange kinetic Ising model and many other sys-
tems with a scalar conserved order parameter. We also
find that scaling of the pair-correlation function is an
asymptotic result. The scaling function and the asymp-
totic growth law are independent of the strength of the
thermal noise. We believe that the interfacial width plays
an important role for intermediate times and leads to
time-dependent corrections to dynamic scaling. It would
be of considerable interest to make a detailed comparison
with experimental systems and computer models that are
expected to map onto model B.

Note added in proof. It has recently come to our atten-
tion that E. T. Gawlinski, J. D. Gunton, and J. Vifials
have carried out a similar numerical study of this model
for e=0.1. They have also concluded that the asymptotic
growth exponent is 1 (private communication).
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